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Resistivity of the two-dimensional Bose-Hubbard model at weak coupling
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We calculate the weak-coupling resistivity of the two-dimensional Bose Hubbard model, comparing with the
more familiar fermionic case. At high temperature the resistivity is linear in T , while in the low-temperature
normal state it is exponentially suppressed. We explore the density dependence and calculate the momentum
relaxation rate.

DOI: 10.1103/PhysRevA.109.053303

I. INTRODUCTION

Transport is the most fundamental probe in solid-state
physics. Recently, new techniques have been developed to
study the transport properties of quantum degenerate atomic
gases [1–3], giving us the ability to use ultracold atoms to
expand our understanding. For example, many strongly corre-
lated materials display unexplained temperature dependence
of their resistivity [4–7], and cold-atom experiments may re-
veal the underlying mechanisms. Cold-atom experiments are
also exploring the rich behavior of transport in inhomoge-
neous settings such as quantum point contacts [8]. Beyond
these solid-state-inspired studies, we can use atomic gases to
explore completely novel transport regimes. Here we calculate
the resistivity of a two-dimensional (2D) Bose gas in an op-
tical lattice. As is familiar from other systems with bounded
spectra [9–13], we find that the high-temperature resistivity
scales linearly in temperature, while the low-temperature be-
havior is more complex. The same techniques which were
used to measure the resistivity of a 2D Fermi gas could be
applied here to experimentally verify these results.

In most materials, resistivity is dominated by either
electron-phonon scattering or electron-impurity scattering.
Ultracold atoms have no phonons or impurities, so the only
mechanism for momentum relaxation is the equivalent of
electron-electron scattering [14]. Momentum is conserved in
these processes, modulo a reciprocal lattice vector. Resistivity
requires momentum relaxation and is thus related to the rate of
umklapp scattering [15], where the momentum of the particles
changes by such a reciprocal lattice vector. We calculate this
rate within the Born approximation, which works well at weak
coupling, extracting the resistivity.

Resistivity is a quantity which is almost exclusively dis-
cussed in the context of fermions. Bosons, such as light,
typically move ballistically. Moreover, there is no obvious
optical equivalent of an electric field, making it challenging to
even envision an optical transport experiment. Other common
bosonic systems, such as phonons or magnons suffer these
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same challenges. Cold atoms, however, provide the perfect
platform to extend transport measurements to bosons. All of
the techniques that have been developed to probe transport
in fermionic gasses can be used on bosonic atoms. Further-
more, the same mechanism which leads to the ohmic behavior
of fermions also applies to bosons. Due to the lack of a
Fermi surface, however, much of the phenomenology differs.
Additionally, at very low temperatures a Bose gas becomes
superfluid, with a vanishing resistivity. Our calculations only
apply to the normal state.

At infinite temperature a lattice gas will have infinite re-
sistivity [9,10,16]. All states are equally likely, and a uniform
force does not change the momentum distribution or lead to
currents. The leading corrections scale with 1/T , giving a T -
linear high-temperature resistivity. This argument is equally
applicable to bosons and fermions.

For fermions [16] at low temperature, all properties are
dominated by excitations around the Fermi surface. Count-
ing arguments then give that the umklapp contribution to
resistivity generically scales as T 2. Bosons are different.
The low-temperature (but noncondensed) Bose distribution is
peaked at small momentum. There are no allowed umklapp
processes for these small momentum particles, so the resistiv-
ity is exponentially small.

At very low temperatures a 2D interacting Bose gas will
undergo a Berezinskii-Kosterlitz-Thouless (BKT) transition
to a superfluid state [17–21], in which our calculation does
not apply. The transition occurs at a temperature of order
TBKT ∼ nt/ ln(t/nU ), where n is the average number of par-
ticles per site, t is the hopping matrix element and U is the
on-site interaction strength. Typical densities are of the order
of 0.1 < n < 2.

We organize our paper as follows. In Sec. II we describe
the 2D Bose-Hubbard model and our variational approach
to solve the Boltzmann equation. In Sec. III we present our
results for the resistivity and its temperature dependence. In
Sec. IV we summarize and present some conclusions.

