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Low-energy S-wave scattering of H + e− by a Lagrange-mesh method
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A method combining the Lagrange-mesh and the complex Kohn variational methods is developed for
computing the S matrix of a 2 + 1 elastic scattering in the frame of three-body Coulomb systems. Resonance
parameters can be obtained from values of the S matrix at several scattering energies. The method is illustrated
with the S-wave low-energy scattering of an electron onto hydrogen. The computed phase shifts are at least as
accurate as the best literature results. Both the infinite and finite proton mass cases are considered.
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I. INTRODUCTION

This paper introduces a method for evaluating the low-
energy scattering properties in three-body systems. By
combining the Lagrange-mesh method (LMM) in perimetric
coordinates [1–4] with the Kohn variational method in its
complex form [5–7], the S matrix of the elastic scattering of
a particle onto a two-body quantum system is obtained. This
complex matrix leads directly to the phase shift, and its evalu-
ation at several scattering energies also enables one to describe
resonances. Indeed, as resonances correspond to poles of the
S matrix, these poles can be determined by extrapolating the
S matrix to the complex plane [8].

The present approach is illustrated by considering the low-
energy S-wave scattering of an electron onto a hydrogen atom,
between the n1 = 1 and 2 ionization thresholds. This system
has been studied for decades until recently, and providing
highly accurate values of the elastic phase shifts and reso-
nance parameters at low scattering energies is still a scientific
challenge (see Refs. [9–18] and references therein).

The complex Kohn variational method was developed in
1987 by Miller and Jansen op de Haar [5] as an alternative
approach to the standard real Kohn variational principle [19].
It leads directly to the complex S matrix rather than to the real
K matrix. It presents the important advantage of eliminating
spurious singularities usually present in the real form of this
principle [5,20]. It is particularly relevant in the presence
of Coulomb interactions, and is applied in electron-molecule
as well as nuclear scattering calculations (see, for instance,
Refs. [7,14]).

The Lagrange-mesh method was introduced by Baye and
Heenen in 1986 [21]. It is a pseudovariational method present-
ing the advantage of being simple, fast, and often as accurate
as a purely variational method. Almost 25 years ago, the
Lagrange-mesh method in perimetric coordinates proved to be
successful at computing the bound states of several three-body
Coulomb systems, such as He, H−, Ps−, or H+

2 [1–3]. More
recently, by combining the Lagrange-mesh method and the
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complex scaling method (CSM) [22], highly accurate values
of the resonance parameters (energies and widths) of the S and
P states of He and Ps− have been obtained [23,24]. In addi-
tion, the resonance parameters of exotic atoms, namely He+ p̄
and He+π−, have also been obtained by this approach, for
several low values of the total angular momentum L [25,26].
However, it has failed to give satisfactory results for high
values of the angular momentum, in the relevant region where
the capture of the exotic particle occurs (see Refs. [25–27] and
references therein for more information).

The present paper is a natural extension of the Lagrange-
mesh method in perimetric coordinates. The combination with
the complex Kohn variational principle leads to the elastic
phase shifts, which are not directly accessible by means of
our complex scaling approach [23,24]. This paper also paves
the way for evaluating accurately resonance parameters in
exotic Coulomb atoms for relatively high values of the angular
momentum, as in Ref. [28], for instance.

The theoretical background is presented in Sec. II. After
a short description of the applied methodology, Sec. III re-
ports the computed phase shifts, as well as several resonance
energies and widths, for the singlet and triplet S states of the
hydrogen ion. A comparison with results obtained by applying
the complex scaling method is provided, following our previ-
ous work described in Ref. [23], as well as with results from
the literature. Both the infinite and finite proton mass cases are
considered. Section IV gives concluding remarks and perspec-
tives. Atomic units, in which h̄ = e = me = a0 = 1, are used
throughout the paper. All calculations have been performed in
double precision arithmetic on a standard workstation.

