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Fermion exchange in ring polymer quantum theory
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A mapping is made between fermion exchange and excluded volume in the quantum-classical isomorphism
using polymer self-consistent field theory. Apart from exchange, quantum particles are known to be exactly
representable in classical statistical mechanics as ring polymers, with contours that are parametrized by the
inverse thermal energy, often called the imaginary time. Evidence in support of a previously used approximation
for fermion exchange in ring polymer self-consistent field theory is given, specifically, that the use of all-
contour interactions in the mean field picture instead of equal imaginary time interactions is justified based
on the symmetry of ring polymers. It is also shown that the removal of forbidden thermal trajectories, both
those that violate excluded volume directly and those that represent topologically inaccessible microstates,
is equivalent to antisymmetric exchange. The electron density of the beryllium atom is calculated with ring
polymer self-consistent field theory ignoring classical correlations, and very good agreement is found with
Hartree-Fock theory which also neglects Coulomb correlations. The total binding energies agree to within less
than 6%, which, while still far from chemical accuracy, is remarkable given that the field theory equations are
derived from first principles with zero free parameters. The discrepancy between self-consistent field theory
and Hartree-Fock theory is attributed to classical Coulomb self-interactions which are included in Hartree-Fock
theory but not in self-consistent field theory. A potential method to improve the agreement by more accurately
representing electron-electron self-interactions in self-consistent field theory is discussed, as are the implications
for quantum foundations of the quantum-classical mapping between fermion exchange and thermal trajectory
excluded volume.
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I. INTRODUCTION

Modern quantum simulation methods often use a di-
mensional trick to exactly convert quantum many-body
calculations into classical ones [1–3]. This method, intro-
duced by Feynman in 1953 [4–6] and since referred to as
the quantum-classical isomorphism [7], treats the inverse
temperature as a fictional dimension and so allows the sta-
tistical mechanics of a quantum system to be viewed as
the classical statistical mechanics of a ring polymer sys-
tem, where the term “ring polymer” refers to a mathematical
contour that starts and ends at the same point, with the
inverse temperature parametrizing the curve [1,8–12]. The
inverse temperature is sometimes referred to as the imaginary
time due to it being a Wick rotation of the quantum matrix
element [5]. This quantum-classical mapping is exact except
for the lack of quantum exchange in the ring-polymer par-
tition function. The mathematics of boson exchange can be
viewed classically as the merging of polymer rings into larger
rings, including separation back into smaller rings [11,12],
and so fits naturally into the quantum-classical isomorphism.
For this reason, ring-polymer simulations of quantum sys-
tems are primarily applied to bosons (Feynman originated
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the method for explaining the superfluid transition in helium)
[4–6]. To our knowledge, there is no similar quantum-classical
mapping for fermions. Such a mapping would be extremely
valuable not only because it would allow for effective approx-
imations to be made for many-body fermion computations
within the quantum-classical isomorphism [9,13,14], but also
because of the implications for quantum foundations (see
Sec. IV and Refs. [10,11]). In this paper, we present and
justify a quantum-classical mapping for fermions within the
quantum-classical isomorphism using polymer self-consistent
field theory (SCFT).

SCFT is a mean-field statistical mechanics formalism for
classical coarse-grained polymers [15–19], including ring
polymers [20,21]. In recent years, it has been applied to study
quantum systems using the quantum-classical isomorphism
both in its mean-field form [8–11,13,14,22] and includ-
ing fluctuations through field-theoretic simulations (FTS)
[12,23,24]. Only boson systems have been examined to date
using FTS due to the difficulty of incorporating fermion ex-
change in the quantum-classical isomorphism. Feynman and
Hibbs discussed the numerical problems caused by fermion
exchange [25], and as mentioned, there has been no classical
interpretation along the lines of boson exchange. Despite this,
mean-field SCFT has been applied exclusively to fermion sys-
tems in the form of the electron densities of atoms [8,9,13,14]
and diatomic molecules [22]. These applications have been
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based on a postulated equivalence between fermion exchange
in three dimensions (real space) and excluded volume between
ring-polymer trajectories in four dimensions (real space plus
the fictitious thermal dimension) [9–11,13,14].