II. THE MODEL

We consider spinless bosonic particles on a square lat-
tice, whose dynamics are governed by the Bose-Hubbard

2469-9926/2024/109(5)/053303(5) 053303-1 ©2024 American Physical Society

https://orcid.org/0000-0003-0845-0105
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.053303&domain=pdf&date_stamp=2024-05-02
https://doi.org/10.1103/PhysRevA.109.053303


EDUARDO O. RIZZATTI AND ERICH J. MUELLER PHYSICAL REVIEW A 109, 053303 (2024)

Hamiltonian [22]

H = −t
∑
〈i, j〉

b†
i b j + U

2

∑
i

b†
i b†

i bibi

=
∑

k

εkb†
kbk + U

2Ns

∑
kk′q

b†
kb†

k′bk′−qbk+q, (1)

where b† and b are the creation and annihilation operators,
respectively, t is the hopping amplitude, and U accounts for
the local interaction. The single-particle dispersion relation is

εk = −2t[cos(kxa) + cos(kya)], (2)

where a is the lattice spacing, and the momentum space sums
are taken over k = (kx, ky), with kx, ky = 2πn/L. Here Ns is
the number of lattice sites and V = Nsa2 = L2 is the volume
(area).

We use a quantum kinetic approach [23,24], describing
the system in terms of the distribution function fk = fk(r, t ),
which measures how many particles have momentum k at
position r and time t . We use the same symbol for the hopping
matrix element and time, but the meaning should be clear from
the context.

The distribution function obeys a Boltzmann equation:

∂ fk

∂t
+ vk · ∇r fk + eE

h̄
· ∇k fk = Ik. (3)

Here vk = 1
h̄∇kεk. The electric field E is small, and we have

taken the particles to have charge e. In the cold-atom context,
the atoms are neutral and this designation is formal, since the
only physical quantity is the gradient of the potential energy,
∇V = −eE . The collision integral expresses the change in
momentum occupation due to scattering,

Ik =
∑

[�in − �out]Wk′′k′′′
kk′ , (4)

where the sum is over k′, k′′, and k′′′ in the first Bril-
louin zone (−π/a < kx, ky < π/a). Quantum statistics are
encoded in the factors �in = fk′′′ fk′′ (1 + fk′ )(1 + fk ) and
�out = fk fk′ (1 + fk′′ )(1 + fk′′′ ). Using Fermi’s golden rule,
the transition rate Wk′′k′′′

kk′ = 2π
h̄ | 〈k′′k′′′|H |kk′〉 |2δ(εk + εk′ −

εk′′ − εk′′′ ) can be evaluated as

Wk′′k′′′
kk′ = 2π

h̄

U 2

4N2
s

δ̄k+k′,k′′+k′′′δ(εk + εk′ − εk′′ − εk′′′ ), (5)

where H = U
2

∑
i b†

i b†
i bibi is the interaction Hamiltonian.

Here δ̄pq is the periodic version of the Kronecker delta func-
tion, which is zero unless p − q is a reciprocal lattice vector.

We linearize the Boltzmann equation by considering
a small perturbation, δfk = −�k(∂ f 0

k /∂εk ), from the lo-
cal equilibrium distribution function, f 0

k = (eβ(εk−μ) − 1)−1,
writing

fk = f 0
k − �k

∂ f 0
k

∂εk
, (6)

where the temperature kBT = β−1 and the chemical potential
μ are uniform and time independent, implying ∇r f 0

k ≈ 0.
The function �k is small and can be interpreted as a gen-
eralized current, generating a deviation from the equilibrium

distribution. In a steady-state configuration ∂t fk = 0, and the
linearized Boltzmann equation becomes e(∂ f 0

k /∂εk )vk · E =
Ik, with

Ik = −β
∑

[�k + �k′ − �k′′ − �k′′′ ]Pk′′k′′′
kk′ , (7)

Pk′′k′′′
kk′ = f 0

k f 0
k′
(
1 + f 0

k′′
)(

1 + f 0
k′′′

)
Wk′′k′′′

kk′ . (8)

Following the approach in Refs. [25,26], we make a vari-
ational ansatz, �k = ξφk, where φk = (∇kεk )x = 2t sin(kxa)
is fixed and ξ is a variational parameter. A more sophisticated
ansatz would involve a linear combination of a set of linearly
independent trial functions. If such a set is complete, then
the solution is exact. We multiply the Boltzmann equation by
−�k/V and sum over k, resulting in

ξ j · E = ξ 2P, (9)

where

j = − e

V

∑
k

φk
∂ f 0

k

∂εk
vk, (10)

P = β

4V

∑
[φk + φk′ − φk′′ − φk′′′ ]2Pk′′k′′′

kk′ . (11)

Physically, these encode the charge density J = ξ j, and the
entropy production due to collisions Ṡcoll = ξ 2P/T . The con-
nection between P and entropy comes from noting that the
left-hand side of Eq. (9) is the power from ohmic dissipation
J · E = −T Ṡfield, which is converted into heat by collisions.

