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Finite nuclear mass correction to the hyperfine splitting in hydrogenic systems
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A general quantum electrodynamic method for the derivation of nuclear recoil corrections in hydrogenic
systems, which are exact in the nuclear charge parameter Z α, is introduced. The exemplary derivation is
presented for the O(m/M ) nuclear pure recoil correction to the hyperfine splitting. The obtained result is verified
by comparison to the known (Z α)5 contribution.
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I. INTRODUCTION

Consider a two-body system with an arbitrary nucleus and
a point light fermion, such as a electron or muon. If the nu-
cleus can be treated as a static source of an electric potential,
then its energy levels can be obtained from the Dirac equation

HD φ = ED φ, (1)

where

HD = �α · �p + βm + VC, (2)

and where VC is a Coulomb potential including the nuclear
charge distribution ρC (r),

VC (r) = −
∫

d3r′ Z α

|�r − �r′|ρC (r′). (3)

The Dirac equation is valid only in the limit of the infinite
nuclear mass M, and there is no corresponding equation for
the finite nuclear mass case. This means that we are not able
to treat exactly two-body systems with arbitrary masses in
the relativistic theory, in contrast to nonrelativistic quantum
mechanics.

There are in principle two perturbative approaches that are
employed for two-body systems. The first relies on expansion
in powers of Z α while keeping an arbitrary mass ratio

E
( m

M
, Z α

)
= m + M + E (2) + E (4) + E (5) + E (6) + · · · ,

(4)

where E (n) is of the order (Z α)n and may sometimes contain
finite powers of ln(Z α). In this expansion, the coefficient
E (2) is the nonrelativistic energy, E (4) is the relativistic cor-
rection, and E (n>4) are higher-order quantum electrodynamics
(QED) and relativistic corrections. These corrections for point
arbitrary mass particles have already been obtained up to
E (6) [1–3] using the so-called nonrelativistic QED (NRQED)
approach. For the finite nuclear size case, they are also known
up to E (6) for an arbitrary mass ratio [2,3], with the exception
of S states which are known only in the nonrecoil limit [4].

In the second approach, one performs an expansion in the
mass ratio m/M, while keeping the parameter Z α arbitrary,

E
( m

M
, Z α

)
= ED(Z α) + Erec(Z α) + · · · , (5)

where the Dirac energy ED is in the infinite nuclear mass limit,
Erec is the first order in the mass ratio ∼m/M correction, while
the higher-order terms are merely unknown. This first order in
mass ratio correction (for the point nucleus) was first derived
Shabaev in Refs. [5,6]. Next, it was independently rederived
in Ref. [7], together with the calculations of the, unknown at
that time, (Z α)6 m2/M correction. The compact form for this
first-order recoil correction for a point nucleus was obtained
in Ref. [8]. Soon after, the direct numerical calculations were
performed in Refs. [9,10]. The generalization for the finite-
size nucleus was achieved only recently in Ref. [11], and the
formulas are the following,

Erec = i

M

∫ ∞

−∞

dω

2 π
〈φ|[pj − D j

C (ω)
]

× G(ED + ω)
[
pj − D j

C (ω)
]|φ〉, (6)

where φ is an eigenstate of the Dirac-Coulomb Hamiltonian
in Eq. (2),

G(E ) = [E − HD(1 − iε)]−1 (7)

is the Dirac-Coulomb Green’s function, D j
C (ω) is an operator

which in coordinate representation is given by the function

D j
C (ω, �r) = −4πZα αi Gi j

C (ω, �r), (8)

where

Gi j
C (ω, �r) =

∫
d3k

(2 π )3

1

k2

(
δi j − ki k j

�k 2

)
ei �k �r (9)

is the transverse photon propagator for a point nucleus, and

Gi j
C (ω, �r) =

∫
d3k

(2 π )3

[
ρC (−k2)

k2

(
δi j − ki k j

ω2

)

− ki k j

ω2

ρC (�k2)

�k2

]
ei �k �r (10)

for the finite-size nucleus [11], with k2 = ω2 − �k2 and ω =
k0. Equation (6) will be further transformed to two different
forms. For convenience, we will give different names for
different forms of this recoil correction to energy, and this one
in Eq. (6) we call the F1 form.
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In this paper we derive the analogous formula for the
leading recoil correction to the hyperfine splitting (hfs) Ehfsrec

and verify it by calculation of the (Z α)5 contribution. This
formula has a very universal character, such as that in Eq. (6),
and it can be used for an analytic derivation of the Z α expan-
sion or for direct numerical calculation. In view of the planned
hyperfine splitting measurements in muonic atoms [12], this
nonperturbative numerical calculation of Ehfsrec would be
helpful in the interpretation of the measured hfs in terms of
the nuclear magnetization distribution. The accurate recoil
corrections to hfs are important also in view of significant
disagreements for μD [13] and 6Li [14–16] measured values.

