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Rotational states of an asymmetric vortex pair with mass imbalance in binary condensates
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We consider massive vortices in binary condensates, where the immiscibility condition entails the trapping
of the minority component in the vortex cores of the majority component. We study such vortices by means
of a two-dimensional pointlike model, and show how the relevant dynamical equations exhibit vortex-pair
solutions characterized by different vortex masses and circular orbits of different radii a and b. These solutions
are validated by the simulations of the Gross-Pitaevskii equations for binary condensates. After examining the
properties of the vortex-pair rotational frequency � as a function of the vortex masses for a given pair geometry,
we define the rotational-state diagram D, describing all the possible vortex-pair solutions in terms of the orbit
radii at given �. This includes solutions with equal-mass pairs but a �= b or with one of the two masses (or
both) equal to zero. Also, we analytically find the minimum value of � for the existence of such solutions,
and obtain numerically the critical frequency �c below which D changes its structure and the transition to an
unstable vortex-pair regime takes place. Our paper highlights an indirect measurement scheme to infer the vortex
masses from the orbits’ radii a and b, and a link between the vortex masses and the vortex-pair small-oscillation
properties.
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I. INTRODUCTION

In contrast to superfluid helium, Bose-Einstein condensates
(BECs) offer a controllable platform for studying superfluidity
and quantized vortices [1,2], the latter being a signature of
superfluidity. A review on the vortex states and dynamics in
Bose-Einstein condensates can be found in Ref. [3]. Thanks
to the much larger length scale characterizing BECs vortices
with respect to 4He vortices, the condensates provide a good
system for validating theoretical predictions about vortex
phenomenology. The single-vortex formation and lattice real-
ization have been first experimentally realized in Refs. [4–7].
In the case of binary mixtures, vortices with in-filled core
have been experimentally observed in situ, via phase contrast
techniques [4,8]. In this case, the vortex cores of the first
species are enlarged due to the interaction with the second
species.

Multicomponent two-dimensional (2D) systems offer in
fact a varied scenario, where the tuning of the interspecies and
intraspecies interactions and the possible manipulation of the
hyperfine spin states of atomic species give rise to a rich inter-
play. In binary condensates, the minority species B sits within
the vortex cores of the majority species A. The stability of such
“massive vortices” was studied in Refs. [9–11]. In addition, in
Ref. [11] the authors characterized the spontaneous formation
of different vortex-bright-soliton structures. Additionally, they
studied the dynamics of such structures via the analysis of the
compressible and incompressible kinetic energy, together with
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the angular momentum exchange between the two species.
In the miscible regime, a critical vortex filling for the sec-
ond component to remain bound within the vortex core was
predicted [12], while in Ref. [13] the dynamical behavior of
in-phase and out-of-phase vortex-bright-soliton dipoles was
studied.

The interest in the properties of massive vortices has also
extended to systems of vortex necklaces [14,15] and vortex
lattices. Here, triangular, rectangular, and square lattices have
been studied for miscible [16] or attractive mixtures [17],
and square vortex lattices in binary BECs were experimen-
tally observed [18]. Conversely, in the strongly immiscible
regime, the two-component separation was shown [19] to lead
to vortex sheets within the single-component domains, while
the study of “dark-bright” solitons in two-component systems
via an adiabatic invariant approach [20] revealed a behavior
analogous to the snake instability predicted in Ref. [21].

Under another perspective, in the small-mass limit, vortex
masses can be viewed as impurities within the vortex cores.
Vortex lattices with embedded impurities were explored in
Refs. [22,23]. To complete this rich scenario, it is worth re-
calling also the spinor-BEC vortices, which were related to
topological excitations such as Skyrmions [24,25], merons
[26], and monopoles [27,28].

In the present paper we are interested in the few-vortex
2D dynamics for spinless, immiscible, mixtures of two com-
ponents. Vortices in the majority component play the role of
effective trapping potentials, which confine the minority com-
ponent within the vortex cores. Experimentally, a method for
tracking the vortex dynamics was implemented in Ref. [29],
while, in a theoretical perspective, Lorentz-like equations
were proposed for one or more vortices with massive cores
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[30]. This picture was confirmed by applying the Lagrangian
variational method to the Gross-Pitaevskii equations (GPEs)
for a binary mixture with vortex excitations [31,32], and was
extended to the case of pointlike (PL) masses independent
from the positions of vortices [33]. In the latter works, the
dynamics of vortices was characterized by considering the
effects due to the presence of the second species.

In this paper we consider the dynamics of a vortex pair
(VP), where the vortices constitute an effective potential for
the entrapped minority species B. Unlike the previous works,
we study the more general case of mass imbalanced vortices,
where the total B mass in the system can be differently dis-
tributed between the two vortices. This makes the dynamics
of the two vortices much richer and closer to the experimental
realizations of vortex pairs in binary condensates. To the best
of our knowledge, a detailed analysis of the VP dynamics in
such a case has not been carried out so far.

Here, based on the pointlike vortex model discussed in
Refs. [30,31,34], we investigate mass imbalanced vortices
by adopting the approximation that the two B masses are
essentially concentrated in the vortex centers, with no sig-
nificant fluctuations in their distribution between the vortices.
In such pointlike framework, we find a rich class of circular-
orbit (CO) solutions for the imbalanced vortices (moving on
constant-radius orbits), where the geometry of the two-vortex
state significantly depends on the masses filling the vortex
cores. We characterize them analytically and present the study
of their linear stability. Furthermore, we confirm the reliability
of the analytical vortex trajectories by comparing them with
numerical results, i.e., simulations of the VP dynamics as
governed by the Gross-Pitaevskii equations for the mixture of
BECs.

The space of parameters for two unbalanced, rotating
vortices is five dimensional, and it gives rise to a plentiful
scenario of CO solutions, which depend on the core masses,
the two (different) orbits’ radii, and the angular velocity of the
VP. The dynamics of Refs. [30,32] represents a limit case of
the present class of solutions. The dynamical equations asso-
ciated with the CO solutions offer the possibility of playing
with some model parameters, while inferring the others. In
particular, our analysis highlights a viable scheme to infer
the vortex masses (whose measurement is known to be a
hard problem at an experimental level) from the VP geometry
and the precession frequency. In general, our paper aims at
providing a reliable model for experimental situations where
the presence of vortices with imbalanced masses, rather than
balanced masses, is expected.

The layout of the paper is as follows. First we introduce
(Sec. II) the PL model in the Lagrangian and Hamiltonian
picture, along with our class of CO solutions. In Sec. III
we apply the linear-stability analysis to our pointlike vortex
model. In Sec. IV we investigate the rotational dynamics
of the VPs and determine the significant properties of the
precession frequency as a function of the masses and vortex
radii. Additionally, we explore the stability character of the
CO solutions in the small-oscillation regime. In Sec. V we
adopt a different perspective that, by imposing the positive-
mass condition, allows us to define the diagram of the VP
rotational states at a given precession frequency. This leads
to a classification of all the CO solutions, the determination

of their properties, and the highlighting of the precession
frequency role. In Sec. VI we move to the Gross-Pitaevskii
simulations and validate our analytic predictions. Lastly, in
Sec. VII we present our final remarks and conclusions.