As argued in Appendix C, ξ = j · E/P which satisfied
Eq. (9) maximizes the entropy production and provides our
best variational estimate. The resistivity is then

ρ = P

j2
, (12)

where j = jx is the x component of the current, parallel to the
applied electric field. We also define a relaxation time τ from
the Boltzmann equation according to − δfk

τ
= Ik. Multiplying

both sides by �k/V and summing over k, the momentum
relaxation rate  = τ−1 is

 = ea

h̄

P

j
. (13)

For a given temperature and density, P is an eight-
dimensional integral, but conservation of energy and mo-
mentum reduce it to five dimensions. The current j is a
two-dimensional integral. In Appendix A we explain how to
efficiently calculate P. Details of the presented calculations
are also addressed in the Supplemental Material [27].

III. RESULTS

Our results are summarized by Fig. 1. Within the Born
approximation, the resistivity scales with U 2 and has no
other interaction dependence. The characteristic scale is ρ0 =
h̄
e2 (U

t )2. At high temperatures the resistivity is linear in T ,
approaching ρ∞ = 0.076( T

t )ρ0. Such linear behavior is ex-
pected for any system with a bounded spectrum [9–13].

The resistivity monotonically decreases with increasing
density. This feature is related to the fact that the only
momentum-changing collisions involve umklapp processes,
k, k′ → k′′, k′′′, with k + k′ = k′′ + k′′′ + Q, where Q is a
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FIG. 1. Resistivity ρ as a function of temperature T for bosons
(blue) or fermions (red) hopping on a 2D square lattice in the weak-
coupling limit, t 	 U . Here ρ0 = h̄

e2 ( U
t )2 is quadratic in the on-site

interaction strength U . The hopping matrix element is t . The black
line shows the classical limit, corresponding to vanishing density.
The inset shows the bosonic data, on an inverse semilog scale. The
thick yellow line has a slope of −4, corresponding to ρ ∝ e−4t/T . At
sufficiently low temperature, TBKT ∼ nt/ ln(t/nU ), the system will
undergo a BKT transition to a superfluid, where this calculation is
invalid. The shaded region indicates typical parameter values for the
transition.

reciprocal lattice vector. If the energies εk and εk′ are suffi-
ciently small, then there are no energy-conserving processes
of this form. Thus, low-energy particles have a smaller contri-
bution to the resistivity than particles with high energy. For
bosons, increasing the density will increase the fraction of
particles with low energy, resulting in a suppressed resistivity.

Conversely, for fermions, increasing the density shifts the
particle distribution to higher energy. Thus, the resistivity
grows with density (below half-filling). In Fig. 1 we also show
the fermion result, as calculated in Ref. [16]. At vanishing
density the bosonic and fermionic results coincide, corre-
sponding to a Boltzmann gas.

At low-temperature the resistivity is strongly suppressed,
as exponentially small numbers of particles have sufficient
energy to undergo umklapp processes. Thus, ρ ∼ e−�/T . The
inset in Fig. 1 illustrates this behavior by plotting ln(ρ/ρ0)
as a function of temperature 1/T . For all densities the data are
well fit to � = 4t , corresponding to the fact that in this regime
the most important collisions occur between particles near the
bottom of the band (with ε = −4t) and particles at the van
Hove singularity (with ε = 0).

In addition to looking at the resistivity, it is useful to
also explore the temperature dependence of the momentum
relaxation rate . While direct measures of  are often
challenging in solid-state physics, cold-gas experiments have
demonstrated the ability to measure it [28]. Figure 2 shows
 versus T for bosons at different densities. The relaxation
rate is a monotonically increasing function of density and
temperature. More particles provide more opportunities for
scattering, as well as contributing via Bose enhancement.

FIG. 2. Momentum relaxation rate  versus temperature T for
bosons, at several different densities n. At high temperatures,  satu-
rates at a value of ∞ = 0.152n(1 + n)U 2/h̄t . For low temperatures,
the relaxation rate is exponentially suppressed.