II. THEORY

A. Kohn variational principle

The nonrelativistic internal Hamiltonian describing a three-
body quantum system under Coulomb forces is

H = − 1

2m1
�r1 − 1

2m2
�r2 − 1

2m3
�r3

+ Z1Z2

r12
+ Z1Z3

r13
+ Z2Z3

r23
− Tc.m., (1)
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where the vectors r1, r2, and r3 refer to the positions of the
three particles; m1, m2, and m3 are the masses of the three
particles; Tc.m. is the center-of-mass kinetic energy; Z1, Z2, and
Z3 are the charges of the particles; and r12, r13, and r23 are the
interparticle distances.

In the present paper, we study the S-wave elastic phase
shifts of a bielectronic three-body system (Z2 = Z3 = −1,
m2 = m3 = 1) for singlet (σ = 0) and triplet (σ = 1) states,
between the n1 = 1 and 2 ionization threshold energies:

En1 = − Z2
1

2n2
1

μ12, (2)

where μ12 is the reduced mass between particles 1 and 2.
Although the formulation of the Kohn variational principle
is general (many-body systems involving open and closed
channels), we choose to restrict the theoretical background to
the single-channel case, which is relevant here.

The spatial wave function � of the system describing the
scattering of an electron onto a two-body system formed
by particle 1 and the other electron can be written as a
square-integrable contribution � complemented with asymp-
totic functions �1 and �2 [7]:

� = � + �1(x1, x2) + S̄ (k)�2(x1, x2) (3)

where S̄ (k) is an estimate of the S matrix. We shall see in
the end of this section that an improved estimation of the S
matrix, which we denote S (k), is provided by the complex
Kohn variational principle. The vectors x1 and x2 correspond
to the Jacobi coordinates defined as

x1 = r1 − r2, (4)

x2 = (1 − α)r1 + αr2 − r3, (5)

with α = m2/(m1 + m2). The angular momenta associated to
the Jacobi coordinates are denoted l1 and l2. As we consider
S states with energies comprised between the two first ioniza-
tion thresholds, l1 = l2 = 0. The element of volume in Jacobi
coordinates reads, after integrating over the angles,

dV = 16π2x2
1x2

2dx1dx2. (6)

The total wave function must be antisymmetric with respect
to the exchange of the two electrons. Indeed, there exist a
spatially symmetric singlet state (σ = 0) and a spatially an-
tisymmetric triplet state (σ = 1). By applying the operator
[1 + (−1)σ P23]/2, where P23 has the effect of exchanging
spatially particles 2 and 3, i.e., the electrons, the spatial wave
function can be properly antisymmetrized. The spatial wave
function of Eq. (3) is thus replaced by

�σ ≡ [� + (−1)σ �̃]/2, (7)

with �̃ = P23�. The square-integrable part of �σ is ex-
pressed as the linear combination of Nt basis functions,

�σ =
Nt∑

l=1

Clφ
σ
l , (8)

which are defined in Sec. II B. The asymptotic wave functions
read, for λ = 1, 2 (see Ref. [7]),

�σ
λ (x1, x2) = 1 + (−1)σ P23

8π

√
2kμ12,3

R10(x1)

kx2

× [iF0(kx2, η) + (−1)λ f (x2, a)G0(kx2, η)].

(9)

The normalization of the asymptotic wave functions is chosen
such that

〈
�σ

1

∣∣H − E
∣∣�σ

2

〉 − 〈
�σ

2

∣∣H − E
∣∣�σ

1

〉 = i. (10)

The functions F0 and G0 are the regular and irregular Coulomb
wave functions for zero angular momentum; R10 is a hy-
drogenic function with reduced mass μ12 = αm1, principal
quantum number n1 = 1, and zero angular momentum. In
addition, one has

1

μ12,3
= 1

m1 + m2
+ 1

m3
, (11)

k = √
2μ12,3(E − En1=1), (12)

and η = (Z1 + Z2)Z3μ12,3

k
, (13)

where E is the total energy of the three-body system. The
function f (x2, a) = 1 − e−ax2 , which depends on the param-
eter a, enforces the right behavior at the origin on G0. In
practice, a = k is chosen in this paper. In the case of the
scattering of an electron onto a hydrogen atom, η = 0, and the
Coulomb functions correspond to sine and cosine functions,
respectively.