II. POINTLIKE VORTEX MODEL

The static and dynamical properties of a binary mixture of
BECs are well described by two coupled GPEs:

ih̄
∂

∂t
ψs =

(
− h̄2∇2

2ms
+ Vext (r) + gs|ψs|2 + gs j |ψ j |2

)
ψs,

(1)

where s, j ∈ {A, B} with j �= s and mA and mB are the atomic
masses of the two species. We assume that the vortices are
nucleated in the majority component A, whereas B does not
host any defects. The order parameters ψA and ψB associated
with the mixture components are normalized such that the two
conserved quantities

Ns =
∫

D
d2x |ψs|2, s = A, B,

represent the particle number of each species in the ambi-
ent space D. The intraspecies and interspecies interactions
gs = 4π h̄2as/ms and gAB = gBA = 2π h̄2aAB/mr depend on
the s-wave scattering lengths as and aAB, respectively, and
mr = (1/mA + 1/mB)−1 is the reduced mass. In the present
paper, gAB and gs are positive, i.e., repulsive, and satisfy the
condition gAB >

√
gAgB determining the immiscibility of the

two species. For simplicity, we treat here the case of a 2D
trap where D is a disk. Thus, Vext is a rigid-wall potential
such that Vext = 0 inside the disk. The effective 2D dynamics
is experimentally reproduced via pancakelike potentials. To
obtain this dimensional reduction, gs and gAB must be normal-
ized, in the equations, by some effective condensate thickness
Lz (we always take Lz = 2 × 10−6 m). In this z direction, the
dynamics is frozen. Accordingly, all the densities are planar
densities.

The pointlike model for vortices with massive cores in
binary condensates has been proposed in Ref. [30] and de-
rived in Ref. [32], within a well-known Lagrangian variational
approach that was first used to investigate the dynamics of
a Bose-Einstein condensate in a trap [35]. This variational
procedure consists in first introducing a suitable Ansatz for
the order parameters ψA and ψB. The Ansätze depend on
the spatial coordinates and implicitly on time, via some cho-
sen variables. After substituting these Ansätze into the field
Lagrangian relative to Eqs. (1), one integrates out the field
degrees of freedom in space, ending up with an effective La-
grangian that is a function of the vortex-core mass coordinates
(chosen variational variables). The resulting dynamical pic-
ture consists of Euler-Lagrange equations with a Lorentz-like
form, which allow for a simple derivation of the CO solutions
for a vortex pair. We also derive the corresponding Hamilto-
nian description, as it will prove particularly convenient for
investigating the system’s stability properties.
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A. Pointlike dynamics: From the Lagrangian
to the Hamiltonian picture

The effective Lagrangian describing the 2D dynamics of
Nv pointlike vortices with massive cores reads

L =
Nv∑
i=1

(
1

2
mi ṙ2

i + κi
ρA

2
ṙi ∧ ri · ê3

)
− E (r1, . . . , rNv

),

(2)
for a disk geometry with R the radius of the disk. Each vortex
center is assumed to be coincident with its core mass, in
light of the immiscibility of the two components. mi, the core
mass of the ith vortex, is a fraction of MB = mBNB, the total
B-component mass of the NB atoms. NA is the number of atoms
of component A, ρA = NAmA is its (planar) mass density, and
nA = NA

πR2 is its number density. The vortex-array energy [36],
including the effects of boundary, is up to a constant

E (r1, . . . , rNv
) = ρA

4π

Nv∑
i=1

κ2
i ln

(
1 − r2

i

R2

)
+ ρA

4π

Nv∑
i< j=1

κiκ j

× ln

(
R4 − 2R2ri · r j + r2

j r
2
i

R2|ri − r j |2
)

, (3)

where κi = Nih/mA is the ith vorticity charge and Ni = ±1.
We now focus on the case of two vortices, Nv = 2, contained
in the 2D disk, where r1 = (x1, y1) and r2 = (x2, y2) are the
vortex position vectors and ri < R. The Euler-Lagrange equa-
tions read

m�r̈� = −ρAκ�ṙ� ∧ ê3 − ∇r�
E (4)

with

∇r�
E =

2∑
i �=�

ρAκ�κi

2π

(
r2

i r� − R2ri

D(ri, r�)
− r� − ri

|r� − ri|2
)

(5)

and

D(ri, r�) ≡ R4 − 2R2r� · ri + r2
� r2

i , (6)

with l, i = 1, 2 and l �= i. These equations feature two con-
served quantities. The first is the angular momentum of the
planar system

L3 =
2∑

i=1

(
−κiρA

2
r2

i + mi(ri ∧ ṙi ) · ê3

)
. (7)

By defining the linear momenta

pxi = miẋi + ρAκi

2
yi, pyi = miẏi − ρAκi

2
xi (8)

(i = 1, 2) of the two vortices within the Lagrangian picture,
L3 takes the Hamiltonian form

L3 =
2∑

i=1

(xi pyi − yi pxi ). (9)

The second conserved quantity is the total energy of the sys-
tem, represented by the Hamiltonian. This is

H =
2∑

i=1

(
p2

i

2mi
+ ρAκi

2mi
L3i + ρ2

Aκ2
i

8mi
r2

i

)
+ U (r1, r2), (10)

where L3i = (ri ∧ pi ) · ê3, and the potential U (r1, r2) is ob-
tained from formula (3) with Nv = 2. The components xi and
yi of the vector ri and the relative momenta pxi and pyi, with
i = 1, 2, satisfy the following Poisson brackets:

{A, B} =
2∑

i=1

[
∂A

∂xi

∂B

∂ pxi
+ ∂A

∂yi

∂B

∂ pyi
− ∂B

∂xi

∂A

∂ pxi
− ∂B

∂yi

∂A

∂ pyi

]
.

The Hamiltonian equations relative to the Hamiltonian (10)
are derived in Appendix A.

B. Notable class of solutions: Corotating imbalanced vortices

The class of CO solutions for two massive vortices of same
circulation is easily obtained with the simple Ansatz

r1 =
(

x1

y1

)
=

(
a cos (�t )
a sin (�t )

)
, (11)

r2 =
(

x2

y2

)
=

(−b cos (�t )
−b sin (�t )

)
(12)

where the two position vectors feature a constant angular shift
of π , a, b < R, and � represents the angular velocity of the
vortices along their circular orbits. After plugging the Ansatz
above into the equations of motion (4), the final equations,
relating the constant parameters a, b, m1, and m2, given �, are

− m1�
2a + ρAκ1�a − ρAκ2

1

2π

a

R2 − a2

+ ρAκ1κ2

2π

[
b2a + bR2

(R2 + ab)2
− 1

a + b

]
= 0, (13)

m2�
2b − ρAκ2�b + ρAκ2

2

2π

b

R2 − b2

+ ρAκ1κ2

2π

[−a2b − aR2

(R2 + ab)2
+ 1

b + a

]
= 0. (14)

If κ1 = κ2 and m1 = m2 the system becomes symmetric un-
der the exchange of a and b, allowing thus for the solution
a = b. Hereafter, we assume that the vortices feature the same
vorticity charge: κ1 = κ2 = κ > 0. In this case, the equations
reduce to

(ρAκ − m1�)�a − ρAκ2

2π
F (a, b) = 0, (15)

(ρAκ − m2�)�b − ρAκ2

2π
F (b, a) = 0, (16)

where

F (a, b) = 1

a + b
− b

ab + R2
+ a

R2 − a2
. (17)

Note that both F (a, b) and F (b, a) are always positive due
to the condition a, b < R. Such equations link a, b, �, m1,
and m2. The domain of the physical values for a and b is
determined by imposing the conditions

m1 � 0, m2 � 0, (18)

where m1 = m1(a, b,�) and m2 = m2(a, b,�) are obtained
from Eqs. (15) and (16), respectively.
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III. SMALL OSCILLATIONS

We proceed with finding the excitation frequencies of
the VP, as done in Ref. [35]. These are given by the
small-oscillation frequencies around the fixed points of the
dynamical system corresponding to Eqs. (4). To this purpose,
we switch to the Hamiltonian formalism and go to a rotating
frame of reference, where the CO solutions of Sec. II B are
fixed points of the new dynamical system. After introducing
the formalism, we characterize the stability and instability of
the equilibrium points with respect to the low-energy excita-
tions.