Higher temperatures result in the occupation of larger mo-
menta and, hence, more opportunities for umklapp scattering.
At high temperatures the distribution function becomes flat
and  saturates at ∞ = 0.152n(1 + n)0, with 0 = U 2/t h̄.

For low temperatures,  becomes exponentially sup-
pressed, due to the low occupation of high-momentum modes.
One also notes that the relaxation rate has only weak n depen-
dence at low T . This is due to the fact that at sufficiently low
temperatures, μ → −4t for all densities. Thus, the occupation
of high-momentum modes becomes density independent.

IV. SUMMARY AND CONCLUSIONS

Cold-atom experiments give us access to novel transport
quantities, such as the resistivity of a Bose gas. Thus, we can
elucidate the role of quantum statistics in transport.

Here we calculated the weak-coupling resistivity of a Bose
gas in a 2D optical lattice. We find ρ ∝ T at high tempera-
tures, similar to what was seen in experiments on fermionic
atoms [1]. This illustrates that high-T linear resistivity is a
property of the bound spectrum and is not solely a signature
of exotic strongly correlated systems. In this high-temperature
regime quantum statistics manifest in the density dependence
of the resistivity. For bosons the resistivity falls with increas-
ing density, while the opposite occurs for fermions.

It is somewhat counterintuitive that the relaxation rate sat-
urates at high temperature, despite the diverging resistivity.
This behavior can be traced to the properties of the effective
mass. In a Drude picture, ρ = m∗/ne2τ . For quantum particles
in a lattice the mass is interpreted as the curvature of the
dispersion, (m∗)−1 = ∂2

k εk: Particles near the bottom of the
band have a positive effective mass, while those at the top have
a negative effective mass. At high temperature the atoms are
evenly distributed throughout the Brillouin zone, and the ap-
propriate average leads to m∗ ∼ T [16]. This result can also be
understood through the Nernst-Einstein relationship σ = Dχ ,
where D is the diffusion constant and χ is the compressibility.
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The diffusion constant is related to the relaxation time and
saturates at high temperature. The vanishing conductivity is
attributed to a vanishing compressibility—as would be ex-
pected for any system with a bounded spectrum.

At low temperature we instead find that ρ is exponentially
suppressed, as opposed to the fermionic ρ ∝ T 2. This differ-
ence is due to the momentum distribution of the particles.
At low temperatures the bosons predominantly occupy low
k modes, which are incapable of umklapp scattering. Con-
versely, fermions form a Fermi sea. We also demonstrate that
in the limit of vanishing density quantum statistics become
irrelevant, and the fermionic and bosonic results coincide.

Experiments on bosons have largely focused on the su-
perfluid regime. As this study illustrates, however, there are
also many interesting phenomena which can be explored in
the normal state. It would be very exciting to experimentally
observe ohmic flow in a Bose gas. One could also explore the
interplay between hydrodynamic and dissipative transport, as
has been studied in recent solid-state experiments [29].
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APPENDIX A: NUMERICALLY EVALUATING P

In the thermodynamic limit the discrete sums over momen-
tum in Eq. (11) become integrals and the periodic Kroenecker
delta transforms into a sum of Dirac delta functions according
to

1

V

∑
k

→
∫

d2k
(2π )2

V δ̄k+k′,k′′+k′′′ →
∑

Q

(2π )2δ(k + k′ − k′′ − k′′′ − Q), (A1)

where the reciprocal lattice vectors Q have components Qx

and Qy which are integer multiples of 2π/a. The collision
term P is then

P = U 2a4β

16h̄(2π )5

∑
Q

∫
d2k

∫
d2k′

∫
d2k′′

∫
d2k′′′

× (φk + φk′ − φk′′ − φk′′′ )2 f 0
k f 0

k′
(
1 + f 0

k′′
)(

1 + f 0
k′′′

)
× δ(k + k′ − k′′ − k′′′ − Q)δ(εk + εk′ − εk′′ − εk′′′ ),

(A2)

where, as already introduced, φk = 2t sin(kxa), εk =
−2t[cos(kxa) + cos(kya)], and fk = (eβ(εk−μ) − 1)−1. Even
after using the delta functions to eliminate integration
variables, this is a five-dimensional integral. To more
efficiently evaluate it, we change to center-of-mass and
relative coordinates, writing