An excluded volume assumption for the paths of quan-
tum particles in thermal space is not new. It is implicit in
quantum simulations [1] and explicit in Feynman’s original
work [5]. Although these are boson systems, the assump-
tion is independent of quantum symmetry: any particle with
mass should be expected to have excluded volume trajectories
and so the assumption should be kept for electrons or other
fermion systems. It does not necessarily follow that excluded
volume in four dimensions is the same as fermion exchange in
three dimensions, although from a quantum-classical perspec-
tive, the assumption is not unreasonable: a three-dimensional
(3D) fermion system is mathematically identical to a four-
dimensional (4D) classical ring-polymer system except that
the 3D system has fermion exchange but not excluded vol-
ume, whereas the 4D system has excluded volume but not
exchange. Given that boson exchange has a classical interpre-
tation in terms of merging and separating ring polymers, it is
logical to expect a similar mapping for fermion exchange, and
excluded volume seems an obvious choice.

Evidence in support of the excluded volume postulate is
also available: SCFT calculations which use the assumption
give correct qualitative atomic shell structure [9,13,14] and
molecular bonding [22]. The SCFT predictions are also quan-
titatively quite good, although they do not come close to
chemical accuracy [13,14]. This is not surprising, however,
since implementing excluded volume accurately is notori-
ously difficult even in classical systems, so there will always
be confounding factors in computationally testing the ex-
cluded volume hypothesis. Instead, one option is to turn to
scaling theory, where for the case of a high-density uniform
electron gas, the excluded volume hypothesis correctly pre-
dicts the energy of the system to scale with the electron
density following a 5/3 power, in agreement with Thomas-
Fermi theory [9,13,26,27]. A further scaling theory correction
term agrees with Dirac’s exchange correction to the Thomas-
Fermi energy and scales with the density to the 4/3 power
[13,28]. Another option is to make use of the known ana-
lytic constraints on the electron density and fields [29,30]
to test whether the excluded-volume hypothesis adheres to
these constraints or not. In Ref. [14], a number of these
constraints were tested numerically, and it was shown that
the electron density does not violate any of them, even for
the approximate implementation of the excluded-volume hy-
pothesis. These results are either remarkable coincidences, or
there is some reason to take the excluded volume postulate
seriously. In particular, the agreement with Dirac exchange
suggests a strong link between 4D excluded volume and 3D
fermion exchange.

In this paper, we put the excluded volume-exchange hy-
pothesis on a stronger footing, and give a mathematical
justification for the equivalence. We give a numerical exam-
ple of the beryllium atom using first-principles SCFT with
no free parameters, which shows very good agreement with
Hartree-Fock (HF) theory, and we explain the remaining
discrepancies between SCFT and HF in terms of residual
classical approximations. We give some reasons why previous

implementations using the excluded volume postulate failed
to give perfect agreement with HF theory, and we show
that some of those approximations are actually better than
expected.

II. SUMMARY OF THEORY

We give only a brief synopsis of the relevant SCFT
equations; further details and derivations can be found
in Refs. [8–11,13,14,22] for the quantum case, and in
Refs. [15–19] for SCFT applied to polymers.

The SCFT equations for a system of N quantum particles
have the identical structure as those of a system of N classical
ring polymers. The quantum particle spatially inhomogeneous
number density is

n(r, β ) = N

Q(β )
q(r, r, β ), (1)

where β = 1/kBT with temperature T and Boltzmann’s con-
stant kB. q(r, r, β ) is a real and nonnegative propagator that is
the diagonal of the solution to a modified diffusion equation

∂q(r0, r, s)

∂s
= h̄2

2m
∇2q(r0, r, s) − w(r, β )q(r0, r, s), (2)

subject to the influence of a field w(r, β ), which contains
all interactions between quantum particles and the initial
condition

q(r0, r, 0) = δ(r − r0). (3)

Equation (1) is normalized by the single-particle partition
function

Q(β ) =
∫

q(r, r, β )dr. (4)

Previously [9,11,13,14], quantum exchange and the Pauli ex-
clusion principle were encoded in SCFT for fermions using
a simple mean-field excluded volume contact force based
on repulsions between all polymer segments. That is, an
Edwards-excluded volume term [31,32] contributes a Pauli
field wP(r, β ) that is linear in the density to the total field in
the diffusion equation (2)

wP(r, β ) = g−1
0 n(r, β ). (5)