As mentioned, we consider a rotating frame of reference,
with angular velocity �. Here, our Ansatz solutions are fixed
points. The Hamiltonian in the (primed) rotating system is

Hrot (z′) = H(z′) − �L3(z′), (19)

where the vector of the dynamical variable z is z′ =
(r′

1, p′
1, r′

2, p′
2) (rotating reference frame). The Hamiltonian

Hrot of the rotating system is in the primed variables, linked to
those of the original system by the transformation matrix R:

R =
(

cos (�t ) − sin (�t )
sin (�t ) cos (�t )

)
, (20)

ri = R r′
i, (21)

where ri and r′
i are the spatial coordinates of the vortices

(i = 1, 2) respectively in the laboratory and in the rotating
reference frame. By plugging the relation (21) into Eq. (10)
(and changing the momenta accordingly), one obtains the
rotating Hamiltonian (19). The Hamiltonian equations in the
rotating system are

ṙ′
i = p′

i

mi
+ κρA

2mi
ê3 ∧ r′

i + �r′
i ∧ ê3, (22)

ṗ′
i =

(
κρA

2mi
− �

)
ê3 ∧ p′

i − ∇r′
i
U (r′

1, r′
2) − κ2ρ2

Ar′
i

4mi
, (23)

where

− ∇r′
i
U (r′

i, r′
j ) = κ2ρAr′

i

2π (R2 − r′2
i )

+ κ2ρA

4π

(
2R2r′

j + r′2
j r′

i

D(r′
i, r′

�)
+ 2

r′
i − r′

j

(r′
i − r′

j )
2

)
, (24)

and the symbol D(r′
i, r′

�) is defined by Eq. (6). By introducing
the vector

z = (x1, y1, p1,x, p1,y, x2, y2, p2,x, p2,y)T

(for the sake of simplicity, we remove the prime symbol
from the Hamiltonian variables) Eqs. (22) and (23) can be
expressed in the more compact form ż = E∇zHrot, where E
is the symplectic matrix:

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

0 5000 10 000 15 000 20 000
0
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FIG. 1. Once vortex radial positions a and b are set, Eqs. (27)
and (28) provide the two branches of the precession frequency �, at
varying m1/mB. NA = 105, a/R = 0.7, and b/R = 0.3.

After expanding around the equilibrium points of the dynam-
ical system, and linearizing, we obtain

ξ̇ = Jξ, (26)

where the Jacobian matrix is J = EH, and ξ is the vector of
the perturbations of the variables z (see Appendix B). H is the
symmetric Hessian matrix of Hrot, computed in z̄, the fixed
point of the dynamical system (see Supplemental Material
[37]). The eigenvalues of J determine the stability character
of the equilibrium. In particular, whenever an eigenvalue fea-
tures a nonzero real part, the equilibrium is unstable (for later
purposes, Re(λi), with λi the eigenvalue of J , is considered
zero if of the order of 10−7 or smaller).

IV. ROTATIONAL DYNAMICS
OF THE VORTEX PAIRS

A first characterization of the rotational dynamics of the
VP, described by the CO solutions, is found by analyzing the
precession frequency of the vortices �. In this picture, � is
studied at varying mass of one of the vortices, for a given
choice of the radii a and b. We solve Eq. (15) to obtain � as
a function of m1 while Eq. (16), once � is known, determines
m2. The frequency features two branches

�1(m1, a, b) = κρA

2m1

(
1 −

√
1 − 2m1

πaρA
F (a, b)

)
(27)

and

�2(m1, a, b) = κρA

2m1

(
1 +

√
1 − 2m1

πaρA
F (a, b)

)
, (28)

with F defined by (17), having physical meaning if the in-
equality πaρA � 2m1F (a, b) is satisfied. The same inequality
determines the range of m1

πaρA

2F (a, b)
� m1 (29)

as a function of the density ρA and of the CO-solution radii
[note that F (a, b) can be shown to be always strictly positive].
The maximum value of m1, well visible in Fig. 1, is the
point at which �1 ≡ �2. In the limit m1 → 0, the frequency
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0 5 10 15 20
0

5000

10 000

15 000

FIG. 2. After finding �, as in Fig. 1, we subsequently find m2/mB

as a function of �. The dashed line represents the region � < �1m

where � satisfies Eq. (16) but not Eq. (15). NA = 105, a/R = 0.7,
and b/R = 0.3.

�1(m1, a, b) tends to the minimum value:

�1m = �1(0, a, b) = κ

2πa
F (a, b). (30)

This describes the rotation of a vortex pair where vortex 1
is massless while m2 �= 0. In this limit, �2(m1, a, b) provides
instead an unphysical case since �2 diverges for m1 → 0.

An equivalent approach consists in solving Eq. (16) at
given a, b, and m2, to then determine m1 via Eq. (15). This
scheme, based on Eq. (16), provides the frequencies

�′
1 = �1(m2, b, a), �′

2 = �2(m2, b, a), (31)

obtained by replacing m1, a, and b with m2, b, and a, respec-
tively, in Eqs. (27) and (28). The different parametrization,
involving m2, highlights some new information about the
physical range of �: while m2 → 0 entails the unphysical
situation �′

2 → ∞ (see Fig. 2), for m2 → 0 the frequency �′
1

features a minimum value, that is,

�′
1m = �1(0, b, a) = κ

2πb
F (b, a) �= �1m. (32)

The lowest possible value for � is thus determined by the
largest value between the quantities �′

1m and �1m, emerging
from the two approaches.

Summarizing, the range of �, as well as the ranges of
m1 and m2, are related by the fact that the mass m1 (m2)
can tend to zero, implying the frequency range � ∈ [�1m,∞]
(� ∈ [�′

1m,∞]), while the other mass m2 (m1) tends to a fi-
nite value in correspondence to the minimum value � = �1m

(� = �′
1m) if

�′
1m < �1m (�1m < �′

1m).

The choice between the two approaches, which can be shown
to be perfectly equivalent, depends on the constants a and b.
In the case of a = b one easily proves that �′

1m ≡ �1m, as
F (a, b) = F (b, a).