II. RECOIL CORRECTION IN THE TEMPORAL GAUGE

We first transform Eq. (6) to a different F2 form and intro-
duce a notation

∫
s for a symmetric integration around a pole

at ω = 0,

Erec = − i

M

∫
s

dω

2 π
〈φ|[pj (VC ) − ω D j

C (ω)
]

× G(ED + ω)
[
pj (VC ) + ω D j

C (ω)
]|φ〉 1

ω2
, (11)

where pj (VC ) = [pj,VC]. Let us introduce a photon propaga-
tor in the temporal gauge including the finite nuclear size [17],

Gi j
T (ω, �k) = ρC (−k2)

k2

(
δi j − ki k j

ω2

)
, (12)

and analogously

D j
T (ω, �r) = −4πZα αi Gi j

T (ω, �r). (13)

The temporal gauge is a particular case of the axial gauge
and is defined by the condition G0μ

T = 0. The relation to the
propagator in the Coulomb gauge is

D j
C (ω) = D j

T (ω) + 1

ω2
[ω + ED − HD, pj (VC )]. (14)

Using DT , the recoil correction Erec takes the form

Erec = i

M

∫
s

dω

2 π
〈φ|D j

T (ω)G(ED + ω)D j
T (ω)|φ〉. (15)

The simplest form, called here the F3 form, for the recoil
correction is achieved when using the temporal gauge for
the photon propagator. We will use this observation when
presenting the recoil correction to the hyperfine splitting.

III. DERIVATION OF RECOIL CORRECTION
TO THE BINDING ENERGY

The original derivation [5–7] of the nonperturbative for-
mula for the recoil correction was quite complicated. Here,
we present a very much simplified derivation, which later will
be used for the hyperfine splitting.

Consider the nonrelativistic kinetic energy of the nucleus

HN = 1

2 M
[ �P − q �A( �R)]2, (16)

where �P = −i �∇R, q = −Z e, and e is the electron charge.
The leading recoil correction can formally be written as the

expectation value

Erec = 1

2 M
〈
|( �P − q �A)2|
〉QED, (17)

on a hydrogenic state |
〉QED (which is centered at the posi-
tion of nucleus �R) in quantum electrodynamic (QED) theory.
The meaning of this expectation value is not obvious and
is explained as follows. The matrix element of an arbitrary
operator Q on a state 
 is

〈
|Q|
〉QED = 〈
|TQ exp[−i
∫

d4y HI (y)]|
〉
〈
|T exp[−i

∫
d4y HI (y)]|
〉 , (18)

where T denotes chronological ordering with an assumption
that the time coordinate of Q is t = 0, the interaction Hamil-
tonian is

HI (y) = e jμ(y)Aμ(y), (19)

and |
〉 is the bare hydrogenic state in the second quan-
tized theory. We keep in mind that in Eq. (18), for the
purpose of this work, all the electron self-energy and vacuum
polarizations are being neglected. The crucial point is the
interpretation of �P and its action on |
〉QED. Namely, consider
the representation of the fermion field in terms of creation and
annihilation operators of one-particle hydrogenic states φs,

ψ̂ (x) =
+∑
s

asφs(�x)e−i Est +
−∑
s

bsφs(�x)e−i Est ,

ψ̂+(x) =
+∑
s

a+
s φ+

s (�x)ei Est +
−∑
s

b+
s φ+

s (�x)ei Est ; (20)

for details, see Appendix B. The differentiation �∇R acts on
functions φs and operators as, bs, and this can be represented
as

�∇R =
∫

d3r ψ̂+(�r)�∂R ψ̂ (�r) + �∂R

= −
∫

d3r ψ̂+(�r)�∂r ψ̂ (�r) + �∂R, (21)

where ψ̂ (�r) ≡ ψ̂ (0, �r), and �∂R is understood in the following
sense. The hydrogenic state φs is a function of φs(�r − �R) of the
difference in electron and nucleus position vectors, therefore
�∂R φs = −�∂r φs, and âs, b̂s remain intact. As a test, for t = 0,

�∇Rψ̂ (0, �x) = −
∫

d3r ψ̂+(�r)�∂r ψ̂ (�r)ψ̂ (0, �x)− �∂xψ̂ (0, �x)= 0,

(22)

as it should. Moreover, for an arbitrary Fock state |
〉,

�∇R|
〉 = −
∫

d3r ψ̂+(�r)�∂r ψ̂ (�r)|
〉, (23)

and this holds in particular for the vacuum state |0〉.
We can now return to the expectation value of the nuclear

kinetic energy, and we split it into three parts,

Erec = 1

2M
〈
|( ⃖∇R + i q �A)( �∇R − i q �A)|
〉QED

= EC + ET + ES, (24)
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where the quadratic derivative is understood in the symmetric
form, namely