The complex Kohn variational principle [5–7,19,20] states
that the S matrix at the energy E or, equivalently, wave vector
k, can be evaluated by

S (k) = S̄ (k) + i〈�σ |H − E |�σ 〉. (14)

The estimate S̄ (k) of the S matrix is determined by imposing
that the Schrödinger equation is fulfilled on the subspace of
dimension Nt + 1 spanned by the functions {φσ

l ,�σ
2 }, i.e.,

〈
φσ

l

∣∣H − E
∣∣�σ

〉 = 0
〈
�σ

2

∣∣H − E
∣∣�σ

〉 = 0 (15)

for l = 1, . . . , Nt . In the following, we use the notations

(HE )lm = 〈
φσ

l

∣∣H − E
∣∣φσ

m

〉
(16)

and
(
ωσ

λ

)
l = 〈

φσ
l

∣∣H − E
∣∣�σ

λ

〉
, (17)

where l, m = 1, . . . , Nt and λ = 1, 2. By expressing the wave
function �σ as its square-integrable and asymptotic contri-
butions [see Eqs. (8) and (9) respectively], the system of
Eqs. (15) becomes

HEC + ωσ
1 + S̄ (k)ωσ

2 = 0
(
ωσ

2

)T
C + 〈

�σ
2

∣∣H − E
∣∣�σ

1 + S̄ (k)�σ
2

〉 = 0, (18)

where C contains the expansion coefficients of Eq. (8). By
solving this system, one obtains a first estimate of the S
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matrix:

S̄ (k) =
〈
�σ

2

∣∣H − E
∣∣�σ

1

〉 − (
ωσ

2

)TH−1
E ωσ

1〈
�σ

2

∣∣H − E
∣∣�σ

2

〉 − (
ωσ

2

)TH−1
E ωσ

2

. (19)

By injecting Eq. (19) in Eq. (14), an improved estimation of
the S matrix, denoted S (k), is obtained. The elastic phase shift
δ0(k) is directly deduced from S (k) by

tan δ0(k) = i
1 − S (k)

1 + S (k)
. (20)

B. The Lagrange-mesh method

Following Refs. [1,23], the S-state square-integrable wave
function �σ is expressed in perimetric coordinates, which are
the set of three radial coordinates (x, y, z) depending on the
interparticle distances [29]:

x = r12 − r23 + r13

y = r12 + r23 − r13

z = −r12 + r23 + r13. (21)

The square-integrable wave function is expanded in a similar
way as in bound-state calculations [1]:

�σ (x, y, z) = 1

2

Nx∑
p=1

N∑
q=1

q−σ∑
r=1

Cpqr[Fpqr (x, y, z)

+ (−1)σ Fpqr (x, z, y)], (22)

where the functions Fpqr (x, y, z) read

Fpqr (x, y, z) = f (Nx )
p (x/hx ) f (N )

q (y/h) f (N )
r (z/h)

Npqr (1 + δqr )1/2
, (23)

and

Npqr = π

2

√
hxh2(hxxp + hyq)(hxxp + hzr )(hyq + hzr ). (24)

The quantities hx and h are scale parameters. The permuta-
tion symmetry with respect to the electrons imposes that the
numbers N of basis functions in the variables y and z are
the same, as well as their scale parameter h. As can be seen
from Eq. (21), the effect of P23 is indeed to exchange the
variables y and z. The total number of basis functions is given
by Nt = NxN[N + (−1)σ ]/2.

