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The nonlocal resonance models for nuclear dynamics of low-energy electron-molecule collisions are usually
constructed by fitting necessary quantities to the potential energy curves (surfaces) and the eigenphase sums
obtained from fixed-nuclei quantum chemistry and scattering calculations. Moreover, the fitting functions have
to be chosen in such a way to be able to evaluate the Hilbert transform, which appears in the nonlocal potential,
in a closed form. This procedure can be rather elaborate for polyatomic molecules when more than one degree of
freedom for nuclear motion is considered. In this paper we propose an alternative, fitting-free way of constructing
these models directly from the fixed-nuclei level-shift function that is completely determined by the choice of
the discrete state defining the nonlocal resonance model. The Hilbert transform is evaluated numerically using
the fast Fourier transform. Using the numerically solvable two-dimensional model of resonant electron-molecule
collisions, we demonstrate that the results of nonlocal models constructed using the proposed approach agree
with the exact ones up to contributions from background scattering, which can often be neglected for inelastic
processes. For completeness, we also compare the results of the proposed method with the usual fitting approach,
showing that the proposed fitting-free method of construction of the nonlocal resonance models is more reliable
and accurate.

DOI: 10.1103/PhysRevA.109.052817

I. INTRODUCTION

In low-energy collisions of electrons with molecules, the
electron is often captured by the molecule into a quasi-
bound-state, resulting in the efficient energy transfer between
electronic and nuclear motion [1,2], leading to, e.g., inelastic
processes of vibrational excitation of the molecule

AB(νi ) + e− → AB− → AB(ν f ) + e− (1)

and dissociative electron attachment

AB(νi ) + e− → AB− → A− + B, (2)

where A and B stand for either atoms in diatomic molecules
or suitable parts of a polyatomic molecule. As a proper treat-
ment of nuclear dynamics plays an important role in these
processes, their theoretical description is usually based on
the construction of an effective model for nuclear dynamics
based on the data from the fixed-nuclei electron-scattering
calculations [2,3]. Several approaches for treating the nuclear
dynamics have been proposed, e.g., the local complex poten-
tial approximation [4,5] or the R-matrix method [6]. Here
we mainly discuss the nonlocal resonance model (NRM),
which is more rigorous than the local approach [7,8] and
is based on the projection-operator formalism [5], originally
developed for nuclear reactions by Feshbach [9,10] and later
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adapted to electron-molecule collisions [11–15]. The nonlo-
cal theory is necessary to properly describe processes where
threshold effects play an important role [5,16]. It has been
applied to many diatomic molecules [5,17] and also to poly-
atomic molecules considering only some vibrational degrees
of freedom [18–20,22]. Although recently the full vibrational
dynamics of the CO2 molecule has been treated with this
approach [23–25], the resulting model fitted to the ab initio
data is rather complicated, and a new fitting-free approach to
construct such models would be quite advantageous.

The nonlocal theory is based on a suitable choice of one
or more discrete states and the corresponding separation of
the electronic Hilbert space into the discrete-state (resonant)
and background part. The nuclear dynamics is then solved
after projection onto the discrete-state part to obtain the cross
sections for the processes (1) and (2). However, the nonlocal
models have been directly constructed using an explicitly
chosen discrete state only in a few cases [26–28] because of
the difficulties with the construction of the background part of
the electronic basis and numerical evaluation of the nonlocal
potential via the Hilbert transform which appears in the effec-
tive equation describing the nuclear dynamics. Berman et al.
[26] calculated the discrete-state energy, resonance width, and
level-shift function from the first principles for the 2�u

+ res-
onance in electron-molecule scattering and then fitted these
functions to obtain the discrete-state–continuum coupling as a
suitable function of energy and internuclear distance which
enabled them to treat the Hilbert transform exactly [27].
Houfek et al. [29] proposed a simple two-dimensional model
of electron-molecule collisions for testing various approxima-
tions used to treat the nuclear dynamics of these collisions
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and constructed the nonlocal model starting with a discrete
state and evaluating all necessary quantities, including back-
ground contributions, numerically [28]. Unfortunately, this
direct approach is quite difficult to use for many-electron
molecules. Therefore, the nonlocal models have usually been
constructed by fitting the potential energy curves (surfaces)
and the eigenphase sums obtained from fixed-nuclei quantum
chemistry and scattering calculations. The model functions
are often chosen in such a way as to evaluate the Hilbert
transform, which appears in the nonlocal potential, in a closed
form (see [5] and references therein).

Here we propose an alternative, fitting-free way of
constructing the nonlocal models directly from ab initio
electron-scattering calculations without the need to find the
background scattering states. Such models do not allow the
evaluation of the Hilbert transform in the nonlocal potential
in a closed form, but we show how it can be evaluated nu-
merically using the fast Fourier transform. We demonstrate
the applicability of this approach within the two-dimensional
models for three diatomic molecules and compare it with
constructing the nonlocal models based on the fitting of phase
shifts or eigenphase sums.

II. THEORY

It is difficult to obtain the converged numerical results
for real molecules even in the case of the smallest neu-
tral molecule H2 [26,30]. To compare various methods of
construction of the NRM, we use instead a simple two-
dimensional toy model of the electron-molecule interactions
[29], which can be solved exactly numerically without any
approximations that are necessary for real systems. Note that
it is only a toy model, not aimed at a comparison with
the experiment. However, it can be used to probe various
approximations of the resonant nuclear dynamics in electron-
molecule collisions. In this section we briefly introduce this
two-dimensional model and the key concepts of the nonlocal
discrete-state-in-continuum theory. We also discuss the nu-
merical evaluation of the Hilbert transform.