�∇2
R = − ⃖∇R �∇R. (25)

Let us start the derivation from the Coulomb part EC , where
|
〉QED can be replaced by |
〉 because we neglect all the
radiative corrections. The hydrogenic state |
〉 = â+

φ |0〉, and

EC = 1

2 M
〈
| �P 2|
〉

= 1

2 M

∫
d3x′ d3x〈0|âφ (ψ̂+ �p ψ̂ )x′ (ψ̂+ �p ψ̂ )x â+

φ |0〉

= 1

2 M

∫
d3x′ d3x φ∗(x′) �p′[〈0|ψ̂ (x′)ψ̂+(x)|0〉

− 〈0|ψ̂+(x)ψ̂ (x′)|0〉] �pφ(x)

= 1

M

∫
d3x′ d3x φ∗(x′) �p′ T〈0|ψ̂ (x′)ψ̂+(x)|0〉 �pφ(x)

= 1

2 M
〈φ| �p(P+ − P−) �p|φ〉

= i

M

∫
dω

2 π
〈φ|pj G(ω + E0)pj |φ〉. (26)

We note that the leading recoil correction is obtained from the
above by replacing P+ = I − P− and subsequent neglect of
P−, thus

Erec ≈ 〈φ| �p 2

2 M
|φ〉. (27)

The second part is the single transverse photon exchange,

ET = 1

2 M
〈
|{ �P, Z e �A( �R)}|
〉QED

= − i Z e

2 M
〈
|Ai( �R)∇i

R|
〉QED + H.c.

= Z e2

2 M

∫
d4y〈
|T[

Ai( �R)∇i
R j j (y)Aj (y)

]|
〉 + H.c.

= i Z e2

2 M

∫
d4y〈
|T[∇i

R j j (y)
]|
〉Gi j

C (y − R) + H.c.

= ET 1 + ET 2, (28)

where the �∇R operator is assumed at t = 0 in the chronologi-
cal ordering. ET1 is due to the first term in Eq. (21), so

ET 1 = − i Z e2

2 M

∫
d4y Gi j

C (y − R)
∫

d3x

× 〈0|âφ T[(ψ̂+∂ i ψ̂ )x(ψ̂+α j ψ )y]â+
φ |0〉 + H.c.

= − i

M

∫
d ω

2 π

[〈φ|pj G(ω + E0)D j
C (ω)|φ〉

+ 〈φ|D j
C (ω)G(ω + E0)pj |φ〉]. (29)

ET 2, due to the second term in Eq. (21),

ET 2 = i Z e2

2 M

∫
d4y (−y0)〈
| j j (y)|
〉

× ∂ i
yGi j (y − R) + H.c. = 0, (30)

vanishes due to the current conservation 〈
|∂ i
y ji(y)|
〉 = 0.

The third part, the double transverse (seagull) contribution
ES , is

ES = Z2 e2

2 M
〈
| �A 2( �R)|
〉QED

= Z2 e2

2 M

(i e)2

2

∫
d4x

∫
d4y

× 〈
|T[ �A 2( �R)�j(x) · �A(x)�j(y) · �A(y)]|
〉

= i

M

∫
dω

2 π
〈φ|D j

C (ω)G(ω + E0)D j
C (ω)α j |φ〉. (31)

The sum EC + ET + ES gives Erec in the F1 form in Eq. (6),
which is next transformed to the F3 form in Eq. (15). The
same approach will be used for the derivation of the recoil
correction to the hyperfine splitting.

IV. NONPERTURBATIVE RECOIL CORRECTION TO HFS

In the relativistic formalism the hyperfine splitting for the
point and infinitely heavy nucleus is obtained from the expec-
tation value of

Vhfs = −e �α · �AI , (32)

where

e �AI (�r) = e

4 π
�μ × �r

r3
, (33)

on a state φ

Ehfs = 〈φ|Vhfs|φ〉. (34)

For the finite-size nucleus, the Coulomb interaction
becomes [

1

r

]
fs

=
∫

d3q

(2 π )3
4 π

ρC (�q 2)

�q 2
ei �q �r (35)

[cf. Eq. (3)], and the magnetic one becomes[ �r
r3

]
fs

= − �∇
∫

d3q

(2 π )3
4 π

ρM (�q 2)

�q 2
ei �q �r . (36)

In the following we will assume ρC = ρM = ρ to keep the
notation short, and the final formulas will later be generalized
to ρC �= ρM .