The Lagrange-Laguerre basis functions { f (ν)
l (ξ )}l=1,...,ν are

explicitly defined in Eq. (19) of Ref. [23], for instance. They
consist of a product between a polynomial of degree ν − 1
and an exponential. They verify the important property

f (ν)
l (ξm) = δlm√

λm
, (25)

where the {ξm}m=1,...,ν are the zeros of the Laguerre
polynomial of degree ν corresponding to the abscissas
of the Gauss quadrature associated to the mesh, while
{λm}m=1,...,ν are the corresponding weights. The LMM
[4] consists of evaluating approximately all Hamiltonian
matrix elements by means of the Gaussian quadrature as-
sociated to the three-dimensional Lagrange-Laguerre mesh
{(hxxp, hyq, hzr )}p=1,...,Nx ; q=1,...,N ; r=1,...,N . It leads to a diag-
onal potential matrix and a sparse Hamiltonian matrix. In

addition, the basis is orthonormal at the Gauss approximation.
Despite its simplicity and the approximate treatment of the
matrix elements, the LMM is often as accurate as a purely
variational method. A wave function similar to �σ (x, y, z) has
been successfully used to study the S-bound states of diverse
three-body systems (He, Ps−, and H+

2 , see Ref. [1]), as well as
the resonance states of He and Ps−, by combining the LMM
and the complex scaling method [23].

The element of volume in perimetric coordinates reads,
after integrating over the angles,

dV = π2

4
(x + y)(x + z)(y + z)dxdydz. (26)

The link between the radial Jacobi coordinates and the peri-
metric ones is given by

x1 = x + y

2
(27)

and

x2 = 1
2

√
α2(x + y)2 + 2α[yz − x(x + y + z)] + (x + z)2.

(28)

C. Resonance parameters

A resonance corresponds to a pole of the S matrix. To de-
termine this pole, we follow a procedure described in Ref. [8],
which consists of approximating the S matrix as a rational
function of the type

S (k) = 1 + ∑NP
n=1 ankn

1 + ∑NP
n=1(−1)nankn

. (29)

The complex coefficients an are obtained by equalizing the
S matrix computed by the Kohn variational principle and its
approximation (29). The poles of the S matrix correspond to
the roots of the denominator of Eq. (29). A pole corresponding
to a resonance remains stable with respect to an increase of the
number of interpolation points NP. By noting this pole kres, the
resonance energy Er and width � are then deduced from

Er − i
�

2
= k2

res

2μ12,3
+ En1=1. (30)

III. RESULTS

In this section, we present the phase shifts and the reso-
nance parameters related to the elastic scattering of an electron
onto a hydrogen atom (Z1 = 1). We consider the case in which
the proton is of infinite mass (m1 → ∞, α = 0), which we
note ∞H−, as well as the case in which m1 = 1836.152 673 43
(2018 CODATA recommended value [30]).

A. Methodology

The computation of the Hamiltonian matrix using the
Lagrange-mesh method is rather simple and described in
Refs. [1,2]. Considering a finite proton mass does not add any
difficulty to the treatment of the Hamiltonian matrix elements
of Eq. (16).

The computation of the hybrid vectors of Eq. (17) is
performed in perimetric coordinates. On one hand, in the in-
finite proton mass case, a three-dimensional Gauss-Laguerre
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TABLE I. Convergence of the phase shift [rad] as a function of the size of the Lagrange mesh, for ∞H−, at the energy E = −0.48 (k = 0.2).
The scale parameters are (hx, h) = (1.0, 1.3) for the singlet case and (1.2,1.5) for the triplet case. The regularization coefficient is a = 0.2.
Atomic units are used.

1S 3S

Nx N δ0(k) |1 − |S|2| δ0(k) |1 − |S|2|
10 20 2.0669710 3 × 10−8 −0.4240955 2 × 10−8

10 25 2.0669867 5 × 10−9 −0.4240879 8 × 10−9

10 30 2.0669921 3 × 10−10 −0.4240845 4 × 10−9

10 35 2.0669942 2 × 10−10 −0.4240827 3 × 10−9

15 35 2.0669941 2 × 10−10 −0.4240827 3 × 10−9

Converged 2.06699 −0.42408

quadrature is used. The number of points used for the quadra-
tures related to each radial perimetric coordinate is chosen as
about twice the number of basis functions of each coordinate
(typically, 30 to 80 points). The components of the hybrid
vectors have an absolute accuracy of 13 to 14 digits. On the
other hand, in the finite proton mass case, a combination of
Gauss-Legendre and Gauss-Laguerre quadratures is needed
to reach a satisfying absolute accuracy, of about seven sig-
nificant digits. The number of points used to integrate in each
of the three dimensions is comprised between 100 and 250.
This important difference of treatment may be explained by
considering the variable x2, which is a simple linear combina-
tion of the perimetric coordinates in the former case [namely,
x2 = r13 = (x + z)/2 for ∞H−], whereas it is much more
complicated in the latter [see Eq. (28)].