A. Two-dimensional model

The Hamiltonian of the two-dimensional model is given by

H = TR + Tr + V (R, r), (3)

V (R, r) = V0(R) + l (l + 1)

2r2
+ Vint (R, r), (4)

where

TR = − 1

2μ

∂2

∂R2
, Tr = −1

2

∂2

∂r2
(5)

are nuclear and electronic kinetic energy operators, with μ

the reduced mass of the nuclei of the modeled diatomic
molecule. Potential energy V0(R) drives the vibrational mo-
tion of the neutral molecule and the other two terms in (4)
reproduce the resonant behavior of the molecular negative ion.

A detailed formulation of the dynamics of collision pro-
cesses (1) and (2) within this model, its numerical solution,
and calculation of the cross sections for two specific models
for molecules N2 and NO can be found in [29]. Both potentials

TABLE I. Parameters of the two-dimensional models [29]. All
values are in atomic units.

Parameter N2 NO

μ 12766.36 13614.16
l 2 (d wave) 1 (p wave)
D0 0.75102 0.2363
α0 1.15350 1.571
R0 2.01943 2.157
λ∞ 6.21066 6.367
λ1 1.05708 5.0
Rλ −27.9833 2.0843
λc 5.38022 6.05
Rc 2.405 2.285
αc 0.4 1.0

V0(R) and Vint (R, r) for these two models are of the same form

V0(R) = D0(e−2α0(R−R0 ) − 2e−α0(R−R0 ) ), (6)

Vint (R, r) = −λ(R)e−αcr2
, (7)

where λ(R) is given by

λ(R) = λ∞ + λ0

1 + eλ1(R−Rλ )
, (8)

λ0 = (λc − λ∞)(1 + eλ1(Rc−Rλ ) ). (9)

All parameters for the N2 and NO models are summarized in
Table I.

The potentials of the third model for the O2 molecule differ
from the previous two because the simple functions used for
N2-like and NO-like models are not suitable to imitate the
potential energy curves of the real O2 system as obtained, for
example, in [31]. The neutral potential energy V0(R) is com-
posed of two parts: Vwell(R) describing the well in the vicinity
of the energy minimum around R0 and Vlr (R) describing the
long-range behavior. The switching functions θi(R) enable a
smooth transition between the two terms:

V0(R) = Vwell(R)θ1(R) + Vlr (R)θ2(R),

Vwell(R) = −D0(1 + αξ + β1ξ
2 + β2ξ

3)e−αξ ,

ξ = R − R0,

Vlr (R) = ω1

R4
+ ω2

R6
,

θi(R) = 1
2 {1 − tanh[ai(ξi + ebiξi − 1)]},

ξi = (−1)ci (R − Ri0). (10)

Although the parameters of these functions are determined
by a least-squares fit to the ab initio data obtained in [31],
we should note that it is not important how well they repro-
duce the potential energy curves of the real system as the
two-dimensional model is considered to be only a toy model,
not determined for direct comparison with experiment. The
values of all O2-like model parameters are listed in Table II to
the precision needed to reproduce our results. The interaction
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TABLE II. Parameters of the O2 neutral potential energy curve.
All values are in atomic units.

Parameter Value Parameter Value

D0 0.23178 R10 4.25451
α 1.96203 a1 0.589844
R0 2.29989 b1 3.19454
β1 −0.197253 c1 0.0
β2 −0.453587 R20 2.632224
ω1 −1.263645 a2 0.270386
ω2 28.9218 b2 2.55552

c2 1.0

potential differs in the choice of the function λ(R),

λ(R) = λ∞ +
2∑

i=1

λ0i

1 + eλ1i (R−Rλi )
, (11)

the parameters of which are in Table III. The resulting two-
dimensional potential for the O2-like model is shown in
Fig. 1.

B. Discrete-state-in-continuum theory
and nonlocal resonance models

The discrete-state-in-continuum theory [5,9,10], on which
the construction of nonlocal resonance models is based, is a
framework for studying nuclear dynamics in collision pro-
cesses like (1) and (2). For simplicity, we formulate the theory
only for the two-dimensional (2D) model described above; for
a more general discussion of application to negative molecular
ions see, for example, [5,32].

Within the discrete-state-in-continuum approach, it is as-
sumed that the incident electron gets trapped in a discrete
(often resonant) state |φd〉, forming a metastable molecular
anion. The description of the dynamics is based on the Fes-
hbach projection-operator approach [9,10], the main idea of
which lies in the separation of the electronic Hilbert space into
the resonant and the background parts, using the projection
operators defined by the discrete state

Q = |φd〉 〈φd | , (12)

P = 1 − Q. (13)

In the background part of the electronic Hilbert space, we
can take as a basis the outgoing background scattering states
φε which are orthogonal to the discrete state and solve the

TABLE III. Parameters of the O2-like two-dimensional model.
All values are in atomic units.

Parameter Value Parameter Value

μ 14682.6 l 2 (d wave)
λ∞ 1.9792 αc 0.133
λ01 −38.9401 λ02 0.230156
λ11 1.63986 λ12 1.4806
Rλ1 −0.448295 Rλ2 4.46478

FIG. 1. Two-dimensional potential of the O2-like model.

equation

PHelP |φε〉 = [V0(R) + ε] |φε〉 , (14)

where Hel is the electronic Hamiltonian, defined within the
two-dimensional model as

Hel = Tr + V (R, r). (15)

Once a suitable discrete state |φd〉 is chosen (see [28] for a
detailed discussion) we can define the matrix elements of the
electronic Hamiltonian

Vd (R) = 〈φd |Hel|φd〉 , (16)

Vdε(R) = 〈φd |Hel|φε〉 , (17)

which are, together with the neutral molecule potential energy
function V0(R), the main building blocks of nonlocal reso-
nance models.