The recoil correction to the hyperfine splitting is obtained
using the following effective Hamiltonian for a particle with
an arbitrary spin I and charge q, which includes all spin-
dependent terms up to 1/M2,

Hnuc = ��2

2 M
+ q A0 − q

2 M
g �I · �B

− q

4 M2
(g − 1)�I · [ �E × �� − �� × �E ], (37)

where �� = �P − q �A, and where we introduced the nuclear g
factor,

�μ = q

2 M
g �I . (38)

We will use this Hamiltonian for the nucleus, where we
assume that the charge of the nucleus is q = −Z e with e
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being the electron charge. Electromagnetic form factors are
neglected in the above, because they depend on q0 through
q2 = q2

0 − �q 2 and thus cannot be included on the Hamiltonian
level. Because every photon exchange between the nucleus
and the electron involves the photon propagator multiplied by
the nuclear form factors, we can move these form factors to
the redefined photon propagators [see Eqs. (10) and (12)]. The
neglect of q0 in nuclear form factors is a common mistakes in
relativistic atomic structure calculations.

Using Eq. (37) the recoil correction to hfs is split into three
parts,

Ehfsrec = Ekin + Eso + Esec, (39)

which are calculated one by one in the following.

A. Kinetic energy contribution

The kinetic energy contribution is

Ekin = 1

2 M
〈
| ��2|
〉QED. (40)

For its derivation we use Eq. (18) with HI including the nu-
cleus magnetic interaction

HI (y) = e jμ(y)Aμ(y) − �μ · �B(y)δ3(�y − �R), (41)

and split it into two parts

Ekin = Ekin1 + Ekin2. (42)

Ekin1 due to the first term in Eq. (21) is obtained from the
previous result for the recoil correction to energy,

Ekin1 = EC1 + ET 1 + ES1

= δhfs
i

M

∫
dω

2 π
〈φ|[pj − D j

C (ω)
]

× G(ED + ω)
[
pj − D j

C (ω)
]|φ〉, (43)

where the state φ and the propagator G are corrected by the
hyperfine interaction Vhfs including the finite nuclear size,
namely

Ekin1 = i

M

∫
dω

2 π

[〈φ|[pj − D j
C (ω)

]
G(ED + ω)

× (Vhfs − 〈Vhfs〉)G(ED + ω)
[
pj − D j

C (ω)
]|φ〉

+ 2〈φ|Vhfs G′(ED)
[
pj − D j

C (ω)
]
G(ED + ω)

× [
pj − D j

C (ω)
]|φ〉]. (44)

Ekin2 is due to the second term in Eq. (21) and is split into
three parts,

Ekin2 = EC3 + EC2 + ET 2, (45)

which are calculated as follows. The first part is

EC3 = 1

2 M
〈
|⃖∂R �∂R|
〉QED = 1

2 M

∫
d4y

∫
dt〈
|T[(i e �A �j)y(i �μ �B)t,R ⃖∂R �∂R]|
〉 = − i

M

∫
s

dω

2 π
〈φ|∇2 Vhfs(ω)|φ〉 1

ω2
, (46)

where we introduced the frequency-dependent hyperfine interaction

Vhfs(ω, �r) = εi jl e μi α j ∂ lD(ω, r), (47)

such that Vhfs(0, r) = Vhfs(r), and

D(ω, r) =
∫

d3k

(2π )3
ei�k·�r ρ(�k2 − ω2)

ω2 − �k2
. (48)

The second part in Eq. (45) is

EC2 = 1

2 M

∫
d3r〈
|ψ̂+(�r)�∂rψ̂ (�r)�∂R|
〉QED + H.c.

= 1

2 M

∫
d4y

∫
dt

∫
d3r〈
|T[(i e �A �j)y(i �μ �B)t,R(ψ̂+�∂ ψ̂ )r �∂R]|
〉 + H.c.

= − i

M

∫
d ω

2 π

1

ω
[〈φ|∂k (Vhfs(ω) − Vhfs)G(E0 + ω)|∂kφ〉 + 〈∂kφ|G(E0 + ω)∂k (Vhfs(ω) − Vhfs)|φ〉]. (49)

The third part in Eq. (45) is

ET 2 = − i Z e

2 M
〈
|Ai( �R)∂ i

R|
〉QED + H.c.

= − iZ e

2 M

1

2

∫
d4y d4x dt T〈
|Ai( �R)∂ i

R(i e) j j (x)Aj (x)(i e) jk (y)Ak (y)(i)μl Bl (t, �R)|
〉 + H.c.

= − 1

M

∫
s

dω

2 π
[〈φ|Di

C (ω)G(E0 − ω)∂ i(Vhfs(ω) − Vhfs)|φ〉 + 〈φ|∂ i(Vhfs(ω) − Vhfs)G(E0 + ω)Di
C (ω)|φ〉] 1

ω
. (50)
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Combining these three parts together, Ekin2 in Eq. (45) becomes

Ekin2 = − i

M

∫
s

dω

2 π
〈φ|∂ j∂ j (Vhfs(ω) − Vhfs)|φ〉 1

ω2
− 1

M

∫
s

d ω

2 π

1

ω

[−〈φ|∂ j (Vhfs(ω) − Vhfs)G(E0 + ω)