The matrix elements between asymptotic functions are
computed in Jacobi coordinates. In the infinite proton mass
case, all asymptotic matrix elements are analytical. In the
finite proton mass case, the computation of the unpermuted
asymptotic matrix elements remains analytical, but the per-
muted ones need a numerical evaluation since the permuted
Jacobi coordinates have a complicated expression:

P23x1 =
√

x2
2 + α2x2

1 + 2αx1x2u, (31)

P23x2 =
√

α2x2
2 + (1 − α2)2x2

1 + 2α(α2 − 1)x1x2u, (32)

where u = x1 · x2/(x1x2). A multipolar expansion of the
Coulomb potential is performed and the resulting integrals are
evaluated by means of Gaussian quadratures. This approach
leads to an absolute accuracy of at least ten significant digits
on the asymptotic matrix elements. A useful numerical check
is provided by the identity

〈�̃1|H − E |�2〉 − 〈�̃2|H − E |�1〉 = 0. (33)

Finally, to solve the system of Eqs. (15), we use the package
ILUPACK [31], which is suited for large symmetric sparse sys-
tems. The unitarity of the S matrix is used as a criterion of
convergence, as illustrated in Table I.

B. Phase shifts

Table I presents the convergence of the singlet and triplet
phase shifts of ∞H− with respect to an increase of the size
of the mesh, for k = 0.2. The deviation from unitarity of the
S matrix corresponding to each mesh size is displayed. The

values of the scale parameters h and hz as well as the regu-
larization coefficient a can be varied by about 10% without
affecting the converged results, which are accurate up to a
change of two units on the last displayed digit. The largest
considered mesh size is around Nx = 15 and N = 30–35. For
this size of the mesh, the calculation of the phase shift takes a
few minutes on a standard workstation.

Table II presents the converged singlet and triplet phase
shifts of ∞H−, for values of k ranging from 0.1 to 0.8 by
steps of 0.1. These phase shifts are accurate up to a change
of a few units on the last displayed digit. In all cases, the
convergence rate is similar to the one presented in Table I. The
converged value is reached around (Nx, N ) = (10, 35), and
the results are stable up to a change of about 10% of the scale
parameters or of the regularization coefficient a. However,
one should note that for the same mesh size the unitarity of
the S matrix is poorer as the energy gets closer to the n1 = 2

TABLE II. Singlet and triplet phase shifts [rad] for (Nx, N ) =
(10, 35) of ∞H−, for different values of the wave vector k (a = k).
Results are accurate up to a change of a few units on the last dis-
played digit. The error on the results of Ref. [14] is up to two units
on the fourth digit after the decimal point. Atomic units are used.

1S 3S

k E hx h δ0(k) hx h δ0(k)

0.1 −0.495 1.0 1.3 2.55374 1.2 1.5 −0.20303

Ref. [14] 2.55358 −0.20306
0.2 −0.480 1.0 1.3 2.06699 1.2 1.5 −0.42408

Ref. [16] 2.06699 −0.42409

Ref. [14] 2.06678 −0.42418
0.3 −0.455 1.0 1.3 1.69684 1.2 1.5 −0.64172

Ref. [14] 1.69816 −0.64184
0.4 −0.420 1.0 1.4 1.41557 1.2 1.6 −0.84735

Ref. [14] 1.41540 −0.84751
0.5 −0.375 1.0 1.4 1.20109 1.2 1.6 −1.03683

Ref. [14] 1.20094 −1.03705
0.6 −0.320 1.0 1.4 1.04113 1.2 1.6 −1.20839

Ref. [14] 1.04083 −1.20887
0.7 −0.255 1.2 1.4 0.93098 1.4 1.7 −1.36169

Ref. [14] 0.93111 −1.36209
0.8 −0.180 1.2 1.4 0.88773 1.4 1.7 −1.49725

Ref. [14] 0.88718 −1.49780
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FIG. 1. S-wave phase shift in the singlet case of e− +∞ H scatter-
ing as a function of the total energy E , below the n1 = 2 ionization
threshold. The points used for extracting the resonance parameters
are highlighted (see the discussion in the text).