In the electron-molecule collision processes, the initial vi-
brational state ηνi (R) with energy Eνi is given by

[TR + V0(R)]ηνi (R) = Eνiηνi (R). (18)

The electron arriving with energy εi yields the total energy
E = Eνi + εi. The nuclear wave function �d (R) correspond-
ing to the discrete-state part of the Hilbert space can be
obtained by solving the equation [28]

[E − TR − Vd (R)]�d (R) −
∫

dR′F (E , R, R′)�d (R′)

= Vdεi (R)ηνi (R). (19)

The interaction with the electronic continuum is effectively
described by the complex, nonlocal, and energy-dependent
potential

F (E , R, R′) =
∫

dε′ Vdε′ (R)V ∗
dε′ (R′)

E − TR − V0 − ε′ + iη
. (20)

For a practical evaluation, it is useful to expand the Green’s
function in F (E , R, R′) into the vibrational states ην (R) of the
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neutral molecule given by (18). This expansion can be written
as

F (E , R, R′) =
∑

ν

ην (R)F̃ (εν, R, R′)η∗
ν (R′)

=
∑

ν

ην (R)

(
�̃(εν, R, R′)

− i

2
�̃(εν, R, R′)

)
η∗

ν (R′), (21)

where εν = E − Eν is the virtual electron energy correspond-
ing to the molecule in the vibrational state ην (R).

From Eqs. (20) and (21) we can see that

F̃ (ε, R, R′) =
∫

dε′ Vdε′ (R)V ∗
dε′ (R′)

ε − ε′ + iη
, (22)

which can be further rewritten with the Cauchy principal value

F̃ (ε, R, R′) = P.V.

∫
dε′ γ (ε′, R, R′)

ε − ε′ − iπγ (ε, R, R′),

(23)
where we also introduced the following notation for simplifi-
cation:

γ (ε, R, R′) = 2πVdε(R)V ∗
dε(R′). (24)

For the actual calculations, the real and imaginary parts of
F̃ (ε, R, R′) for complex Vdε(R) can be expressed as

�̃(ε, R, R′) = Re[F̃ (ε, R, R′)]

= 1

2π
P.V.

∫
dε′ Re[γ (ε′, R, R′)]

ε − ε′

+ 1

2
Im[γ (ε, R, R′)] (25)

and

�̃(ε, R, R′) = −2i Im[F̃ (ε, R, R′)]

= Re[γ (ε, R, R′)]

− 1

π
P.V.

∫
dε′ Im[γ (ε′, R, R′)]

ε − ε′ , (26)

where P.V. denotes the Cauchy principal value. If γ (ε, R, R′)
is real, the functions �̃(ε, R, R′) and �̃(ε, R, R′) reduce to the
usual, simpler form

�̃(ε, R, R′) = 1

2π
P.V.

∫
dε′ �̃(ε′, R, R′)

ε − ε′ , (27)

�̃(ε, R, R′) = 2πVdε(R)V ∗
dε(R′). (28)

Once Eq. (19) is solved for the discrete-state part �d (R) of
the nuclear wave function, we can determine the contribution
corresponding to the cross sections for processes (1) and (2)
using

σνiν f (ε) = 4π3

k2
i

|〈ην f |Vdε f |�d〉|2, (29)

σDA = 2π2

k2
i

K

μ
lim

R→∞
|�d (R)|2, (30)

where ki = √
2εi is the momentum corresponding to energy

εi of the incoming electron, ε f is the energy of the outgoing

electron, and K is the relative momentum of the outgoing nu-
clei in the dissociative attachment (DA) channel with energy
E − Vd (R)|R→∞ = K2/2μ.

C. Numerical evaluation of the Hilbert transform

The Hilbert transform in Eqs. (25)–(27) is usually evalu-
ated in a closed form if Vdε(R) or �(ε, R) are chosen to be
of a suitable form, as in Eq. (46), when a fitting procedure is
used to construct the nonlocal model. However, in a simple
form, the analytic ansatz may be too restrictive to obtain a
reasonable fit, and adding too many terms leads to ambiguities
and makes the fitting procedure very tedious, especially in the
attempts to generalize the approach to larger molecules.

One can alternatively evaluate the Hilbert transform di-
rectly using the Fourier transform, exploiting a simple relation
between these two transforms. For its derivation, we use the
definitions of the Fourier transform and its inverse

F[ f ](t ) =
∫ ∞

−∞
f (ε)e−iεt dε, (31)

F−1[ f ](ε) = 1

2π

∫ ∞

−∞
f (t )eiεt dt (32)

and of the Hilbert transform

H[ f ](ε) = 1

π
P.V.

∫ ∞

−∞

f (ε′)
ε − ε′ dε′ = 1

π
[g ∗ f ](ε), (33)

where g ∗ f denotes the convolution of the function g(ε) =
1/ε with f (ε). Applying the Fourier transform to the Hilbert
transform of the function f (ε) and using the convolution
theorem yields

F[H[ f ]](t ) = (−i sgnt )F[ f ](t ) = h(t ) (34)

since the Fourier transform (given as a principal value inte-
gral) of the function g(ε) is given by the signum function
as −iπ sgnt . By taking the inverse Fourier transform of the
function h(t ), we finally get

H[ f ](ε) = F−1[h](ε). (35)

This rather simplified derivation provides a particularly valu-
able way of evaluating the Hilbert transform that is commonly
used for its numerical evaluation using the fast Fourier trans-
form. A more detailed discussion can be found in [33] and
references therein.