The basic form (5) should be modified to remove self-
interactions following Refs. [13,14], but, in the interest of
clarity, the simple form given here can be used for discussion
purposes without loss of generality. The prefactor g−1

0 , which
has units of an inverse density of states, sets the strength
of the contact forces and is analogous to the Flory-Huggins
parameter χ (which is a contact repulsion between different
chemical species in polymer SCFT [16]) and the excluded
volume parameter v in the work of Edwards (which en-
forces average repulsions between different macromolecule
segments in SCFT [31,32]). Although Eq. (5) gives semi-
quantitatively correct results for the shell structure of atoms
[9,13,14] when combined with an external potential (for
atoms, the Coulomb attraction of a nucleus), electron-electron
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interactions and a self-interaction correction, it falls short of
complete agreement with HF theory, which includes fermion
exchange exactly. The self-interaction correction has been
included exactly in Refs. [13,14] by using a Fermi-Amaldi
prefactor, which will be discussed further in the next section.

III. RESULTS AND DISCUSSION

Allowing contact force repulsion between all polymer seg-
ments is a coarse approximation. It is known that, unlike for
polymer systems, excluded volume in path integral simula-
tions of quantum particles should be enforced only between
contour values of equal imaginary time [1,5,12]. To accom-
plish this, one needs to keep track of the density at each
imaginary time-slice value s, rather than just the density at
s = β. In other words, the field given by Eq. (5) should be
replaced by the set of fields

wP(r, s) = g−1
0 n(r, s). (6)

Instead of a single field calculated only at s = β, a family of
fields, one for each value of 0 � s � β is required. This, in
turn, requires a family of densities n(r, s) for 0 � s � β to be
computed. The formula for the density of segments at position
r and imaginary time s is [20]

n(r, s) = N

Q(β )

∫
q(r, r′, s)q(r, r′, β − s)dr′, (7)

where

Q(β ) =
∫∫

q(r, r′, s)q(r, r′, β − s)drdr′. (8)

Equation (8) is independent of s in that any value of s will
give the same result for Q(β ). One can verify that choosing
s = β in Eqs. (7) and (8) gives back Eqs. (1) and (4) for the
density at s = β. It is straightforward to calculate the densities
at each value of s using Eqs. (7) and (8) and to find the Pauli
potentials for each value of s from Eq. (6).

We implemented this numerically for atomic systems by
subdividing the s contour into small intervals and using initial
perturbations on the fields and densities to break the symmetry
along the contour. Not surprisingly, the perturbations were
found to die away giving results identical to those found with
the simpler formulas (1) and (5), which ignore imaginary
time slices and calculate the Pauli potential and densities
allowing all polymer segments to interact.1 This happens be-
cause there is nothing to maintain broken symmetry along the
imaginary time direction. In an atom, for example, besides
the Pauli potential, the Coulomb potentials of the ion and
electron-electron interactions do not depend on s. Only the
Pauli potential can depend on s through its dependence on
the density and the density through the Pauli potential. Un-
like systems such as block copolymers (macromolecules with
distinct blocks of different monomers, see Refs. [15–19]),

1To within our numerical resolution, density profiles and free en-
ergies were exactly the same as those found in Ref. [13] for the
beryllium atom for both g−1

0 = 10 and g−1
0 = 3. See Figs. 2(a), 3(a)

and 4(a) and Tables I and II of Ref. [13] (deviations due to numerical
precision do not show on the scale of that graph).

where asymmetry in the molecular architecture allows for the
breaking of spatial symmetry, there is no inherent symmetry
breaking mechanism in the quantum particle trajectory (for
homogeneous ring polymers, including quantum particles, all
segments of the ring are identical). Therefore, in the mean-
field approximation, all time-slice densities give identical
results. One is therefore free to choose any single value of
s, such as s = β, meaning that formulas (1) and (5) are the
correct mean-field-excluded volume expressions.