×(
pj − D j

C (ω)
)|φ〉 + 〈φ|(pj − D j

C (ω)
)
G(E0 + ω)∂ j (Vhfs(ω) − Vhfs)|φ〉], (51)

and this form we will call F1 in analogy to the previous case. It can be further transformed to the F2 form,

Ekin2 = − 1

M

∫
d ω

2 π

1

ω2

{〈φ|∂ j (Vhfs(ω) − Vhfs) G(E0 + ω)
[
pj (V ) + ω D j

C (ω)
]|φ〉

+ 〈φ|[pj (V ) − ω D j
C (ω)

]
G(E0 + ω)∂ j (Vhfs(ω) − Vhfs)|φ〉}, (52)

and combined with Ekin1 in the F2 form,

Ekin1 = −δhfs
i

M

∫ ∞

−∞

dω

2 π

1

ω2
〈φ|[pj (V ) − ω D j

C (ω)
]
G(ω + E0)

[
pj (V ) + ω D j

C (ω)
]|φ〉, (53)

to obtain a simpler expression for Ekin:

Ekin = −δhfs
i

M

∫
s

dω

2 π

1

ω2
〈φ|[pj (VC + Vhfs(ω)) − ω D j

C (ω)
]
G(ω + E0)

[
pj (VC + Vhfs(ω)) + ω D j

C (ω)
]|φ〉, (54)

which can be further simplified in the F3 form,

Ekin = −δhfs
i

M

∫
s

dω

2 π

1

ω2
〈φ|[pj (Vhfs(ω)) − ω D j

T (ω)
]
G(ω + E0)

[
pj (Vhfs(ω)) + ω D j

T (ω)
]|φ〉. (55)

Indeed, the recoil corrections take the compact form in the temporal gauge. It would be worthwhile to derive them directly in
this gauge, because a derivation of radiative recoil corrections would otherwise be much more complicated.

B. Spin-orbit contribution

The spin-orbit contribution,

Eso = − q

4 M2
(g − 1)�I · 〈
| �E × �� − �� × �E |
〉QED = Eso1 + Eso2 + Eso3, (56)

is split into three parts. In the Eso3 part, �� → −i�∂R and

Eso3 = i
q

4 M2
(g − 1)�I · 〈
|[ �E × �∂R + ⃖∂R × �E |
〉QED

= i
q

4 M2
(g − 1)εi jkI i

∫
d4x〈
|T[E j ( �R)∂k

R(−i e) jμ(x)Aμ(x)]|
〉 + H.c.

= q e

2 M2
(g − 1)I i

∫
d ω

2 π i
〈φ|εi jk α j ∂kD(ω)|φ〉. (57)

In the Eso2 part, �� → i
∫

d3r ψ̂+(�r)�∂r ψ̂ (�r) and

Eso2 = −i
q(g − 1)

2 M2
εi jk I i

∫
d3r〈
|E j ( �R)ψ̂+(�r)∂k

r ψ̂ (�r)|
〉QED

= −i
q(g − 1)

2 M2
εi jk I i

∫
d4x

∫
d3r〈
|T[E j ( �R)ψ̂+(�r)∂k

r ψ̂ (�r)(−i e) jμ(x)Aμ(x)]|
〉

= −i
q e (g − 1)

2 M2
εi jk I i

∫
dω

2 π

[〈φ|∂k G(E0 + ω)
[− ω αl Gl j

C (ω) + i ∂ jG00
C

]|φ〉

+ 〈φ|[ω αl Gl j
C (ω) + i ∂ jG00

C

]
G(E0 + ω)∂k|φ〉]. (58)

In the Eso1 part, �� → −q �A( �R) and

Eso1 = q2(g − 1)

2 M2
�I · 〈
| �E ( �R) × �A( �R)|
〉QED

= q2(g − 1)

2 M2
εi jk I i (−ie)2

2

∫
d4x

∫
d4y〈
|T[E j ( �R)Ak ( �R) jμ(x)Aμ(x) jν (y)Aν (y)]|
〉
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= −e2 q2(g − 1)

2 M2
εi jk I i

∫
dω

2 π

[〈φ|[ω αm Gm j
C (ω) + i ∂ jG00

C

]
G(E0 + ω)αl Glk

C (ω)|φ〉

+ 〈φ|αl Glk
C (ω)G(E0 + ω)

[−ω αm Gm j
C (ω) + i ∂ jG00

C

]|φ〉]. (59)

The total spin-orbit part using Eq. (56) is

Eso = −4 π Z α(g − 1)

2 M2
εi jk I i

∫
d ω

2 π

{−i〈φ|α j ∂kD(ω)|φ〉

+ 〈φ|[ω αm Gm j
C (ω) + i ∂ jG00

C

]
G(E0 + ω)

[
pk + 4 π Z α αl Glk

C (ω)
]|φ〉

+ 〈φ|[pk + 4 π Z α αl Glk
C (ω)