Using Eqs. (34) and (35), the function �̃(ε, R, R′), given as
a Hilbert transform in (27) up to the factor 1

2 , can be evaluated
applying the Fourier transform only. For each internuclear
distance R and R′, we calculate first the function

h̃(t ) = −i sgnt
∫ ∞

−∞
�̃(ε, R, R′)e−iεt dε, (36)

where �̃(ε, R, R′) = 0 for ε < 0, and then �̃(ε, R, R′) is given
by the inverse Fourier transform

�̃(ε, R, R′) = 1

2
F−1[h̃](ε) = 1

4π

∫ ∞

−∞
h̃(t )eiεt dt . (37)

For simplicity, we restricted the example to real Vdε(R). Ap-
plication to the general case of complex Vdε(R) in Eqs. (25)
and (26) is straightforward.
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III. CONSTRUCTION OF NONLOCAL
RESONANCE MODELS

In this section we define two kinds of discrete state φd that
we use to construct the nonlocal resonance models. Then we
formulate the proposed method of obtaining the discrete-state-
continuum coupling from an ab initio level-shift function.
Finally, we summarize the usual process of NRM construction
by fitting, as we compare it later with the method introduced
herein.

A. Choice of discrete state

To construct nonlocal models in an ab initio way, one
has to choose the discrete state φd . When the validity of the
nonlocal approach was tested within the 2D model, several
different discrete states φd were discussed in [28]. Here we use
two of those discrete states that sufficiently illustrate various
constructions of the nonlocal models.

The first choice is a constant discrete state independent of
the internuclear distance. It is chosen as the electronic bound
state in the limit R → ∞, i.e., the solution of the equation(

Tr + l (l + 1)

2r2
+ Vb(r)

)
φconst

d (r) = −EEAφconst
d (r), (38)

where the potential

Vb(r) = lim
R→∞

Vint (R, r) (39)

supports one electronic bound state and EEA is the electron
affinity of the atomic anion. This will be referred to as the
constant choice of the discrete state.

The second choice is a discrete state chosen as the lowest-
lying bound state of a modified electronic Hamiltonian (15)
where the function λ(R) is changed in such a way that the
resulting potential supports one bound electronic state for all
internuclear distances. Thus the discrete state in this case is
the solution of the equation(

Tr + l (l + 1)

2r2
− λspec(R)e−αr2

)
φ

spec
d (r) = Eφ

spec
d (r), (40)

where the function λspec(R) takes the form

λspec(R) = λ∞ + λ−∞ − λ∞
1 + ecd (R−Rd )

. (41)

Such a discrete state will be identified by the choice of param-
eters λ−∞, cd , and Rd . In contrast to the constant choice, this
discrete state is more compact and smoothly varying with R.
This will be referred to as the special choice of the discrete
state.

B. Construction from the ab initio level shift

Direct ab initio evaluation of the coupling elements Vdε(R)
defined by (17) is difficult because of the necessity of finding
the background scattering states (14) orthogonal to the dis-
crete state φd . Therefore, the determination of Vdε(R) for real
systems has usually been based on fitting the eigenphase sums
obtained from the fixed-nuclei electron scattering calculations
as described in the next section. If a nonlocal model is not
built directly from a specific discrete state φd , the background
contribution is not uniquely determined and its energy depen-
dence during the fitting procedure has to be assumed. To avoid

this ambiguity, we propose to determine the coupling Vdε(R)
from the complex energy-dependent function

F (ε, R) = �(ε, R) − i

2
�(ε, R), (42)

which is the fixed-nuclei counterpart of the nonlocal potential
F (E , R, R′) and can be obtained in the following way.

When solving the fixed-nuclei electron scattering, we can
express the electronic Hamiltonian in the basis consisting
of the discrete state φd and the complementary background
scattering states φε as the matrix

Hel =

⎛
⎜⎜⎜⎝

Vd (R) · · · Vdε(R) · · ·
...

. . .

V ∗
dε(R) V0(R) + ε

...
. . .

⎞
⎟⎟⎟⎠.

The discrete-state matrix element of the corresponding
Green’s function G+(ε) = (ε − Hel + iη)−1 is then given by
the Schur complement [34], i.e.,

〈φd|G+(ε)|φd〉 = [ε − Vd (R) − F (ε, R)]−1, (43)

where

F (ε, R) =
∫

dε′ Vdε′ (R)V ∗
dε′ (R)

E − V0(R) − ε′ + iη
.

Expressing F (ε, R) from (43), we get

F (ε, R) = ε − Vd (R) − 1

〈φd|G+(ε)|φd〉 . (44)

Thus, if one could somehow calculate the matrix element
〈φd|G+(ε)|φd〉, the resonance-width function �(ε, R), given
up to a factor as the imaginary part of F (ε, R) in (42), can

FIG. 2. Structure of the F (E , R, R′) evaluation from Vdε (R) pre-
calculated on an ε-R grid.
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(a)

(b)

FIG. 3. Convergence of the cross sections with (a) the integration
range Em and (b) the energy discretization step �E of the Hilbert
transform grid. Results for the spec1 discrete state are compared
with the exact results calculated from the NO-like two-dimensional
model, using (a) �E = 10 mhartree and (b) Em = 30 hartree.

be used to determine the discrete-state-continuum coupling
Vdε(R) [compare with (28)] as

Vdε(R) =
√

�(ε, R)

2π
. (45)

In contrast to the original definition (17), Vdε(R) given by (45)
is always real, thus losing some information about the relative
phase between Vdε(R) and Vdε(R′) that could be important in
(20). In models of real systems, it is usually assumed that this
relative phase can be neglected [32]. As shown below, in all
our studied model cases, its influence on the results seems to
be insignificant.

Although the evaluation of 〈φd|G+(ε)|φd〉 can be nontrivial
in real many-electron systems, it is in principle possible, for
example, in the R-matrix approach where the Green’s func-
tion G+(ε) can be expressed using the R-matrix energies and
states. Thus, in this way, the determination of the background
electronic states φε can be avoided completely.

FIG. 4. Potential energy curves of the NO-like model: the neutral
potential V0(R), the negative ion resonance Vion(R), and the resonance
width (shown by the shaded area) together with the discrete-state
potentials Vd (R) for the constant and three special choices of the
discrete state.