Let us analyze the interplay among �, m1, and m2 within
the first approach, by considering the specific case a =
0.7R and b = 0.3R. For this choice the limit m1 → 0 is al-
lowed. Figure 1 describes (i) the two branches of frequency
�1(m1, a, b) and �2(m1, a, b) in different colors, (ii) the fre-
quency �1m for m1 → 0 [see Eq. (32)], and (iii) the maximum

0 5000 10 000 15 000

0

5000

10 000

15 000

FIG. 3. Plot of m2/mB vs m1/mB at a/R = 0.7, b/R = 0.3, and
NA = 105. This is obtained by combining m2(�, a, b) [obtained from
Eq. (16)] either with � = �1(m1, a, b) (blue dotted branch), or with
� = �2(m1, a, b) (orange dashed branch). �1 and �2 are given by
Eqs. (27) and (28), respectively. When m1 → 0 then m2 tends to a
finite value.

value of m1,

m1,max = πaρA

2F (a, b)
, (33)

predicted by Eq. (29) at � = κF (a, b)/(πa). In this fig-
ure (and in the following ones) we use the dimensionless
quantities mi/mB, with i = 1, 2, where mB is the mass of a
species-B atom. Figure 2 displays, for a and b as in Fig. 1, the
profile of the mass m2(�, a, b) of the second vortex, given by
Eq. (16). The maximum value

m2,max = πbρA

2F (b, a)
(34)

is reached at � = κF (b, a)/(πb). Note that the chosen radii
a and b are such that �′

1m < �1m, implying that the range of
� is [�1m,∞]. In the limit � → �1m, one finds the expected
limit m1 → 0, whereas m2(�1m, a, b) is finite and its value
separates the dashed from the dotted (blue) arc in Fig. 2. This
situation is also represented in Fig. 3, where m2 is expressed
as a function of m1 for a = 0.7R and b = 0.3R. Figure 4
illustrates instead the opposite behavior, at a = 0.6R and b =
0.6R, where m1 achieves a finite value while m2 → 0. Such
limit cases highlight the class of CO solutions, with � given
by Eqs. (30) and (32), where only one vortex is massless and
a �= b.

0 5000 10 000 15 000

0

5000

10 000

15 000

FIG. 4. This plot at a/R = 0.5, b/R = 0.6, and NA = 105 de-
scribes m2/mB as a function of m1/mB within the second scheme
(�1m < �′

1m). In this case m1 �= 0 for m2 → 0.
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FIG. 5. Precession frequency � as a function of the first vortex
mass m1, described by Eqs. (27) and (28). We show curves at (from
the left to the right) a/R = 0.95, 0.20, 0.80, 0.42, and 0.7, with
b/R = 0.5 and NA = 105. Blue continuous (red, dotted) arcs high-
light the stable (unstable) behaviors.

The limit where both masses go to zero, represented by
the branch �2, is always present (see Figs. 1 and 2). The
corresponding CO solution is however generally unphysical,
for it involves high or diverging frequencies. Very interest-
ingly, solutions where both vortices are massless are predicted
by Eqs. (27) and (28) when the condition �1(0, a, b) =
�′

1(0, b, a) is imposed [see Eqs. (30) and (32)]. Such more
complicated situations will be discussed in Sec. V.

A. Stability character of CO solutions

The application of the stability analysis discussed in
Sec. III to the class of CO solutions allows us to determine the
stable or unstable character of the VP motion. This property
is illustrated in the plot of � as a function of m1 (as the one
represented in Fig. 1) for a given b and different values of
a. Figure 5 shows the curves corresponding to a/R = 0.20,
0.42, 0.70, 0.80, and 0.95, for b/R = 0.5. Blue continuous
curves and red dashed curves are associated with a stable and
unstable behavior, respectively. Hybrid curves can be found
where stability arcs intercalate instability arcs. This is the case
of the curve at a/R = 0.42, where most of the values of m1

correspond to a regime characterized by bistability (two stable
solutions for each value of m1), whereas, for m1 large enough,
one can intercept a frequency interval exhibiting instability.
Note that the increasing sequence a/R = 0.20, 0.42, 0.70,
0.80, and 0.95 does not correspond to the sequence of curves,
from left to right, shown in Fig. 5. This effect is explained in
Sec. V where the complex interplay between the masses (m1

in this case) and the orbit radii a and b is investigated. Figure 6
represents an example of instability manifestation. Upon a
small perturbation, the trajectory of vortex 1 gets increasingly
farther from its initial position (a, 0) and collides with the
boundary.

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

FIG. 6. Unstable CO solution with a/R = 0.8, b/R = 0.6, N1 �
8300, N2 � 15 100, � = 5.26 rad/s, and NA = 105. The vortex tra-
jectories are caused by a small perturbation of initial position (a, 0).
Running time: tmax � 0.2 s, such that vortex 1 hits the boundary.

B. Eigenmodes of a balanced system

To get some insights into the stability regimes of the VP, we
consider the small (stable) oscillations around a CO solution
in the simplified scenario where a = b and m1 = m2. In this
case, the system features three pairs ±ωi, with i = 1, 2, 3, of
eigenfrequencies that are not zero. They reflect three different
oscillations modes, which can be triggered close to a fixed
point. As mentioned, hereafter we restrict ourselves to the case
of a symmetric VP, a state for which ω1 = ω2. In Appendix C
the eigenmodes are discussed for the more general case of a
mass-imbalanced VP.

Figure 7 shows the first eigenfrequency ω1 of the dy-
namical Eqs. (26), as a function of the vortex masses, for
balanced vortices within the stability regime. The eigenmode
of frequency ω1 is mainly associated with in-phase radial
oscillations of the VP [33]. Note that every point of the plot in

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

FIG. 7. First eigenfrequency of the VP as a function of the
vortex-1 mass for a/R = b/R = 0.3, m1 = m2, and NA = 105.
This mainly represents the radial oscillations of the two vortices. The
higher the masses, the slower are the two vortices, in accordance with
Ref. [33]. For any value of m1, we take the corresponding �1 [see
Eq. (27)] for the global precession frequency and thus compute the
eigenfrequency ω1 of the dynamical system.
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FIG. 8. Under identical perturbations on the vortex initial veloc-
ities, some π -phase shifted radial oscillations (described by radii ri,
with i = 1, 2) are triggered which can be associated with eigenfre-
quency ω2. These are superimposed to larger timescale oscillations
associated with ω3. NA = 105, a/R = b/R = 0.3, and N1 = N2 =
2000.

Fig. 7 also implies a different precession frequency � and a
different m1 (= m2), satisfying Eqs. (15) and (16). The higher
the masses, the slower are the two vortices, in accordance with
Ref. [33]. The in-phase radial oscillations of the two vortices
can be shown to be accompanied by no motion of the center
of mass.

An opposite behavior, on the other hand, characterizes
the eigenmode relevant to ω2 which exhibits π -phase shifted
radial oscillations of the two vortices, combined with a net
motion of the center of mass. These are shown in Fig. 8, where
the oscillations associated with ω2 are superimposed to the
slower oscillations associated with the third frequency ω3.

Lastly, the eigenmode associated with ω3, analogously to
the second eigenmode ω2, mainly describes π -phase shifted
radial oscillations of the two vortices that have a much larger
period (see Fig. 8). This slow variation of the orbit radius is
again associated with a net motion of the center of mass of the
symmetric VP.

Remarkably, while the first two types of small oscillations
(associated to ω1 and ω2) vanish at small vortex masses (infi-
nite frequency), the eigenmode associated with ω3 acquires a
finite oscillation frequency. Conversely, at medium and high
vortex masses, evident radial oscillations arise as a signature
of the filled core.