]
G(E0 + ω)

[−ω αm Gm j
C (ω) + i ∂ jG00

C

]|φ〉}. (60)

It becomes simplified in the F2 form,

Eso = (g − 1)

M2
εi jk I i

∫
d ω

2 π

1

ω
〈φ|[pj (VC ) − ω D j

C (ω)
]
G(E0 + ω)

[
pk (VC ) + ω Dk

C (ω)
]|φ〉, (61)

and even more simplified in the F3 form,

Eso = − (g − 1)

M2
εi jk I i

∫
s

d ω

2 π
ω〈φ|D j

T (ω)G(E0 + ω)Dk
T (ω)|φ〉. (62)

C. Double hfs contribution

The double hfs contribution is due to the two-photon exchange between the bound electron and the nucleus magnetic moment
�μ [18],

Esec = i e2
∫

d ω

2 π

∫
d3k1

(2 π )3

∫
d3k2

(2 π )3

ρ
(
k2

1 − ω2
)

ω2 − k2
1 + i ε

ρ
(
k2

2 − ω2
)

ω2 − k2
2 + i ε

〈φ|αi ei �k1�r G(ED + ω)α j e−i �k2�r |φ〉

×
[

(�μ × �k1) i 1

−ω + i ε
(�μ × �k2) j + (�μ × �k2) j 1

ω + i ε
(�μ × �k1) i

]
. (63)

We shall make at this point a note regarding the reference state singularity. The reducible contribution in the ladder diagram,
where the intermediate state is the same as the external one, i ε in the denominator of the fermion propagator should reverse the
sign, namely i ε → −i ε (see Ref. [19]), which effectively leads to a symmetric integration in ω around a pole at ω = 0.

Let us now decompose the product of the nuclear magnetic moments into irreducible parts, namely

μa μb = δab

3
�μ 2 + 1

2

(
μa μb + μb μa − 2 δab

3
�μ 2

)
+ 1

2
[μa, μb]. (64)

Only the last part contributes to the magnetic dipole hyperfine splitting, and

Esec = −i e2[μi, μ j]
∫

s

d ω

2 π

1

ω
〈φ|(�α × �∇)i D(ω, �r)G(ED + ω)(�α × �∇) j D(ω, �r)|φ〉. (65)

D. Final formula for recoil correction to hfs

The total recoil correction to the hyperfine splitting in hydrogenlike ions is

Ehfsrec = Ekin + Eso + Esec, (66)

Ekin = 1

M

∫
s

dω

2 π

1

ω

[〈φ|D j
T (ω)G(ED + ω)∂ j (Vhfs(ω))|φ〉 − 〈φ|∂ j (Vhfs(ω))G(ED + ω)D j

T (ω)|φ〉]
+ δhfs

i

M

∫
s

dω

2 π
〈φ|D j

T (ω)G(ED + ω)D j
T (ω)|φ〉, (67)

Eso = − (g − 1)

M2
εi jk I i

∫
s

d ω

2 π
ω〈φ|D j

T (ω)G(ED + ω)Dk
T (ω)|φ〉, (68)

Esec =
(

4 π Z α

2 M
g

)2

εi jk Ik
∫

s

d ω

2 π

1

ω
〈φ|(�α × �∇)i D(ω)G(ED + ω)(�α × �∇) j D(ω)|φ〉, (69)

where �DT (ω) is defined in Eq. (13), Vhfs(ω) in Eq. (47),
and D(ω) in Eq. (48). We can now replace ρ by ρC or

ρM depending on the presence of the g factor. Namely in
Eq. (67) ρ in D j

T is replaced by ρC and in Vhfs by ρM .
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In Eq. (68) ρ in gDT is replaced by ρM , while in the
other DT is replaced by ρC . In Eq. (69) ρ in both D are
replaced by ρM . In the next section we will verify this

formula for Ehfsrec by the derivation of the (Z α)5 correc-
tion, which has already been obtained by other means in
Ref. [18].

V. (Z α)5 RECOIL CORRECTION

Let us at first calculate the (Z α)5 finite nuclear size correction to the energy given by Eq. (15). This correction comes from
the hard two-photon exchange and is split into two parts,

E (5)
rec = E (5)

rec1 + E (5)
rec2. (70)

In the first part these hard two exchanged photons are DT (ω), thus

E (5)
rec1 = i

M
φ2(0)(4 π Z α)2

∫
s

d4k

(2 π )4

[ρ2(−k2) − 1]

(k2)2

(
δik − ki kk

ω2

)(
δ jk − k j kk

ω2

)
Tr

[
γ i 1

( � t+ �k − m)
γ j (I + γ 0)

4

]

= 1

M
φ2(0)(4 π Z α)2

∫
s

d4k

(2 π )4 i

[ρ2(−k2) − 1]

k4

[
2 m (k4 + 2 ω4)