C. Construction by fitting

For completeness, we describe here also a usual way of
constructing the nonlocal resonance models by fitting. During
this procedure, the functions V0(R), Vd (R), and Vdε(R) are
assumed to have a certain dependence on internuclear distance
and energy with several unknown parameters.

The neutral potential V0(R) usually comes from quantum
chemistry calculations and is either interpolated or fitted with
a suitable function. Here we use the potential V0(R) as it is
defined within the two-dimensional models.

A common choice [8] of the functional form of Vdε(R) is

Vdε(R) = εα/2
n∑

i=1

Ai(R)e−Bi (R)ε, (46)

with α = l + 1
2 , for which one can evaluate the Hilbert trans-

form in Eq. (27) in a closed form [7]. The functions Ai(R) and
Bi(R) are usually determined by fitting the eigenphase sums
obtained from fixed-nuclei electron scattering calculations by
the generalized Breit-Wigner formula

δ(ε, R) = − arctan

(
�̃(ε, R)/2

E − Vd (R) − �̃(ε, R) + V0(R)

)

+ δbg(ε, R). (47)

For simplicity, we take the background contribution to the
eigenphase sums in a simple linear form

δbg(ε, R) = a(R)ε + b(R).

The discrete-state potential Vd (R) that enters the formula
(47) can be fitted together with functions Ai(R) and Bi(R)
assuming, for example, the Morse potential form and ensuring
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FIG. 5. Fixed-nuclei level-shift functions �(ε, R) and resonance widths �(ε, R) for all choices of the discrete state for NO.

the proper asymptotic behavior

Vd (R) −−−→
R→∞

Vion(R)

for large internuclear distances R where it corresponds to the
bound anion state. If there is a clear resonance in the system,
one can alternatively use the resonance energy Eres(R), if it is
known from fixed-nuclei scattering calculations, to determine
the discrete-state potential directly using the relation

Vd (R) = V0(R) + Eres(R) − �(Eres(R), R). (48)

IV. CALCULATIONS AND RESULTS

We use three two-dimensional (N2-like, NO-like, and O2-
like) models to compare three ways of NRM construction.
One way is to directly calculate the discrete-state–continuum
coupling Vdε(R) from the background scattering states using
the definition (17) and all other quantities to verify the viabil-
ity of the numerical evaluation of the Hilbert transform. The
second way is to determine the ab initio level-shift function
F (ε, R) from the formula (44) to test the proposed method.
The third way is to calculate the fixed-nuclei scattering phase
shifts δ(ε, R) to serve as the input data that can be fitted by
(47), which is the method that has been mostly used in the
calculations for real systems.

In our calculations, the functions Vdε(R) and F (ε, R) are
precalculated on an energy and internuclear distance grid. The
properties of this grid have to be chosen properly to achieve
the convergence of the resulting cross sections, as discussed
below.

The direct calculation of Vdε(R) consists of finding the
background scattering states defined in Eq. (14) and direct

evaluation of the matrix elements in Eq. (17). The details are
described in [28].

The fixed-nuclei level-shift function F (ε, R) is calculated
directly from Eq. (44). For the given discrete state φd (r; R),
the matrix element 〈φd |G+(ε)|φd〉 is calculated by projecting
the discrete state to |ξ 〉, computed as the solution of the
Schrödinger equation

(ε − Hel ) |ξ 〉 = |φd〉 (49)

that is solved by employing the numerical grid method with
exterior complex scaling ensuring the outgoing boundary
conditions as introduced in [35]. The discrete-state potential
Vd (R) is calculated from Eq. (16).

In the expansion in Eq. (21), F̃ (εν, R, R′) is evaluated at en-
ergies given by εν = E − Eν which do not generally coincide
with the energy grid suitable for the fast Fourier transform on
which Vdε(R) is precalculated. For this reason, the values of
F̃ (εν, R, R′) must be interpolated in energy. The procedure of
the full F (E , R, R′) evaluation is outlined in Fig. 2.

These calculations were performed for each model for a
constant discrete state and one or more special discrete states.

A. Convergence of the evaluation of the Hilbert transform

Before we compare results for nonlocal resonance models
constructed in different ways, we briefly discuss the conver-
gence of the proposed method of evaluation of the Hilbert
transform using the fast Fourier transform. We limit the dis-
cussion to only the NO-like model. The results are similar for
other models and we show them in the Supplemental Material
[36].
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FIG. 6. Vibrational excitation cross section for all choices of the discrete state for NO.

For the constant discrete state, the discrete-state-continuum
coupling Vdε(R) is relatively compact in energy [compare the
resonance width functions �(ε, R) in Fig. 5 shown for differ-
ent discrete states below] and integration up to 10 a.u. proved
sufficient to achieve convergence. In the case of the special
discrete states as λ−∞ increases, φd becomes more and more
compact while its energy Vd (R) increases. Because of that,
Vdε(R) decays slowly in energy and one needs to integrate to
high energies to get accurate �(ε, R). For example, to achieve
convergence for the special discrete state defined by the pa-
rameters λ−∞ = 8, c = 1.8, and Rd = 3.0, it is necessary to
integrate up to 30 a.u. Otherwise, the �(ε, R) function is too
small, resulting in the wrong positions of the peaks in the
vibrational excitation cross section, as can be observed in
Fig. 3(a). For the most compact discrete state used here for
the NO-like model with λ−∞ = 15, it is necessary to integrate
even up to 200 a.u. Such large integration ranges can be a
problem in the calculations for real systems, as direct evalua-
tion of Vdε(R) or F (ε, R) to such energies may be difficult and
impractical. However, one can circumvent this, for example,
by splitting �(ε, R) into two terms: the long-range envelope,
the Hilbert transform of which is known [such as in Eq. (46)],
and the short-range deviation, the Hilbert transform of which
can be calculated numerically, supposedly on a much smaller
energy range.