V. DIAGRAM OF ROTATIONAL
STATES OF VORTEX PAIRS

The CO solutions are well defined when inequalities (18)
are satisfied. Given �, the curves corresponding to the limit
cases m1 = 0 and m2 = 0, in the quadrant {(a, b) : a, b � 0},
allow for the determination of the domain of validity of this
class of solutions. By rewriting Eqs. (15) and (16) in the form

m1(a, b) = ρAκ

�
− ρAκ2

2π�2a
F (a, b), (35)

m2(a, b) = ρAκ

�
− ρAκ2

2π�2b
F (b, a) (36)
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FIG. 9. Shaded areas in the planar box [0, 1] × [0, 1] where
m1(a, b) > 0 (blue) and m2(a, b) > 0 (orange). Curve (38) [(37)]
(zero-mass loci) represents the boundaries of the orange [blue] re-
gion. The intersection of such regions defines the domain D of all
the possible CO solutions, at � = 2.68 rad/s and NA = 105.

and setting m1 = m2 = 0, one obtains the two symmetric
(with respect to the exchange a ↔ b) curves

b = S(a) = P(a) − [(R2 + a2)G(a)]

2[1 + aG(a)]
, (37)

a = S(b) = P(b) − [(R2 + b2)G(b)]

2[1 + bG(b)]
, (38)

from Eqs. (35) and (36), respectively, where P(x) =√
4R2 + G2(x)(R2 − x2)2, with x = a, b and

G(x) = x

(
q

R2
− 1

R2 − x2

)
, q = 2π�R2

κ
.

The term G(x) is responsible for the dependence of b = S(a)
and a = S(b) on the frequency (the definition interval of �

is discussed in Supplemental Material [37]). Curves (37) and
(38) describe the boundaries of the orange domains [a �
S(b)] and blue domains [b � S(a)], respectively, illustrated in
Figs. 9–11. Here, the shaded areas show where m1(a, b) > 0
(blue) or m2(a, b) > 0 (orange). Their intersection defines the

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.4

0.6

0.8
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FIG. 10. The same plot as in Fig. 9, with � = 3.65 rad/s.
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FIG. 11. The plot is analogous to that shown in Fig. 9, with � =
4.86 rad/s and q = 4.40. Dashed curves represent the pairs (a, b) for
which VPs exhibit equal masses.

domain D (i.e., the small leaf well visible in Fig. 9) of physical
solutions.

Each pair (a, b) inside D describes VPs with vortex cores
equipped with nonzero masses m1 and m2. Note that each
solution (associated with) (a, b) and masses m1 and m2 is
paired to the solution (b, a) with exchanged masses due to
the symmetric form of Eqs. (35) and (36) with respect to the
diagonal a = b. In the white, blue, or orange regions outside
D at least one of conditions m1 � 0 and m2 � 0 is violated,
leading to unphysical regimes.

The domain D represents the �-dependent diagram of the
rotational states and is characterized by different types of CO
solutions. Figure 9, for example, exhibits a subclass of solu-
tions representing single-mass VPs for pairs (a, b) associated
with the points of the blue, lower arc (a > b) or the orange,
upper arc (b > a) forming the boundary � of D. These two
arcs are identified by the conditions

b = S(a) (m1 = 0), a > S(b) (m2 > 0)

and

a = S(b) (m2 = 0), b > S(a) (m1 > 0),

respectively.
Interestingly, the two arcs forming �, placed symmetrically

with respect to the diagonal a = b in Fig. 9, become four in
Figs. 10 and 11. This macroscopic change of the boundary
structure appears for � large enough. At increasing �, in
fact, the lobe D broadens to eventually cover the whole box
{(a, b) : 0 � a, b � R}, while, in parallel, � changes its struc-
ture. In particular, numerical simulation allows us to identify
the critical value �c for which, when

� > �c � 3.1 rad/s,

the intersection points of curves a = S(b) and b = S(a)
(where both m1 and m2 are zero) change from two to four
(see Figs. 10 and 11): In addition to the extremes of the
diagonal (a = b) segment in D, the zero-mass condition is
then satisfied by two additional symmetric points, for which
a �= b. Such four points characterize the new structure of the
boundary �, where they correspond to the extremes of the four

arcs forming �, well visible in Figs. 10 and 11. As discussed
above, excluding the extremes, the pairs (a, b) along the arcs
describe single-mass VPs.

CO solutions representing equal-mass VPs (m1 = m2) pro-
vide another interesting case. This class is characterized by
the equation

1

a
F (a, b) = 1

b
F (b, a), (39)

obtained from Eqs. (35) and (36), when m1 = m2 is assumed.
For � > �c, the solution of Eq. (39) features two branches,
illustrated in Fig. 11 by the two dashed lines intersecting the
four vertices of the domain D. At the vertices, it holds that
m1 = m2 = 0. The presence of equal-mass VPs with a �= b
(transverse branch) supplies a further signature of the � > �c

regime. The transition to the regime � < �c, in fact, removes
the transverse branch, restricting equal-mass CO solutions to
the diagonal segment in D where a = b. Figure 9 describes
this case.

For � < �c, decreasing sufficiently � reveals the presence
of a minimum value below which the blue and the orange
regions do not overlap and the CO solutions no longer exist,
as the inequalities (18) cannot be satisfied simultaneously. For
a = b and m1 = m2 = 0, formulas (35) and (36) give

� = κ

2πa
F (a, a) = κ

2π

(
1

2a2
+ 2a2

R4 − a4

)
,

whose solution determines the coordinates of the two inter-
section points of a = S(b) and b = S(a) along the diagonal
b = a of the quadrant. On the other hand, the fact that � → ∞
for a → 0 and a → R highlights the presence of a minimum
value �0 in the interval a ∈ [0, R]. The condition d�/da = 0
gives

�0 = κ

4πR2
33/4

√
2 +

√
3,

which is the value for which the overlap of the blue and orange
regions in Figs. 9–11 reduces to a single point. Frequency
�0 represents the lowest possible value of the VP rotational
frequency in the class of CO solutions.

By remaining on the segment a = b of D, one can get
further information about CO solutions with m1 = m2 �= 0, at
a given �. Equations (35) and (36) supply the equation

m = ρAκ

�

(
1 − κ

2π�a
F (a, a)

)
(40)

(m = m1) describing equal-mass CO solutions for any fre-
quency �. The calculation of dm/da = 0 identifies the
maximum mass

m̄ = ρAκ

�

(
1 − 33/4κ

4π�R2

√
2 +

√
3

)
, (41)

for ā = R[(2 − √
3)/3]1/4, along the diagonal segment of

D where m � 0. Its approximate extension R/
√

2q � a �
R
√

(q − 1)/q, with q = 2π�R2/κ , is easily evinced from
Eq. (40). Note that m̄ is the maximum mass value in the class
of equal-mass CO solutions with a = b when � < �c, while
for � > �c such value corresponds to the crossing point of
the two equal-mass branches.
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FIG. 12. Number of B particles Ni = mi/mB, with i = 1, 2, filling
the VP cores as a function of a and b, at � � 2.68 rad/s and NA =
105. Here, only the mass range Ni ∈ [0, 104] is shown. The red dots
represent two massless vortices solutions at the chosen �.

The contour plot, at fixed �, of the function m1(a, b)/mB

and m2(a, b)/mB that is shown in Fig. 12 allows one to
better visualize the previous scenario. As visible in the fig-
ure, excluding the unphysical regions entailing at least one
negative mass, a small “leaf” remains, where the two sur-
faces are superimposed from above. This is the region D
in Fig. 9, where for any a and b, both the masses m1 and
m2 are positive (see Supplemental Material [37] for a three-
dimensional plot of the mass surfaces vs a and b). In Fig. 12,
the boundaries of the leaf are given by Eqs. (37) and (38),
while the two extreme points (the red points lying on the
diagonal a = b in the figure) are the two massless solutions
at the chosen frequency �. Unlike the regime with � > �c,
where two branches correspond to the locus of intersection
of the two surfaces m1(a, b) = m2(a, b), in the current case
� = 2.63 rad/s < �c, implying that the surface intersection
only takes place on the diagonal a = b, with the mass profile
defined by Eq. (40). This resembles a concave parabola placed
along the diagonal segment (a = b) of D, suggesting that each
value of m can be associated with a pair of CO solutions with
different radius a.