One must then consider other reasons why the results
of Refs. [9,13,14] do not completely agree with HF theory,
assuming for the moment that excluded volume is a cor-
rect hypothesis. Ignoring fluctuations about the mean field is
undoubtedly partially responsible, but there is also a topo-
logical reason for the discrepancy. Equation (1) shows that
the one-particle density is proportional to the diagonal of the
propagator q(r, r, β ). This is illustrated in Fig. 1(a), where
one possible trajectory that starts at position r for s = 0 re-
turns to the same position r for s = β: the probability of
finding a particle at position r is proportional to q(r, r, β ).
Following Ref. [11], a two-particle density may be defined
which is related to the probability of finding one particle at
r and another particle at r′, as illustrated in Fig. 1(b). If the
particles are completely uncorrelated, then the two-particle
density is just proportional to the product of the propagators

n(r, r′) ∝ q(r, r, β )q(r′, r′, β ). (9)

Two classical ring polymers which start at r and r′ for s = 0,
respectively, must each return to their starting points at r and
r′ for s = β. Quantum particles, however, are indistinguish-
able, and so may exchange final s = β locations, as shown in
Fig. 1(c). The boson case was discussed in Refs. [1,5,11,12],
for example, where it was shown that boson exchange was
equivalent to a classical ring-polymer system including mi-
crostates where the rings can merge and separate. We show
here that it is similarly possible to give a classical description
to the fermion case. For fermions, exchange is included in the
two-particle density expression (9) by changing the sign of the
boson case in Ref. [11] to give

n(r, r′) ∝ q(r, r, β )q(r′, r′, β ) − q(r, r′, β )q(r′, r, β ).

(10)

Following the reasoning of Feynman [5], if the positions r
and r′ are very far from each other, there are unlikely to
be many trajectories that cross from r to r′ or vice versa.
Therefore the probability q(r, r′, β ) will approach zero, and
the two-particle expression (10) will just be the product of two
single-particle probabilities, that is, the first term of Eq. (10).
However, if r is sufficiently close to r′, such that their trajec-
tories overlap, then q(r, r′, β ) will not be small, and Eq. (10)
subtracts off these overlaps. In the limit where r = r′, the
probability of finding the two particles at the same place
r = r′ at the same imaginary time s = β is exactly zero from
Eq. (10). Thus this equation can be interpreted as enforcing
a mean-field-level excluded volume between the imaginary
time trajectories of the two particles. To see this, one can
consider the possible imaginary time paths of the particles.
Figure 1(d) shows a configuration where excluded volume
is violated, and the two ring-polymer trajectories touch at a
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FIG. 1. Schematics of possible imaginary time trajectories for quantum “ring polymers.” (a) One possible single-particle path. Three-
dimensional space is collapsed onto the horizontal position axis, and the vertical axis is the inverse thermal energy. (b) One possible
configuration of two particles. (c) A configuration of two particles under exchange. (d) Two trajectories that have an overlap at position
r′′ and imaginary time s′′. (e) Same as panel (d), except the trajectories are cross paths rather than ring paths. (f) Two crossing trajectories that
do not touch; the dashed portion of the red curve indicates that it passes behind the black curve without contact.

point r′′ for s = s′′. Figure 1(e) shows that this is identical to
the conformations of two crossing trajectories, which are sub-
tracted off in the second term of Eq. (10). In fact all points of
trajectory overlap will be subtracted off in Eq. (10), meaning
that all excluded volume violating conformations are removed
from the possible trajectories. Of course, the second term of
Eq. (10) also subtracts conformations beyond excluded vol-
ume ones, as shown in Fig. 1(f). Although such conformations
do not violate excluded volume directly, they are topologi-
cally inaccessible due to excluded volume. An analogy from
real ring polymers is concatenated versus nonconcatenated
rings. Concatenated rings are joined together like the links of
a chain. Although they do not violate excluded volume, such
conformations cannot be formed continuously from noncon-
catenated rings unless excluded volume is broken. SCFT does
not capture such topological subtleties, and so will include
such forbidden microstates even when excluded volume is
included in the model through contact energy penalties of
the Edwards-Flory-Huggins type used in Refs. [9,13,14]. In
a similar way, configurations such as that shown in Fig. 1(f)
cannot be continuously accessed from configurations such
as Fig. 1(b) unless that conformation first passes through an
excluded volume situation such as Figs. 1(d) and 1(e). All
such topologically inaccessible conformations are removed
from the two-particle density n(r, r′) by the second term of
Eq. (10).