Because of the smoothness of the Hamiltonian and the
wave functions, the coupling Vdε(R) decays exponentially
with energy and is therefore easily extrapolated. In a real
system, the presence of, e.g., Coulomb cusps can lead to a
different rate of decay. In the case of the NO-like model, it
was sufficient to precalculate F (ε, R) only to 10 a.u. for all

choices of the discrete state and then extrapolate up to 200
a.u.

The shape of the lower-energy peaks, on the other hand, is
influenced by the discretization step of the energy grid �E , as
illustrated in Fig. 3(b). In this case, the issue is the insufficient
sampling of �(ε, R) at low energies, as it changes rapidly up
to approximately 0.025 a.u. (approximately 0.7 eV). This in-
accuracy can be removed using a better interpolation method
or, ideally, a better sampling.

For all subsequent cross sections, we show converged re-
sults obtained with the optimal parameters of the energy grid
for evaluation of the Hilbert transform.

B. Testing a different approach to NRM construction
using F(ε, R)

To test the construction of the nonlocal models from
the fixed-nuclei level-shift function F (ε, R) calculated as in
Eq. (44), we use various definitions of the discrete states as
described in Sec. III A and apply the procedure described
in Sec. III B to obtain nonlocal models for all three two-
dimensional models (N2, NO, and O2) specified in Sec. II A.
The resulting cross sections are then compared with the exact
ones obtained by the numerical solution of the full 2D models
and also with the cross sections determined within the nonlo-
cal models constructed directly from the matrix elements (16)
and (17) including the complex phase.

As shown in [28] and also in the results below, the NRM
based on the constant discrete state gives almost perfect re-
sults for inelastic processes for N2-like and NO-like models,
but there is a significant background contribution in the elastic
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FIG. 7. Dependence of the elastic cross section on the choice of
discrete state, compared with the exact cross section calculated from
the NO-like two-dimensional model.

cross sections. These background contributions can be almost
eliminated by choosing more-compact R-dependent discrete
states such as the special discrete states described in Sec. III A
(see [28] for more details where this effect is shown for the
F2-like model).

Here we demonstrate the elimination of the background
contribution in the case of the NO-like and O2-like models,
for which we construct three and two special discrete states,
respectively, each differing in the value of λ−∞, making them
more and more compact. The parameters c and Rd are kept
constant and chosen in such a way as to provide a smooth
transition of all chosen compact discrete states at small in-
ternuclear distances to the electronic bound state in the limit
R → ∞.

Figure 4 shows the potential energy curves for the NO-
like model with the corresponding discrete-state potentials
Vd (R). The parameters defining the discrete states are λ−∞ =
8 (denoted by spec1), λ−∞ = 10 (denoted by spec2), and
λ−∞ = 15 (denoted by spec3), with common values c = 1.8
and Rd = 3.0. Although the discrete-state potentials Vd (R)
and also corresponding fixed-nuclei resonance widths �(ε, R)
and level-shift functions �(ε, R) shown in Fig. 5 differ
rather significantly, the changes in the inelastic cross sec-
tions are negligible, as one can observe in Fig. 6, where
the vibrational excitation (VE) cross sections for transition
0 → 1 are shown for the constant and three special discrete
states. The only significant discrepancies can be observed
in the elastic cross sections at higher energies as shown in
Fig. 7.

It is important to realize that the correct energy dependence
of the cross sections (positions and shapes of peaks) is given
mostly by the shape of the potential energy curve Vion(R),
which is properly reproduced here within each nonlocal reso-
nance model. As the potential Vd (R) moves away from Vion(R)
for different choices of the special discrete states, �(ε, R) and
�(ε, R) increase (as one can see in Fig. 5), resulting in the
correct position of the effective local potential Vion(R) within
the nonlocal models. This shows that in principle one can
almost fully encompass the background contribution into the

FIG. 8. Potential energy curves of the O2-like model: the neutral
potential V0(R), the negative ion resonance Vion(R), and the resonance
width (shown by the shaded area) together with the discrete-state
potential Vd (R) for the constant and the special choices of the discrete
state.

nonlocal model by selecting a suitable discrete state, but as
shown above in Sec. IV A, at a higher computational cost
as �(ε, R) is much larger at higher energies for the special
discrete states than for the constant discrete state.

The same calculations were performed for the O2-like
model, with the special discrete state 1 given by λ−∞ = 8,
c = 1.8, and Rd = 3.0 and special discrete state 2 by λ−∞ =
3.29, c = 1.8, and Rd = 3.0. The potential energy curves are
shown in Fig. 8 and cross sections for the elastic channel
are shown in Fig. 9. However, it is not in general true that
a more-compact discrete state yields better cross sections. In
this case, special discrete state 1 overestimates the background
contribution.

FIG. 9. Dependence of the elastic cross section on the choice of
discrete state, compared with the exact cross section calculated from
the O2-like two-dimensional model.
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(a)

(b)

FIG. 10. Fitted phase shifts from (a) model I (lines) and
(b) model II (lines) compared to fixed-nuclei scattering phase shifts
from the N2-like model (points). Curves from right to left correspond
to internuclear distances of 1.90, 1.95, 2.00, 2.05, 2.10, 2.15, 2.20,
and 2.25 a.u.

TABLE IV. Parameters of the fitted model I for N2 for functions
in (50). We omitted superscripts for simplicity as there is just one
term in Vdε (R) in this model. All values are in atomic units.

Parameter Value Parameter Value

n 1 EEA 0.243217
Dd 0.42791 a0 −2.22208
αd 1.17203 a1 6.88415
Rd 2.20015 a2 0.14138
b0 1.19712 b1 3.56770
c0 −1.20402 c1 −0.07258

TABLE V. Same as in Table IV but for model II for N2.