The stability character of the CO solutions can be repre-
sented in the rotational-state diagram D. Figures 13 and 14
illustrate exemplary pairs (a, b) belonging to a stable (hori-
zontal continuous line) or unstable (dotted line) interval. In
the two figures a varies continuously along the intervals corre-
sponding to a given value of b. Further numerical simulations
suggest that, for � < �c, the domain D does not exhibit any
stability regions (see Fig. 14), thereby restricting the presence
of stable CO solutions to the regime � � �c. The complex
form of the Jacobian matrix in Eq. (26) and of the relevant
eigenvalues does not allow us to validate this result via an
analytic approach.

Figure 15 describes stable vs unstable domains of CO so-
lutions by utilizing the same representation as in Fig. 5, where
the continuous blue (red dashed) lines are associated with
pairs (�, m1) that ensure dynamical stability (instability). In
the figure it is evident how the mass functions (35) and (36)
are not monotonic in a (or b). As a result, the stable, unstable,
and hybrid curves visible in Fig. 13 form a sequence exhibit-
ing an intermittent character when the parameter a is varied. In

AB C D
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FIG. 13. Same plot as in Fig. 10 (zoomed in), where the blue
continuous segments (red dotted segments) represent (a, b) pairs that
feature dynamical stability (instability) for the relevant CO solutions
(see Sec. IV A). Horizontal lines are drawn at b/R = 0.80, 0.70, 0.60,
0.50, 0.41, and 0.30. The points A, B, C, and D correspond to those
in Fig. 15.

Fig. 15, for example, the horizontal line at � � 3.65 rad/s can
be compared with the horizontal line at b = 0.41 R in Fig. 13.
In the former, A, B,C, and D are associated with increasing
values of m1, whereas, in the latter, the increasing values of a
are associated with the nonincreasing mass sequence B,C, D,
and A.

Figure 16 describes the mass imbalance m2 − m1 of the two
vortices at a given point (a, b) ∈ D, when � is increased. The
lowest value of the frequency � = 3.35 rad/s corresponds to
(a, b) on the lower boundary of D where m1(a, b) ≡ 0 and
m2(a, b) > 0. By increasing �, the distance between the two
surfaces m2(a, b) − m1(a, b) decreases even if both m2(a, b)
and m1(a, b) feature a (local) maximum. Both masses (and
thus the imbalance) tend to zero for large �. The parameter
interplay characterizing a given CO solution shows how its
geometry (orbit radii) is not affected by the change of � if
the latter is compensated by a suitable variation of m2 − m1.

0.45 0.50 0.55 0.60 0.65 0.70
0.45

0.50

0.55

0.60

0.65

0.70

FIG. 14. Same plot as in Fig. 9 (zoomed in). Horizontal dotted
lines represent pairs (a, b) associated with CO solutions that feature
dynamical instability (see Sec. IV A). Horizontal lines are drawn at
b/R = 0.70, 0.65, 0.60, 0.55, and 0.52.
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FIG. 15. Same plot as in Fig. 1, (with a different aspect ra-
tio). Pairs (�, m1) that feature dynamical stability (instability) are
highlighted as continuous blue (dotted red) lines. Different curves
corresponding to (from left to right) a/R = 0.38, 0.78, 0.45, 0.52,
and 0.65, with b/R = 0.41 and NA = 105. The curve for a/R = 0.45
is interrupted at low m1 values, where � does not satisfy Eq. (16).
The horizontal line is drawn at � � 3.65 rad/s, corresponding to the
line at b/R = 0.41 in Fig. 13. “Large” values of m1 are not physical
since they lie outside the hypotheses of the pointlike approximation.

The fact that, in Fig. 16, a > b and m1 < m2 for any �

is a matter of chance depending on the values of a and b.
In general, no elementary analytic relation can be found, a
priori, between the sign of m2 − m1 and a < b or a > b, two
configurations potentially detectable at the experimental level.
Nevertheless, for � > �c, in view of the condition m1 = m2

giving the transverse and diagonal branches of Fig. 11, we
can identify the two vertical (horizontal) counterposed “tri-
angles” where m2 − m1 < 0 (m2 − m1 > 0). For � < �c, the
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FIG. 16. Vortex masses m1 and m2 as a function of � for a/R =
0.70, b/R = 0.30, and NA = 105. The lowest-frequency value �1m �
3.35 rad/s corresponds to a single-mass VP with m1 = 0. For such
solution (a, b) belongs to the lower part of the D boundary.

simplified geometry of D (see Fig. 9) entails that m2 − m1 < 0
(m2 − m1 > 0) for a < b (b < a).

VI. SIMULATION OF THE GROSS-PITAEVSKII
EQUATION

In the following, we consider a mixture of 23Na (compo-
nent A) and 39K (component B) in a trap of radius R = 50 µm.
In the GPE simulations, we take the coupling constants to be

gA = 4π h̄2aA

mA
, gB = 4π h̄2aB

mB
, gAB = 2π h̄2aAB

mr
,

with aA � 52.0 a0 and aB � 7.6 a0 the intraspecies s-wave
scattering lengths, and aAB the scattering length between an
a and a b atom. a0 is the Bohr radius and the reduced mass mr

obeys 1/mr = 1/mA + 1/mB. The harmonic oscillator charac-
teristic length in the z direction is Lz = 2 × 10−6. For the 2D
modeling, the coupling parameters gi are normalized by Lz,
and all the densities are planar.

As for the experimental realization of massive vortices, a
realistic experimental routine is described in Ref. [34]. Here,
the idea is to nucleate the vortices in component A via a
phase imprinting method [38] exactly at the position of the
B peaks. The latter are selectively confined at arbitrary posi-
tions via a component-selective potential (focused Gaussian
beam). Hence, the B peaks serve as effective pinning poten-
tials for the vortices. Once the massive vortices are formed,
the B-confining potential is removed, while a larger trapping
potential (i.e., the same felt by A) is activated. In Ref. [38]
an optical phase imprinting technique is exploited to impose
a tunable quantized circulation in the superfluid. Also note
that mixtures can be trapped in an optical flat-box circular trap
thank to the digital micromirror device technology [39]. It is
also worth remarking that, thanks to pinning potentials given
by laser beams, the position of 2D vortices can be manipulated
(see Ref. [40] and the experiment in Ref. [41]). Reference [42]
also provides an example for an experimental system for 2D
bosonic mixtures of sodium and potassium. This system is
characterized by particularly tunable interspecies interactions.

A. Code description

We prepare the initial state via the imaginary time evolu-
tion method. Here, we set both the fluids into rotation, at the
selected �. Furthermore, we employ a rigid wall potential,
crossing vertically the trap at x = 0, to decouple the two
vortices. This is switched off at the beginning of the real time
simulation. We stop the imaginary time right after the vortices
have nucleated, to avoid as much as possible the redistribution
of the b masses. From this final state, the real time simulation
starts.

To extract the position of the vortices from our numerical
simulations, we use an image processing tool that tracks the
number-density minima in nA = |ψA|2. An example of GPE
trajectory is illustrated in Fig. 17.