This argument is valid beyond the two-particle density. For
example, the three-particle density, including negative signs
only for odd permutations, is

n(r, r′, r′′) ∝ q(r, r, β )q(r′, r′, β )q(r′′, r′′, β )

− q(r, r, β )q(r′, r′′, β )q(r′′, r′, β )

− q(r′, r′, β )q(r, r′′, β )q(r′′, r, β )

− q(r′′, r′′, β )q(r, r′, β )q(r′, r, β )

+ q(r, r′, β )q(r′, r′′, β )q(r′′, r, β )

+ q(r, r′′, β )q(r′′, r′, β )q(r′, r, β ), (11)

where overlaps between neighboring pairs of trajectories are
subtracted off, and double counting of these overlap subtrac-
tions are added back by the last two terms of Eq. (11). Fermion
exchange can be viewed as enforcing both excluded volume
and topologically inaccessible conformations. This must be
part of the reason why the excluded volume model used in
Refs. [9,13,14] only agrees semi-quantitatively with HF (the
Edwards-Flory-Huggins parameter enforces a mean-field ver-
sion of excluded volume, but does not exclude topologically
forbidden conformations).

Generalizing Eqs. (10) and (11) for bosons or fermions,
including normalization, gives

n(r1, . . . , rN , β )

= N
∑

σ∈SN

∏N
k q(rk, rσ (k), β )(±1)σ∑

σ∈SN

∏N
k

∏N
j

∫
dr jq(rk, rσ (k), β )(±1)σ

, (12)

where
∑

σ∈SN
is the sum over all possible permutations

σ up to length N ; (1)σ is for the case of bosons while
(−1)σ is for fermions. Equation (12) is derived by carry-
ing through the anti or symmetrized position basis states

1
N±!

∏N
k

∑
σ∈SN

(±1)σ |rσ (k)〉, with N±! equal to N!
∏N

i ni! for
bosons (n is the occupation number) and N! for fermions,
when deriving the SCFT equations [8,14]. One can also arrive
at Eq. (12) by using the diagrammatic arguments presented for
Eqs. (10) and (11), although it becomes more cumbersome to
express for increasing N .

We implemented Eq. (10) numerically to show that it gives
expected fermion behavior for atomic systems. Integrating
n(r, r′) over all r and r′ gives the number of particle pairs in
the system, N (N − 1)/2. We can, therefore, find the constant
of proportionality for Eq. (10) and write

n(r, r′, β ) = N (N − 1)

2[Q(β )2 − Q(2β )]
[q(r, r, β )q(r′, r′, β )

− q(r, r′, β )q(r′, r, β )]. (13)

Still following Ref. [11], the one-particle density is obtained
by integrating Eq. (13) over r′, including a factor 2/(N − 1)

052819-4



FERMION EXCHANGE IN RING POLYMER QUANTUM … PHYSICAL REVIEW A 109, 052819 (2024)

to switch from counting pairs to singlets

n(r, β ) = N

[Q(β )2 − Q(2β )]
[q(r, r, β )Q(β ) − q(r, r, 2β )].

(14)

The SCFT equations were solved following the method and
details of Refs. [8,9,13]. The diffusion equation (2) for ring
polymers can be more computationally demanding than for
linear polymers due to the double spatial dependence on r
and r0. Using a spectral approach, however, the numerical
cost for solving rings becomes almost equivalent to that for
solving linear polymers with a single spatial variable r [21].
We, therefore, chose a spectral expansion in terms of Gaussian
basis functions which is a common and efficient basis set
often used for atomic and molecular systems [33]. We self-
consistently solved the equations without a Pauli potential,
in contrast to Refs. [8,13,14], by using instead Eq. (14) in
place of Eq. (1) for the beryllium atom. The beryllium atom
was chosen for simplicity since it is the lightest atom with
symmetric spin-up and spin-down electrons that requires the
Pauli exclusion principle to give proper shell structure. Since
it has only two electrons for each of spin up and spin down,
we do not need higher-order excluded volume terms, such as
the three-body expression (11).