Parameter Value Parameter Value

n 1 EEA 0.243216
a0 0.0 b0 1.07703
a1 1.82533 b1 0.0
a2 0.17952
c0 −1.26202 c1 −0.07290

(a)

(b)

FIG. 11. Fitted phase shifts from (a) model I (lines) and
(b) model II (lines) compared to fixed-nuclei scattering phase shifts
from the NO-like model (points). Curves from right to left corre-
spond to internuclear distances of 1.90, 1.95, 2.00, 2.05, 2.10, 2.15,
2.20, and 2.25 a.u.

Except for the background contribution, there is practically
no discrepancy between the cross sections calculated directly
from the complex coupling Vdε(R) and the cross sections cal-
culated from the ab initio level-shift function F (ε, R). Let
us recall that the two methods differ only in neglecting the
complex phase of Vdε(R) in the latter method. The complete
overview of the results is given in the Supplemental Mate-
rial [36], where the cross sections together with the potential
energy curves and �(ε, R), �(ε, R), and φd (r; R) for selected
energies and internuclear distances are plotted for all 2D mod-
els and chosen discrete states.

C. Fitting nonlocal resonance models to scattering phase shifts

For comparison with the approach introduced above, we
also constructed several nonlocal resonance models through
the traditional approach, i.e., fitting to known scattering data,
in our case fixed-nuclei phase shifts obtained by solving the
one-dimensional scattering problem resulting from fixing R
within the two-dimensional models. We define two kinds of
nonlocal resonance models I and II which differ in the way
the discrete-state potential is obtained. Model I assumes the
dependence of potentials, coupling, and background phase
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TABLE VI. Parameters of the fitted model I for NO for functions
in (50). All values are in atomic units.

Parameter Value Parameter Value

n 2 EEA 0.059710

Dd 0.15600 αd 1.19874

Rd 2.48595

a1
0 −3.52449 a2

0 −0.54670

a1
1 2.13657 a2

1 2.84100

a1
2 1.93383 a2

2 0.32056

b1
0 1.96172×10−4 b2

0 0.32618×10−4

b1
1 7.55701 b2

1 3.63948

c0 −1.85637 c1 −0.34785

shift on internuclear distance and energy

V0(R) = D0(1 − eα0(R−R0 ) )2 − D0 + EEA,

Vd (R) = Dd (1 − eαd (R−Rd ) )2 − Dd ,

Vdε(R) = εα

n∑
i=1

Ai(R)e−Bi (R)ε,

Ai(R) = (
ai

0R + ai
1

)
e−ai

2R,

Bi(R) = bi
0R + bi

1,

δbg(ε) = c0ε + c1, (50)

where the discrete-state potential Vd (R) is fixed as a Morse
potential. In contrast, model II does not assume any particular
form of the discrete-state potential since it is reconstructed
from the known resonance energy following Eq. (48). The lat-
ter approach has already been successfully used to construct a
nonlocal resonance model for the O2 molecule in [31] and can
be applied only in the case where a clear resonance appears.
Here we demonstrate that this approach can also be used for
the N2-like and NO-like two-dimensional models.

The fits to obtain the unknown parameters of the mod-
els were performed using the Nelder-Mead algorithm [37]
minimizing the mean-square error. The resulting fitted phase
shifts compared with exact phase shifts calculated within the
two-dimensional models are shown in Fig. 10 for N2 and in
Fig. 11 for NO. The obtained parameters of the models are
listed in Tables IV–VII.

Figures 12 and 13 show the potential energy curves of the
N2-like and NO-like models together with the discrete-state
potential Vd (R) of the fitted nonlocal resonance models. For
comparison, we also show Vd (R) corresponding to the con-

TABLE VII. Same as in Table IV but for model II for NO.

Parameter Value Parameter Value

n 1 EEA 0.059710
a0 4.81029 b0 0.10444
a1 0.99923 b1 5.03081
a2 1.23990
c0 −2.59928 c1 −0.17042

FIG. 12. Potential energy curves of the N2-like model: the neu-
tral potential V0(R), the negative ion resonance Vion(R), and the
resonance width (shown by the shaded area). The discrete-state po-
tential Vd (R) corresponding to the constant choice of the discrete
state is compared with Vd (R) coming from the two fitted models I
and II.

stant choice of the discrete state. The Morse potential chosen
for model I is not very flexible and often fails to be close to
the ion potential curve Vion(R), as in the case of NO. On the
other hand, Vd (R) reconstructed from Vion(R) tends to follow
the constant discrete-state potential closely.

FIG. 13. Potential energy curves of the NO-like model: the neu-
tral potential V0(R), the negative ion resonance Vion(R), and the
resonance width (shown by the shaded area). The discrete-state po-
tential Vd (R) corresponding to the constant choice of the discrete
state is compared with Vd (R) coming from the two fitted models I
and II.
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FIG. 14. Exact vibrational excitation cross sections from the N2-
like two-dimensional model compared with the results from the two
nonlocal resonant models described by Eqs. (50) and fitted to the
fixed-nuclei scattering phase shifts.

The cross sections obtained for the fitted models I and II
are compared with the exact results from the two-dimensional
model in Fig. 14 for N2 and in Fig. 15 for NO. In the case
of N2, the most significant difference between the two mod-
els is in the background contribution in the elastic channel;
otherwise, the agreement is good, although the results in the
inelastic channels are slightly better for model I than for
model II.