B. GPE simulation

The agreement between GPE results and the predictions of
our PL model for these simple orbits is good, as demonstrated
by Fig. 17. Hence, the relations among the parameters of
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FIG. 17. GPE simulation of two imbalanced vortices. NA = 105,
a/R = 0.48, b/R = 0.4, N1 � 900, N2 � 200, � = 3.36 rad/s, and
gAB = 2

√
gAgB. Run time: 1 s, where the vortices rotate counter-

clockwise. The dashed lines are the PL predictions, for some longer
time.

our two-vortex system found in Sec. II B are valid. We then
compare a PL solution in the small-oscillations regime with
the GPE result. By means of the imaginary time evolution, we
prepare our initial system, with the two imbalanced vortices.
We compare our GPE result with the pointlike model predic-
tion. We find a quite good agreement as regards the stability
features (see an example in Fig. 18), demonstrating that the
pointlike model is reliable. The quantitative disagreement of
the model and the GPE trajectory is due to the nonpointlike
character of the GPE system. The consistency of the GPE with
the PL solutions improves when switching to regimes where
the vortices are more pointlike. This amounts to increasing
gAB in parallel with gA, so that the vortex profile is closer
to a narrow Gaussian [33]. One could also resolve the dis-
agreement by employing more accurate Ansätze as a starting
point for the derivation of the PL model via the variational
approach, at the price of ending up with more complicated

0.05 0.1 0.15 0.2 0.25 0.3 0.35
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Vortex 2, GPE

Vortex 1, PL model

Vortex 2, PL model

FIG. 18. Comparison of the PL model prediction vs the GPE data
for the vortex radial position, in the small-oscillations regime. Our
purpose is to show the existence of the CO solutions with the GPE
and the characterization of the small oscillations around them. In this
sense, the pointlike model is reliable. NA = 105, a/R = 0.48, b/R =
0.4, N1 � 900, N2 � 200, and � � 3.36 rad/s. gAB = 2

√
gAgB.
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FIG. 19. Pointlike model prediction for the GPE solution in
Fig. 20. The GPE trajectory is pretty close to the PL model, even
in the case of larger oscillations (the discrepancy is due to the
nonpointlike character of the massive-vortex profiles). Therefore, the
type of solution we found, and their dependency on the physical pa-
rameters, is validated. NA = 105, a/R = 0.5, b/R = 0.6, N1 � 5200,
N2 � 1300, and � � 2.77. Run time: 1 s.

expressions. Alternatively, by tuning effectively some param-
eters in the PL model, for a given system, one can obtain a
very good agreement with the GPE trajectories.

Nonetheless, we are happy with the general qualitative and
the quantitative agreement in the “more pointlike” regimes of
the PL model with the GPE. This is in fact a dramatically
simplified, classical model for some field nonlinear equation.
It serves here the purpose of proving the existence of some
type of solutions of the GPE in the case of more vortices, and
it correctly captures the dependency of the small oscillations
on the system parameters, such as the vortex masses. There-
fore, we do not pursue the search for a perfect quantitative
agreement between the GPE and PL model.

We present an example of larger oscillations (see Figs. 19
and 20). The pointlike model and the GPE predictions are
quite similar, up to the radial oscillation frequency value of

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1 Vortex 1

Vortex 2

FIG. 20. GPE solution relevant to the PL prediction in Fig. 19
with gAB = 3

√
gAgB.
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the first vortex. Hence, this is a validation of our PL model.
It is visible how the more massive vortex manifests wider
and slower radial oscillations in comparison with the second,
lighter, one.

VII. DISCUSSION AND CONCLUSIONS

We employ a PL vortex model characterized by Lorenz-
like equations to describe the dynamics of a pair of massive
vortices in a binary mixture, confined in a 2D disk trap.

In Sec. II, we find analytical solutions that describe vor-
tices with masses m1 and m2, moving along circular orbits
exhibiting different radii a and b, where the vortex positions
have an angular shift of π . We discuss the dynamical stability
conditions for the vortex trajectories in Sec. III, where CO so-
lutions, featuring a uniform circular motion of vortices, have
been shown to correspond to fixed points of the Hamiltonian
equations in the rotating reference frame integral with the VP
rotation.

In Sec. IV we analyze the interplay of frequency �, the
distinctive parameter of the rotational dynamics of CO vortex
pairs, with the vortex masses, at given orbit radii a and b.

The two-branch plot of � as a function of m1 or m2 is ana-
lytically determined, revealing (i) the interval of the admitted
frequency values, (ii) the presence of upper limits for m1 and
m2, and (iii) the existence of CO solutions describing VPs
where one of the two masses is zero. This type of solutions
is found to correspond to the lower extreme of the � interval.
This information is summarized in two numerical plots (asso-
ciated to different choices of a and b) showing m1 (m2) as a
function of m2 (m1).

In Sec. IV A we then explore the dynamical stability of
the CO solutions, by exploiting plots where the precession
frequency � depends on one of the two vortex masses and the
relevant radius (m1 and a in the cases at hand). Figure 5 reveals
a rich scenario of stable, unstable, and hybrid plots, showing
how the stability character of the CO solutions features a
complex dependence from the interplay among masses and
radii. This aspect is revisited from a more effective perspective
in Sec. V.

In Sec. IV A we also consider some properties of the small-
oscillation motion, which is obtained by perturbing the CO
solutions. Specifically, the discussion on the eigenmodes of
balanced VPs shows how trajectories characterized by small
oscillations, even when not providing a quantitative bench-
mark, serve as a signature of the vortex mass as much as
the circular orbits themselves. In this case, even with no
information on the system parameters, we can infer the pres-
ence of a vortex mass from the appearance of relatively fast
“radial oscillations.” In agreement with Ref. [33], the radial
oscillations of a single vortex are found to increase in their
amplitude, but decrease in their frequency, as the vortex mass
increases. On the other hand, we find an oscillation mode that
characterizes the VP also in the case of very small masses or
even massless vortices. This occurs at longer timescales with
respect to the radial oscillations and provides a signature of
small-mass motions.

The analysis developed in Sec. V provides an exhaustive
scenario of the rotational states associated with the CO solu-
tions of VPs. The plots, at a given frequency �, of the vortex

masses as functions of the radii a and b enable us to define
the diagram D of the rotational states of VPs (determining,
in turn, the existence domain of the CO solutions), and to
highlight different classes of solutions. In addition to VPs with
a �= b and different vortex masses, we find solutions describ-
ing single-mass VPs with a �= b, and massless VPs both for
a �= b and a = b. A further class, the VPs with m1 = m2, is
shown to occur not only for a = b (diagonal branch), but also
for a �= b (transverse branch).

The macroscopic changes in the structure of D when �

is varied reveal a critical frequency �c and the presence of
two dynamical regimes � > �c and � < �c. Below �c, the
significant changes of the D boundary trigger the disappear-
ance of the transverse branch of equal-mass solutions, shown
in Fig. 11. In parallel, the frequency �c supplies some useful
information about the dynamical stability. As shown by nu-
merical simulations (an analytical approach seems to be out
of reach), �c separates a regime where all the CO solutions
are unstable (� < �0) from that where extended regions of D
correspond to stable CO solutions (� > �0). An analytic ap-
proach, instead, allows us to identify the minimum frequency
�0 below which no VP rotation is admitted within the CO
solutions. For � < �0 the regions where either m1 � 0 or
m2 � 0 have no overlap, and thus no CO solutions exist.