Equation (14) is numerically troublesome because both
the numerator and denominator involve differences between
extremely large terms that are almost equal (the terms become
identical in the limit β → ∞). Feynman and Hibbs noted this
sign problem decades ago when they studied the ring-polymer
partition function [25], and this is part of the reason why
bosons are studied with quantum simulation techniques based
on ring polymers much more than fermions. We use a brute
force solution: replacing double precision floating points in
our calculation with very high-precision floats. We also chose
the smallest β value that was still large enough to approach
zero temperature: we are interested in approaching the ground
state at zero temperature, that is, β → ∞, so we need a β

that is large enough to approach this but still small enough to
be numerically tractable. To determine this, we increased β

until the binding energy and electron density profile stopped
changing in any significant way. β = 40 was found to be
large enough. We used 75 Gaussian basis functions of the
type described in Ref. [13] and converged the fields to a self-
consistent tolerance below an L2-norm of 10−7. We verified
that nothing changed by also using over 150 basis functions
and a self-consistent tolerance of 10−8. We note that the com-
putational complexity of spectral SCFT scales with the cube
of the number of basis functions, but the spherical symmetry
of the problem is encoded in the basis functions to reduce the
numerical burden.2 The electron density is shown in Fig. 2
contrasted with HF theory. HF implements exchange exactly
but uses a mean-field Coulomb potential, and so makes a

2In principle, one can also examine nonspherical electron densities
using more complicated basis functions as done in Ref. [14]. A
more detailed discussion of SCFT computational complexity and
methods, with comparisons to some other quantum methodologies
can be found in Refs. [13,14].

FIG. 2. Electron density for the beryllium atom calculated with
SCFT (black solid line) and HF (red dashed line). The first-principles
SCFT result uses no free parameters. Deviation between SCFT and
HF is attributed to approximate Coulomb self-interactions in SCFT.

suitable comparator since we would like to ignore classical
correlations for simplicity. We stress that the SCFT result in
Fig. 2 is calculated from first principles using only the classi-
cal ring polymer partition function with zero free parameters,
so despite some differences between the HF and SCFT results
in Fig. 2, the agreement is remarkable. SCFT spontaneously
shows shell structure and a total binding energy within less
than 6% of HF without any free parameters, and as already
discussed, these features can be explained in entirely classical
excluded volume terms. The residual disagreement between
SCFT and HF can be accounted for classically as well: de-
spite using a mean-field Coulomb electron-electron potential,
HF accounts for electron electrostatic self-interactions exactly
whereas the SCFT used here does not. In previous work
[13,14], self-interactions were included exactly by calculating
a different propagator for each pair of spin-up or spin-down
electrons, and thus an individual density for each pair. It
was thus possible to subtract off the contribution of each
electron (half of each pair) to the electron-electron field to
exactly compensate for self-interactions. This is equivalent to
a Fermi-Amaldi expression [34], and was exact in the previous
works. Here, however, expressions (13) and (14) prevent such
a direct self-interaction correction since these expressions do
not allow one to keep track of the densities of individual
electrons or pairs. Instead, we use the Fermi-Amaldi expres-
sion for the classical electron-electron potential [34] on the
total electron density. If one, therefore, compares the present
approach to the previous exact self-interaction method for
just the beryllium atom, one might note that the previous
method agrees more closely with HF. This is misleading, how-
ever, since there is a free adjustable parameter in the method
of Refs. [13,14], whereas the present method is parameter-
free. Moreover, the free parameter of Refs. [13,14] must be
changed for each atom, and for heavier atoms, agreement is
not possible unless multiple parameters are introduced. While
the Fermi-Amaldi expression in the current work is a rather
crude approximation, it is the only major approximation be-
sides ignoring classical Coulomb correlations. There may be

052819-5



KEALEY, LEMAITRE, AND THOMPSON PHYSICAL REVIEW A 109, 052819 (2024)

opportunity for improvement here (see Sec. IV), but this is
beyond the scope of this work.

IV. SUMMARY AND FUTURE OUTLOOK

Fermion quantum exchange can be incorporated into the
quantum-classical isomorphism using thermal trajectory ex-
cluded volume. For beryllium, Eq. (10) treats antisymmetric
exchange exactly, to the extent that the mean-field propaga-
tor q(r, r, β ) can be determined exactly, by subtracting off
forbidden two-body conformations. The microstates that are
removed from the one-particle density in Eq. (10) are those
which violate the classical excluded volume of the thermal-
space paths directly (two particles occupy the same position
at the same imaginary time) or indirectly (the paths are inac-
cessible topologically). Thus 3D quantum fermion exchange
is equivalent to 4D classical excluded volume. This result
parallels that of the boson case, which has already been shown
to have a quantum-classical mapping between 4D merging
and separation of rings and 3D boson exchange [1,5,11,12].
Although an exact agreement between the electron density of
beryllium calculated using SCFT via Eq. (10) and HF was
not found, the remaining discrepancy can be attributed to self-
interactions in the SCFT classical electron-electron potential.