ionization threshold. The two closed channels corresponding
to the n1 = 2 excited states of hydrogen become indeed more
and more important as the energy increases. By including
explicitly these two closed channels in the asymptotic part
of the wave function, the unitarity of the S matrix could be
probably enhanced close to the n1 = 2 ionization threshold.

A comparison with results obtained in 2001 by Bhatia
and Temkin [14] is provided in Table II. Their results being
accurate up to a change of two units on the fourth digit after
the decimal point, our results agree in most cases, except in
the singlet case at k = 0.3, remarkably. We believe there is
a small typo in this case, in Ref. [14]. Indeed, less accurate
results have been obtained by Schwartz in 1961, in his pio-
neering work about the electron-hydrogen scattering [9], and
the singlet-state result from Ref. [14] at k = 0.3 does not agree
with Schwartz’s, contrary to our results, which agree with
Schwartz’s in all cases. For k = 0.2, our results are compared
to the more accurate ones obtained in Ref. [16], and the
agreement is excellent.

Figure 1 illustrates the singlet-state phase shift computed
for an energy comprised between E = −0.165 (k ≈ 0.8185)
and the n1 = 2 ionization threshold (k ≈ 0.866). In the singlet
case, there are two resonances below this threshold. This
figure is very similar to Fig. 1 of Ref. [12]. The two resonances
clearly appear, the first one being wider than the second one.
The precise values of the resonance parameters are presented
in the next subsection.

Finally, Table III gathers the results for the hydrogen ion
with a finite proton mass. The mesh parameters and the regu-
larization coefficients are the same as for the infinite proton
mass case. Compared to this latter case, the phase shift is
systematically smaller. We could not compare our results with
other works accurate enough to assess the sensitivity of the
results with respect to the inclusion of a finite proton mass.
To our knowledge, the only phase shifts computed for a finite
proton mass are reported in Ref. [12], in which the tangents

TABLE III. Singlet and triplet phase shifts [rad] for (Nx, N ) =
(10, 35) of H−, for different values of the wave vector k (a = k, mp =
1836.152 673 43). Results are accurate up to a change of a few units
on the last displayed digit. The results of Ref. [12] are accurate up to
1%. Atomic units are used.

1S 3S

k hx h δ0(k) hx h δ0(k)

0.1 1.0 1.3 2.55329 1.2 1.5 −0.20318
0.2 1.0 1.3 2.06631 1.2 1.5 −0.42438
0.3 1.0 1.3 1.69608 1.2 1.5 −0.64215
0.4 1.0 1.4 1.41479 1.2 1.6 −0.84787
0.5 1.0 1.4 1.20034 1.2 1.6 −1.03743
0.6 1.0 1.4 1.04045 1.2 1.6 −1.20904
0.7 1.2 1.4 0.93042 1.4 1.7 −1.36237
0.8 1.2 1.4 0.88765 1.4 1.7 −1.49793
0.8325 1.2 1.4 1.05453 1.4 1.7 −1.53828

Ref. [12] 1.06 −
0.8366 1.2 1.4 1.62750 1.4 1.7 −1.54324

Ref. [12] 1.643 −

of the phase shifts are accurate up to a 1% error. In order to
provide a comparison with their results, we have considered
additional values of the wave vector, close to the resonance
energies, in Table III. Our results are about three orders of
magnitude more accurate.