ω2(k4 − 4 m2 ω2)

]

E= 1

M
φ2(0)(4 π Z α)2

∫
s

d4q

(2 π )4

[ρ(q2) − 1]

q4
A

[
− 2 m

(
q4 + 2 q4

0

)
q2

0

(
q4 + 4 m2 q2

0

)
]
, (71)

where in the last line we performed the Wick rotation, and A
denotes an average over the three-dimensional sphere in the
Euclidean space,

A[ f ] ≡
∫

d �q

2 π2
f (q, q0) = 2

π

∫ π

0
dφ sin2(φ) f (q, q cos(φ)),

(72)

then

A

[
1

q4 + 4 m2 q2
0

]
= 2

q4

1

1 + √
1 + a2

, (73)

A

[
1

q2
0

]
= − 2

q2
, (74)

where a = 2 m/q. In the second formula we assumed a sym-
metric integration around the pole at q0 = 0, as denoted by
subscript s in Eq. (71). Applying this angle average

E (5)
rec1 = m

M
φ2(0)(Z α)2 8

∫
sub

dq

q3
[b − 1 − b−2][ρ2(q2) − 1],

(75)

where b = 1 + √
1 + a2, and “sub” denotes the subtraction

of low q singularity which corresponds to (Z α)4 finite-size
correction. Equation (75) agrees with the one derived previ-
ously in Ref. [11]’s Eq. (12). For electrons, it can be further
simplified in terms of the effective radius 〈r2 ln(m r)〉.

The second part E (5)
rec2 comes from the nonrecoil hard two-

Coulomb photon exchange

E (5)
nrec = −π

3
φ2(0)(Z α)2 m r3

F ≡ 〈φ|V (5)
nrec|φ〉, (76)

where

r3
F =

∫
d3r1

∫
d3r2 ρC (r1) ρC (r2)|�r1 − �r2|3, (77)

and from the operator in Eq. (15) replaced by the nonrelativis-
tic nuclear kinetic energy [cf. Eq. (27)], so

E (5)
rec2 = 2〈φ|V (5)

nrec
1

(E − H )′
�p 2

2 M
|φ〉 = −3

m

M
E (5)

nrec. (78)

It can be interpreted as a reduced mass scaling of the nonrecoil
(Z α)5 correction.

We are now ready to pass to the (Z α)5 hyperfine recoil
correction. It also split into two parts,

E (5)
hfsrec = E (5)

hfsrec1 + E (5)
hfsrec2. (79)

The first part comes from the hard two-photon exchange,
where these two photons are DT (ω) and D(ω) or Vhfs(ω),
but here we do not subtract the point nucleus contribution.
Following closely the previous case of E (5)

rec1 we obtain

E (5)
hfsrec1 = −16

3

(Z α)2

M2
φ2(0)�I · �s

∫
sub

dq

q

[
ρ2

C

(
2

b
+ 1

2 b2

)

+ g

2
ρM ρC

(
2(b − 1) − 2

b
− 1

b2

)

+ g2

4
ρ2

M

(
1

2 b2
− 1

b

)]
. (80)

It requires low q subtraction as denoted by “sub,” which
corresponds to the leading hyperfine splitting of the order of
(Z α)4. Namely, the term 2(b − 1) contains the linear singu-
larity 2(b − 1) ∼ 2 a = 4 m/q for the small q, which should
be subtracted out. Then, 2(b − 1 − a) = 2/(a + √

1 + a2) ≡
2/b′ and

E (5)
hfsrec1 = −16

3

(Z α)2

M2
φ2(0)�I · �s

∫ ∞

0

dq

q

[
ρ2

C

(
2

b
+ 1

2 b2

)

+ g

2
ρM ρC

(
2

b′ − 2

b
− 1

b2

)
+ g2

4
ρ2

M

(
1

2 b2
− 1

b

)]

+ δE (5)
hfsrec1, (81)
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in agreement with Ref. [18]. The last term δE (5)
hfsrec1 is

δE (5)
hfsrec1 = 16 π

3

(Z α)2

M2
φ2(0)�I · �s g

2
m rZ , (82)

where

rZ = 1

π2

∫
d3q

q4
[1 − ρC (q2)ρM (q2)] (83)

is the so-called Zemach radius [20].
The second part E (5)

hfsrec2 comes from the second term in
Eq. (67), where the perturbation is due to the nonrecoil hy-
perfine correction

E (5)
hfsnrec = −16 π

3
(Z α)2 φ2(0)

g

2 M
�I · �s rZ

≡ 〈φ|Vhfsnrec|φ〉, (84)

and with recoil replaced by the nuclear kinetic energy

E (5)
hfsrec2 = 2 〈φ|Vhfsnrec

1

(E − H )′
�p 2

2 M
|φ〉

= −3
m

M
E (5)

hfsnrec. (85)

It can be interpreted as a reduced mass scaling of E (5)
hfsnrec.