δ(k + k′ − k′′ − k′′′ − Q)

=
∫

d2K δ(k + k′ − K)δ[k′′ + k′′′ − (K − Q)], (A3)

δ(εk + εk′ − εk′′ − εk′′′ )

=
∫

dE δ(εk + εk′ − E )δ(εk′′ + εk′′′ − E ). (A4)

Using the identity

f 0
k f 0

k′
(
1 + f 0

k′′
)(

1 + f 0
k′′′

) = eβ(E−2μ) f 0
k f 0

k′ f 0
k′′ f 0

k′′′ , (A5)

we arrive at

P = U 2a4

16h̄
β

∫
dE eβ(E−2μ)w(E ),

w(E ) =
∫

d2K GK(E ), (A6)

GK = 1

(2π )5

∑
Q

[
F (2)

K F (0)
K−Q − 2F (1)

K F (1)
K−Q + F (0)

K F (2)
K−Q

]
,

F (m)
K (E ) =

∫
d2q

(
φ K

2 −q + φ K
2 +q

)m
f 0

K
2 −q f 0

K
2 +q

× δ
(
ε K

2 −q + ε K
2 +q − E

)
. (A7)

For each density and temperature we tabulate the 1D integral
F (m)

K (E ) on a K and E grid. The remaining 3D integral in
Eq. (A6) is then efficiently calculated as a discrete sum. We
use a sequence of finer grids to verify that our result has
converged to the continuum limit.

The chemical potential μ is fixed for each n and T by
numerically solving

n(β,μ) =
∫

d2k
(2π )2

f 0
k , (A8)

and the current j is expressed as

j = −e
∫

d2k
(2π )2

φk
∂ f 0

k

∂εk
(vk )x

= 4t2ae

h̄
β

∫
d2k

(2π )2
sin2(kxa)eβ(εk−μ)( f 0

k

)2
. (A9)

One can interpret Eq. (A6) as a Boltzmann sum, where the
weight function w(E ) corresponds to a density of scattering
states. Figure 3 shows w(E ) for several temperatures, where
E corresponds to the center-of-mass energy of the scattering
particles. There are three features visible, a sharp peak at
E = 0, a broader peak near E = −4t , and a diffuse back-
ground running from −8t < E < 8t . The E = 0 peak comes
from the scattering between two particles that are both near
the van Hove singularity of the square lattice. The E = −4t
peak is due to the scattering between a low-energy particle and
one near the van Hove singularity. All other scattering events
contribute to the background. As the temperature is lowered,
and fewer particles reside near the van Hove singularity, the
relative weight of these features shift. At low temperature the
peak near E = −4t dominates the calculation of P, giving rise
to the exponential suppression of both ρ and .

APPENDIX B: LOW-DENSITY LIMIT

Here we establish that the resistivity is well-defined in
the low-density limit n → 0, neither diverging nor vanish-
ing. We first note that in this limit the chemical potential
approaches −∞, and hence, the Bose-Einstein distribution
is well approximated by the Maxwell-Boltzmann expression
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FIG. 3. The weight function w(E ) from Eq. (A6) as a function
of the energy E of the scattering particles.

f 0
k = (eβ(εk−μ) − 1)−1 ≈ e−β(εk−μ). Furthermore, we can re-

move the chemical potential dependence by considering the
ratio

f 0
k

n
= e−βεk∫

d2k
(2π )2 e−βεk

. (B1)

Explicitly making this substitution, we write the resistivity as

ρ =
P
n4( j

n2

)2 . (B2)

As n → 0, both the numerator and the denominator are inde-
pendent of n, and hence, ρ approaches a constant.

APPENDIX C: VARIATIONAL PROCEDURE

According to Refs. [25,26], the variational parameter ξ is
optimized by maximizing the entropy production from scatter-
ing, T Ṡcoll = ξ 2P subject to the constraint ξX = ξ 2P, where
X = j · E. We therefore introduce a Lagrange multiplier λ and
extremize

L[ξ ] = ξ 2P − λ(ξ 2P − ξX ). (C1)

The conditions δξL = 0 and ξX = ξ 2P give λ = 2, which
allows us to write the Lagrangian in Onsager’s form L =
−T Ṡcoll + 2T Ṡfield [30,31] and conclude that

ξ = X

P
= j · E

P
. (C2)
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