In conclusion, the computed phase shifts have an accuracy
similar to the best ones reported in literature in the case of
an infinite proton mass, whereas it is greater by up to three
orders of magnitude in the finite proton mass case. This shows
the high accuracy obtained by combining the Lagrange-mesh
method and the complex Kohn variational method to compute
the S matrix.

C. Resonances

In this section, we extract the resonance parameters from
values of the S matrix computed at NP real energies. We check
the convergence of the resonance parameters with respect
to an increase of the number of extrapolation points NP, as

TABLE IV. Convergence of the resonance parameters [a.u.] for
the first singlet-state resonance of ∞H−, as a function of the number
of extrapolation points NP as well as the size of the mesh. The scale
parameters are (hx, h) = (1.2, 1.4).

NP Nx N Er �

5 10 25 −0.14877615703 1.7336721 × 10−3

7 10 25 −0.14877625498 1.7332404 × 10−3

9 10 25 −0.14877625497 1.7332405 × 10−3

11 10 25 −0.14877625497 1.7332405 × 10−3

15 25 −0.14877625581 1.7332398 × 10−3

20 25 −0.14877625582 1.7332398 × 10−3

20 35 −0.14877625345 1.7332353 × 10−3

20 40 −0.14877625360 1.7332369 × 10−3

20 45 −0.14877625413 1.7332368 × 10−3

Converged −0.148776254 1.733237 × 10−3
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TABLE V. Resonance parameters [a.u.] for the singlet and triplet resonant states of the hydrogen ion, with finite (H−) and infinite (∞H−)
proton mass. A comparison with results obtained by applying the CSM, as well as results from the literature, is provided. The optimal mesh
parameters are provided. Results are accurate up to a change of a few units on the last displayed digit.

Nx N hx h Er �

1S(1) H− Present 15 40 1.2 1.4 −0.148694751 1.730756 × 10−3

CSM 20 35 1.2 1.4 −0.148694751429 1.730755239 × 10−3

Ref. [17] −0.1486947513 1.7307552 × 10−3

Ref. [13] −0.148694747 1.730755 × 10−3

∞H− Present 15 40 1.2 1.4 −0.148776254 1.733237 × 10−3

CSM 20 35 1.2 1.4 −0.148776253939 1.733236366 × 10−3

Ref. [13] −0.14877625394 1.73323634 × 10−3

1S(2) H− Present 15 45 1.4 2.2 −0.1259514 9.03 × 10−5

CSM 25 50 1.8 3.5 −0.125951444687 9.0428294 × 10−5

Ref. [13] −0.125951444 9.0428 × 10−5

∞H− Present 15 45 1.4 2.2 −0.1260201 9.06 × 10−5

CSM 25 50 1.8 3.5 −0.126020063735 9.0529716 × 10−5

Ref. [13] −0.12602006374 9.052972 × 10−5

3S(1) H− Present 15 40 1.2 3.0 −0.1270342774 6.816 × 10−7

CSM 15 40 1.2 3.0 −0.127034277368 6.81613 × 10−7

Ref. [12] −0.12705 5.29 × 10−7

∞H− Present 15 40 1.2 3.0 −0.1271042116 6.843 × 10−7

CSM 15 40 1.2 3.0 −0.127104211642 6.84271 × 10−7

Ref. [12] −0.12710 5.29 × 10−7

well as to an increase of the size of the Lagrange mesh. The
sensitivity of the results with respect to a change of 5 to 10%
of the scale parameters and of the regularization coefficient is
also checked.

The procedure for checking the convergence with respect
to NP is as follows. We start with an interval of energy roughly
centered around the studied resonance energy, and having
the extension of a few times the width. We compute the S
matrix at NP equally spaced points belonging to the chosen
real-energy interval. By using the method shortly described in
Sec. II C, the resonance parameters are determined. We add
extrapolation points inside the interval as well as outside it
until the convergence is reached.