Together with

δE (5)
hfsrec1 = −m/M E (5)

hfsnrec, (86)

it gives the factor 4 and the total reduced mass scaling
(μ/m)4 of the Zemach contribution E (5)

hfsnrec, in agreement with
Ref. [18].

VI. SUMMARY

We have introduced a general quantum electrodynamic
method for the derivation of nuclear recoil corrections in hy-
drogenic systems, and we present an exemplary derivation of
the nuclear recoil correction to the hyperfine splitting. The ex-
act formulas in Z α are shown in Eqs. (67)–(69). They can be
used for the direct numerical calculation of the nuclear recoil
effects, or for an analytic derivation of Z α expansion coeffi-
cients, in particular of the O(Z α)2 EF contribution, which was
originally derived by Bodwin and Yennie in Ref. [21], but has
not been confirmed.

This general method can be applied for the derivation of
all the other nuclear recoil effects of an arbitrary order in the
mass ratio, including radiative recoil. It would be worthwhile,
however, to simplify the derivation by direct use of the tempo-
ral gauge, because formulas are very much simplified in this
gauge.

APPENDIX A: PHOTON PROPAGATOR

The photon propagator in the Feynman gauge is

i Gμν (x′ − x) = 〈0|TAμ(x′)Aν (x)|0〉

= −i gμν

∫
d4k

(2 π )4

e−i k(x′−x)

k2 + i ε
, (A1)

Gμν (k) = − gμν

k2 + i ε
, (A2)

while in a Coulomb gauge with finite size,

G00
C = ρ(�k2)/�k2, (A3)

Gi j
C (k) = ρ(−k2)

k2

(
δi j − ki k j

(k0)2

)
− ki k j

(k0)2

ρ(�k2)

�k2
. (A4)

The transverse part is not orthogonal to ki,

ki Gi j
C (k) = [ρ(−k2) − ρ(�k2)]

k j

(k0)2
, (A5)

in contrast to the propagator in the regular Coulomb gauge.
The photon propagator in the temporal gauge with finite size
is

Gi j
T (ω, �k) = ρ(−k2)

k2

(
δi j − ki k j

ω2

)
. (A6)

The auxiliary propagators are

〈0|TAi(x)B j (y)|0〉 = −i εi jk ∇k D(x − y), (A7)

D(x − y) =
∫

d4k

(2π )4
e−i k r ρ(−k2)

k2
, (A8)

D(ω, r) =
∫

d3k

(2π )3
ei�k·�r ρ(�k2 − ω2)

ω2 − �k2
, (A9)

Vhfs(ω, r) = εi jl e μi α j ∂ l D(ω, r)

= −4 π Z α

2 M
g �I · �α × �∇D(ω, r). (A10)

APPENDIX B: SPINOR FIELD

The representations of the spinor field in terms of solutions
of the Dirac equation are

ψ̂ (x) =
+∑
s

asφs(�x)e−i Est +
−∑
s

bsφs(�x) e−i Est ,

ψ̂+(x) =
+∑
s

a+
s φ+

s (�x)ei Est +
−∑
s

b+
s φ+

s (�x)ei Est , (B1)

which form a complete basis

+∑
s

φs(x
′)φ+

s (x) +
−∑
s

φs(x
′)φ+

s (x) = δ3(�x′ − �x). (B2)

The fermionic anticommutation relations are

{ar, a+
s } = {br, b+

s } = δr,s, (B3)

and

{ψ̂ (�x′, 0), ψ̂+(�x, 0)} = δ3(�x′ − �x). (B4)
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The definition of the vacuum state is

ar |0〉 = b+
r |0〉 = 0. (B5)

The projection operators into positive and negative energy
subspace are

P+ =
+∑
s

φs(x
′)φ+

s (x) = 〈0|ψ̂ (�x′, 0)ψ̂+(�x, 0)|0〉,

P− =
−∑
s

φs(x
′)φ+

s (x) = 〈0|ψ̂+(�x, 0)ψ̂ (�x′, 0)|0〉, (B6)

with

P+ + P− = I. (B7)

The fermion propagator is

i G(x′, x) = 〈0|Tψ̂ (x′)ψ̂+(x)|0〉

= i
∫

dω

2 π

∑
s

ψs(�x′)ψ+
s (�x)

ω − Es(1 − i ε)
e−i ω(x′0−x0 ). (B8)

The equal time propagator can be written as

i G(x′, x)|x′0=x0 = 〈0|Tψ̂ (x′)ψ̂+(x)|0〉|x′0=x0

= 1
2 〈0|ψ̂ (x′)ψ̂+(x) − ψ̂+(x)ψ̂ (x′)|0〉

= 1
2 (P+ − P−). (B9)
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