The analysis of Sec. V highlights (i) the deep link between
the vortex masses and the adjustable geometry of the VP
described by the orbit radii a and b and (ii) the link between
the sign of m2 − m1 and well-defined subdomains of D. More
specifically, it suggests an indirect detection scheme for the
vortex masses, given the orbit radii a and b and the rotation
frequency. This bypasses the difficulties of a direct measure-
ment of the masses. Note that this scheme can be extended to
fixing any other triplet within the five model parameters, to
then determine the others.

In Sec. VI, we perform simulations of the GP equations de-
scribing the binary condensate, to support the reliability of
our CO solutions and of their dependency on the physical
parameters. For more complex trajectories, i.e., in the small-
oscillations regime, some discrepancies of the PL model and
the GPE arise due to the nonpointlike character of the real
system. Nevertheless, the general features of such trajectories
(i.e., presence of a given oscillation mode, and dependency
on the system parameters) are always at least qualitatively
captured.

Concluding, the PL vortex model and the relevant CO
solutions seem to provide a powerful tool for capturing the
rotational dynamics of vortex-pair excitations with an ad-
justable geometry and depending on the vortex masses. We
expect that our results provide a useful guide for experimental
applications where pairs of massive vortices are involved.
This is the case not only for binary condensates, but also for
systems including a thermal component [43,44], as well as in
the presence of Andreev bound states in Fermi superfluids.
Also the case of vortex tracing active particles [45,46] falls
into these applications. It would be interesting to extend the
pointlike model for massive vortices to other classes of sys-
tems, such as dipolar bosons in the supersolid phase [47] or
quantum droplets [48]. Our future work will be focused on the
study of more complex dynamical configurations and trapping
geometries, and the possibility to include dissipative terms in
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the PL mode which, as shown in Ref. [29], are expected to
better reproduce the vortex dynamics in a Fermi gas.
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APPENDIX A: HAMILTONIAN EQUATIONS

The dynamical equations relevant to the Hamiltonian (10)
are easily calculated by means of Poisson brackets. One finds

ṙi = pi

mi
+ κi

mANA

2mi
ê3 × ri, (A1)

ṗi = κi
mANA

2mi
ê3 ∧ pi − κ2

i

m2
AN2

A

4mi
ri

+ mANA

4π

[
2

κ2
i ri

R2 − r2
i

+ R2

D(ri, r j )

× κiκ j

(
2r j − r2

j

R2
ri + 2

(ri − r j )D(ri, r j )

R2(ri − r j )2

)]
, (A2)

with i �= j, D(ri, r j ) = R4 − 2R2ri · r j + r2
i r2

j . Note that the
case r1 = r2 is in particular forbidden; this is not a problem
since our Ansatz assumes r1 and r2 always put off phase of π

radians.

APPENDIX B: NORMAL-MODE ANALYSIS

For the study of the small oscillations with respect to
an equilibrium point, one considers small perturbations and
the corresponding linearized system. We consider a reference
frame rotating at frequency �. After linearizing with respect
to ξ the Hamiltonian equations for the perturbed variables
z = z̄ + ξ (z̄ is the vector describing the fixed-point coor-
dinates), one obtains the linear system of equations for the
perturbation ξ:

ξ̇ = Jξ,

where the Jacobian is

J = EH.

H is the (symmetric) Hessian matrix relevant to the Hamilto-
nian in the rotating reference frame

Hrot (z̄ + ξ) = Hrot (z̄) + hT (z̄) · ξ + Hrot,2 + O(ξ2),

where the second-order contribution to the rotational Hamil-
tonian reads Hrot,2 = 1

2ξTHξ and the matrix elements of H
are defined in Supplemental Material [37]. As expected, only
the latter contributes to the equations of motion, since the
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FIG. 21. First oscillation mode of the imbalanced VP with
a/R = 0.48, b/R = 0.4, N1 = 2000, N2 � 1300, NA = 105, and � =
3.46 rad/s (evolution time: 0.2 s). The two vortices oscillate radially
with no phase shift and at relatively high, different, frequencies. This
type of oscillation is well visible for medium and large VP masses.
The associated eigenvalue is ω1.

zeroth-order term is constant and the first-order contribution
depends on the vector h(z̄) whose eight components cor-
respond to the fixed-point Hamiltonian equations and thus
are zero. The linearized system above corresponds to ξ̇ =
{ξ,Hrot,2} = E∇ξHrot,2. The elements of H (i.e., the second
derivatives) divided by 2 are the coefficients of the quadratic
form Hrot,2. If the eigenvalues of the Jacobian computed
into a given point (r1, r2) are pure imaginary, the fixed
point is stable. Altogether, the eigenvalues of our two-vortex
dynamical systems are eight. Due to the nature of the Hamilto-
nian system, they are always paired as ±σ . Furthermore, due
to the rotational invariance of our system, the third component
of the angular momentum L3 is conserved; thus, two eigen-
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FIG. 22. Second oscillation mode of the imbalanced VP, quali-
tatively similar to that of Fig. 21, except for the radial oscillations
having a phase shift of π . The system data are the same.
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FIG. 23. At longer times, the third oscillation mode of the VP
also appears: the orbits’ radii slowly change so that the two tra-
jectories do not wrap perfectly onto themselves after a revolution.
This eigenmode is visible at small or zero vortex masses as well.
NA = 105, a/R = 0.48, b/R = 0.4, N1 = 800, N2 = 68, and � =
3.35 rad/s (evolution time: 2 s).

values are always zero. Again, since J is rotation invariant,
what matters for the stability analysis of the fixed point are
the moduli of (r1, r2).

APPENDIX C: EIGENMODES

The dynamical system associated with the VP features
three characteristic oscillation modes. The first one, repre-
sented in Fig. 21, is triggered for example by symmetric
perturbations of the vortex velocities. Here, the trajectory is
characterized by radial oscillations of the two vortices, at rela-
tively shorter timescales. At t = 0 both the radial coordinates
of the vortices increase. In general, the two vortices exhibit

0.0 0.5 1.0 1.5 2.0
0.35

0.40

0.45

0.50

0.55

FIG. 24. Radii ri of the vortex trajectories over a large time
period (same data of Fig. 23). The first vortex, with larger mass,
oscillates radially at a detectable timescale, while the less massive
vortex 2 features such fast radial oscillations, that they are hardly
visible. The two radii also oscillate at a larger timescale 1/ω3, char-
acteristic of the third oscillation mode.

different oscillation frequencies and amplitudes, which are the
same in the balanced case a = b and m1 = m2. These kinds of
oscillations are the signature of non-negligible vortex masses
and become slower and larger when increasing the vortex
masses. Hence, they are virtually invisible in the case of a
small-mass VP.

Similar to the first mode is the second oscillation mode,
represented in Fig. 22; this exhibits vortices with radial oscil-
lations triggered, for instance, by an identical perturbation on
the vortex velocities. At t = 0 the vortex-1 radial coordinate
increases, while that of vortex 2 decreases. Lastly, the slowest
type of small oscillations is illustrated in Figs. 23 and 24 (pe-
riod around 2π ). They are also visible in the case of massless
or small mass vortices, and consist in a slow variation of the
orbit radius. They appear at much larger timescales than the
first two types. Here, the signature of a small vortex mass can
be searched in the dependency of the frequency ω3 on mi. This
frequency increases at higher masses.
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