An example of such a convergence study is presented
in Table IV for the first singlet resonance state of ∞H−,
which appears in Fig. 1. The five extrapolation points (square
marks) used for obtaining the first line of Table IV, as well
as the four additional extrapolation points (triangle marks)
used to obtain the third line of Table IV, are highlighted
in Fig. 1. The obtained results reach an absolute accuracy
of about 10−10 for the first resonance, for which the initial
search interval is [−0.153,−0.145]. The regularization pa-
rameter a is equal to the mean wave vector along the chosen
interval.

Table V gathers converged results obtained for the reso-
nances of the singlet and triplet states of the hydrogen ion,
below the n1 = 2 threshold. The finite and infinite proton mass
cases are considered. The mesh parameters are reported in the
table. They are the same in both finite and infinite proton mass
cases, and the reached accuracies are of the same order of
magnitude. The absolute accuracy is about 10−8 for the 1S(2)
resonance, and 10−11 for the 3S(1) resonance.

We provide a comparison of these resonance parameters
with results obtained by applying the CSM on a Lagrange
mesh, following Ref. [23]. The scale parameters used in

the complex scaling method are the same as in the Kohn
method, except for the second singlet-state resonance, for
which (hx, h) = (1.8, 3.5). The CSM results have an absolute
accuracy of 10−13, i.e., being higher by two to five orders of
magnitude compared to the Kohn variational principle results.
There is a ten-digit agreement between the results obtained
with the two approaches. Note however that in the singlet
case for both our methods there is a quite important loss of
accuracy between the 1S(1) and 1S(2) resonance parameters,
for the same mesh sizes. We believe that by including ex-
plicitly the aforementioned closed channels in the asymptotic
expansion (see Sec. III B) one could improve the accuracy
of the 1S(2) resonance parameters. As far as the complex
scaling method is concerned, the number of basis functions
was significantly increased to reach a similar accuracy on both
singlet resonances.

Finally, an additional comparison with results from the
literature, reaching an absolute accuracy up to 10−12, is also
provided (see, e.g., Refs. [12,13,15,17,18]). The most ac-
curate results, obtained only in the singlet case and given
in Refs. [13,17], are also computed from the application
of the complex scaling method in perimetric coordinates.
Our infinite proton mass results match the ones reported in
Ref. [13]. In the finite proton mass case, our resonance pa-
rameters are consistent with the ones reported in Ref. [13]
(obtained perturbatively at first order) and [17] (computed
with mp = 1836.152 672 45, but this difference of mass does
not affect the displayed digits). In the triplet case, we com-
pare our results with the ones displayed in Ref. [12], which
reach an accuracy of about five significant digits. Again, these
results have been computed with a different proton mass
(mp = 1836.1515) from ours, but this difference is irrelevant
at their level of accuracy. Overall, even though the complex
scaling appears better suited for computing resonance param-
eters in H−, the present approach based on the computation

052818-6



LOW-ENERGY S-WAVE SCATTERING OF H + e− BY … PHYSICAL REVIEW A 109, 052818 (2024)

of the S matrix reaches an absolute accuracy up to 10−11,
which makes it relevant when the complex scaling fails to give
accurate results.

IV. CONCLUSION

In this paper, we showed that combining the Lagrange-
mesh method in perimetric coordinates and the complex
Kohn variational method is appropriate for computing ac-
curately the S matrix describing an elastic scattering in
three-body Coulomb systems. We illustrated this approach
by considering the S-wave scattering of an electron onto
a hydrogen atom, between the n1 = 1 and 2 ionization
thresholds.

On one hand, we showed that the obtained elastic phase
shifts are as accurate as the most accurate results presented
in the literature with six significant digits, when considering
an infinite proton mass. While most studies are restricted to
the infinite proton mass case, the finite proton mass one is

considered here as well, and the obtained phase shifts are as
accurate as in the infinite proton mass case.

On the other hand, the evaluation of the S matrix at real
energies can be used to determine its complex poles, and
hence the resonance parameters associated to the scattering.
The obtained resonance parameters have an absolute accuracy
comprised between 10−8 and 10−11.

As future prospects, the investigation of resonances in ex-
otic heliumlike atoms could be conducted by means of the
current approach. In particular, antiprotonic helium is cur-
rently under study.
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