Better agreement between HF and SCFT could be achieved
by replacing the Fermi-Amaldi self-interaction correction in
the electron-electron potential. Previous work enforcing a
Pauli exclusion principle using 4D excluded volume mod-
eled this more approximately as an energy penalty rather
than an entropic correction (removal of forbidden paths). The
energetic approach required the use of phenomenological pa-
rameters analogous to Flory-Huggins parameters in polymer
physics, in contrast to the more correct parameter-free en-
tropic approach described here, but the two methods could
potentially be combined to improve the self-interaction es-
timate. The energetic method allows one to keep track of
the electron densities of distinguishable electrons, so if one
could calibrate the parameters against the entropic method
iteratively, one would have a method without free parameters
and with a high accuracy self-interaction correction. Once cal-
ibrated, such a bootstrapping, or multiscale, approach could
be applied to more complex quantum many-body systems
since the high-precision floating point numerics necessary
for Eq. (10) would no longer be required. This combined
approach is a possible future direction.

In the mean-field SCFT context, keeping track of excluded
volume between imaginary time slices is not necessary. Due
to the symmetry of the ring polymer architecture, all interac-
tions between contour values of equal imaginary time are the
same. Therefore, it is allowable to compute results using only
a single contour value, provided the entire polymer contour
on either side of the chosen segment contributes following
Eq. (7). The simplest value is thus s = β, as chosen in pre-
vious work [9,13,14].

Going beyond the mean field requires comparisons to
data which contain classical correlations instead of compar-
isons to HF which does not. There is much current work on

polymer FTS, which includes fluctuations missing in mean
field SCFT, and it might be possible to extend the for-
malism given here into Langevin simulations, either real or
complex, following FTS protocols [12,35,36]. In particular,
Delaney, Orland, and Fredrickson applied FTS to quantum
boson systems [12,23,24]. However, it is impossible to ex-
clude ring polymer topologically forbidden states using FTS
based on SCFT [35], and so a multiscale bootstrap map-
ping, as described above, might still be needed. However,
Fredrickson et al. apparently avoided this problem by in-
corporating exchange through a coherent states approach
[12,23,24]. This sacrifices part of the quantum-classical
isomorphism, but gives, according to the authors of
Refs. [12,23,24], exact results.

An advantage of keeping a fully classical perspective via
the fictitious thermal dimension (imaginary time) using SCFT,
is that it can inform quantum foundations. It was shown that
the first-principles derivation of the SCFT equations in terms
of ring polymers is equivalent to quantum density functional
theory (DFT) [8]. This means that the theorems of DFT give a
rigorous one-to-one mapping between an imaginary time ring-
polymer ontology and predictions of nonrelativistic quantum
mechanics, including temperature and time-dependent prop-
erties [37–40]. This approach gives intuitive perspectives
on the measurement problem, quantum kinetic energy, the
uncertainty principle, the stability of atoms, tunneling,
the double slit experiment, and geometric phase including the
Aharonov-Bhom effect [11]. It has also been connected with
time-dependent quantum phenomena through the Keldysh for-
malism [10,12] and electromagnetism through Kaluza theory
[10]. The inclusion of 3D quantum exchange through a 4D
classical mapping strengthens the quantum-classical corre-
spondence, especially since 4D excluded volume gives rise
spontaneously and without free parameters via Eq. (10) to
atomic shell structure, as shown in Fig. 2, fulfilling the role
of the Pauli exclusion principle and fermion exchange. This
gives a completely classical perspective on the Pauli exclusion
principle, and, when combined with the quantum-classical
mechanism for bosons, quantum exchange in general. More
practically, the SCFT methodology offers a different way to
compute both atomic or molecular and solid-state electron
densities [8,9,13,14,22]. Issues remain, however: for fermion
systems, the sign problem of the alternating series [Eqs. (10)
or (11)] will be difficult to scale up using high-precision floats
for problems with more electrons than the beryllium atom; im-
portant quantum phenomena, such as entanglement, have not
been definitively interpreted through the quantum-classical
isomorphism. How much, if any, numerical advantage might
the SCFT method have over standard quantum methods like
DFT? Are there direct dynamical SCFT methods that are prac-
tical for time-dependent problems? These and other questions
remain open for future investigation.
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