In the NO case, Vion(R) coming from model I agreed with
the exact Vion(R) only in the inner region (because of the good
agreement of the phase shifts), but not in the outer region.
This is because the Morse potential used as Vd (R) does not
match the long-range behavior of the negative ion. Therefore,
we modified Vd (R) in the outer region by adding a correc-
tion �Vion(R) calculated as the difference between Vion(R)
from model I and the exact Vion(R) from the two-dimensional
model. This is well justified because in the outer region, i.e.,
where the extra electron is bound, the Vion(R) curve is gener-
ally known, e.g., from quantum chemistry calculations. The
final corrected discrete-state energy curve V corr

d (R) curve of

FIG. 15. Exact vibrational excitation cross sections from the NO-
like two-dimensional model compared with the results from the two
nonlocal resonant models described by Eqs. (50) and fitted to the
fixed-nuclei scattering phase shifts.

model I is given by

V corr
d (R) = Vd (R) + �Vion(R). (51)

Even though both models I and II give the correct negative-
ion curve Vion(R), there are some notable discrepancies. In
Fig. 11 we see that model I reaches much better agreement of
the fixed-nuclei scattering phase shifts than model II; however,
model II gives cross sections that have better agreement with
the exact results (apart from the background contribution in
the elastic channel).

The fitting procedure for model II is also easier because
there are fewer parameters to fit since the discrete-state poten-
tial Vd (R) is reconstructed directly and no functional form is
assumed. Thus in this approach we get the correct behavior of
Vd (R) consistent with the dynamics of the collisional complex
for large internuclear distances R. Choosing a fixed functional
form of Vd (R) seems to be too restrictive and makes the fitting
tedious and unreliable.

The phase shifts in Figs. 10 and 11 however show that one
cannot always tell from the quality of the fit how well the
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(a)

(b)

(c)

FIG. 16. Fixed-nuclei level-shift functions �(ε, R) and reso-
nance widths �(ε, R) coming from (b) and (c) two different fits with
(a) the exact form for several internuclear distances.

resulting model would perform. Model II for NO gives the
worst agreement with the scattering phase shifts but produces
flawless cross sections. Without the reference to the exact re-
sults (which one usually does not have at hand), such a model
would probably get rejected during the fitting procedure.

Moreover, while both models for N2 seem to work fine,
their respective �(ε, R) and �(ε, R) functions can differ
greatly, as shown in Fig. 16. The situation is similar to the
case of NO (see Fig. 17).

The reconstruction of Vd (R) from the known resonance
energy generally leads to better results. While the bound
part of the negative-ion potential-energy curve can be usu-
ally obtained using standard quantum chemistry packages,
the complex part of the curve (usually given by resonance
energy and width) is often unknown. Since Vd (R) should
coincide with Vion(R) outside the interaction region, one
can use it to construct Vd (R) with the correct asymptotic
behavior.

V. CONCLUSION

In this work we proposed an alternative way of construct-
ing nonlocal resonance models used to describe the nuclear
dynamics of electron-molecule collisions. The method is
based on the fact that the magnitude of the discrete-state-
continuum coupling Vdε(R) can be calculated from the

(a)

(b)

(c)

FIG. 17. Fixed-nuclei level-shift functions �(ε, R) and reso-
nance widths �(ε, R) coming from (b) and (c) two different fits with
(a) the exact form for several internuclear distances.

fixed-nuclei ab initio level-shift function F (ε, R) constructed
by the projection of the full fixed-nuclei wave function on the
preselected discrete state. This can be then used to construct
the full nonlocal potential F (ε, R, R′) governing the nuclear
dynamics within the discrete-state-in-continuum framework.
The extension of the imaginary part of the fixed-nuclei
level-shift function F (ε, R) into the full nonlocal potential
F (ε, R, R′) is straightforward if we neglect the phase of
Vdε(R). The Hilbert transform connecting the real and imag-
inary parts of the nonlocal potential F (E , R, R′) has to be
evaluated numerically. The assumption that neglecting the
phase has little influence on the resulting dynamics was tested
by comparison with the direct construction of Vdε(R) using the
projection-operator formalism. We used a two-dimensional
model [29] approximating the behavior of N2, NO, and O2

molecules to test the proposed approach by comparing it to
the numerically exact solution of the vibrational dynamics
available for these models. We also compared it to results
obtained with previously used NRM construction based on
fitting of fixed-nuclei phase shifts.

The models built directly from Vdε(R) and from the
ab initio level-shift function F (ε, R) were constructed for all
three two-dimensional models. In all cases, the agreement
with the referential exact results was excellent. Moreover, we
demonstrated that the choice of the discrete state φd , being the
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ALT, ČÍŽEK, AND HOUFEK PHYSICAL REVIEW A 109, 052817 (2024)

only remaining degree of freedom, regulates the contribution
of background scattering in the elastic cross section while the
inelastic cross sections practically do not change. However,
there are computational complications in the evaluation of
nonlocal potential F (ε, R, R′) arising from certain choices of
the discrete state. This was discussed in detail in the case of
NO, but the same effect was observed also for N2 and O2.

The comparison with the models constructed by fitting
the fixed-nuclei scattering phase shifts was done for N2-like
and NO-like two-dimensional models. Since the fitting pro-
cedure is not unique, two models were constructed in each
case. The results obtained using these nonlocal models
showed the common shortcomings of this approach, which
stem from the fact that there is no guarantee that a good
fit of the fixed-nuclei data leads to an accurate description
of the nuclear dynamics. Comparing two slightly different
models constructed to reproduce the fixed-nuclei phase shifts,
we observed that the model with a seemingly better fit can
give slightly worse results for vibrational excitation cross

sections than the model with a seemingly worse fit of phase
shifts. Another limitation of the fitting procedure stems from
the fixed functional form of the model.

On the other hand, the downside of our alternative method
of constructing the nonlocal models is the need to evaluate
the coupling Vdε(R) to high energies, which may be difficult
or impossible for real systems. This can be partially circum-
vented by extrapolation, as shown for the NO-like model.
We believe that this approach can be applied to real sys-
tems since the evaluation of the level-shift function F (ε, R)
using Eq. (44) can be straightforwardly implemented, e.g., in
the UKRmol+ R-matrix codes [38] and that this will be an
important simplification as compared to the fitting approach,
especially for polyatomic molecules.
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