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Switching the sign of the Casimir force between two perfect electromagnetic conductor spheres
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For nonreciprocal objects in vacuum, the Casimir interaction can become repulsive. Here, we present a com-
prehensive study for idealized nonreciprocal materials known as perfect electromagnetic conductors (PEMC).
The system consists of two spheres made of different PEMC materials, including the plane-sphere geometry as
a particular case. The sign of the Casimir force does not only depend on the distance between the spheres and
their geometric parameters but can be controlled by adjusting the temperature. A repulsive Casimir interaction
at small distances allows for stable equilibrium configurations of the spheres. A sum rule previously derived for
the plane-plane geometry at zero temperature is violated in general, if at least one plane is replaced by a sphere.
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I. INTRODUCTION

Quantum and thermal fluctuations of the electromagnetic
field can dominate the interaction of neutral objects at the
nanoscale through the Casimir effect. Typically, the associated
force is attractive and at submicron distances becomes strong
enough to be relevant for microelectromechanical and nano-
electromechanical systems. Resulting phenomena like stiction
can then affect the functionality of such devices [1]. The possi-
bility to switch from attractive to repulsive Casimir interaction
through an external control parameter like the temperature is
therefore of great interest. Furthermore, if the Casimir force
changes its sign from repulsive to attractive with increasing
distance between the objects, a stable equilibrium configura-
tion exists.

Casimir repulsion was already studied and experimentally
realized in various systems. For dielectric objects of relative
permittivity ε1 and ε2 immersed in a liquid of permittivity ε3,
it has been known for a long time that repulsion can occur
provided ε1(iξ ) > ε3(iξ ) > ε2(iξ ) at imaginary frequencies ξ

[2]. More recently, repulsion in such a setup was demonstrated
experimentally [3].

A repulsive Casimir force can also be realized without a
medium between objects. Already Boyer [4] pointed out that
a perfect electric conductor and a perfect magnetic conduc-
tor repel each other. Since then various systems have been
studied where repulsion can occur, involving metamaterials
[5,6], topological insulators [7–12], Weyl semimetals [13,14],
or magnetoelectric materials [15,16], to name but a few.

In 2018, Rode et al. [17] generalized the system consid-
ered by Boyer by studying the Casimir interaction between
so-called perfect electromagnetic conductor (PEMC) plates
at zero temperature. PEMC materials interpolate between a
perfect electric and magnetic conductor [18]. They are a spe-
cial kind of nonreciprocal medium which can be obtained as
a limit from a broader class of polarization-mixing materials,
the so-called bi-isotropic materials [19].

Theoretical studies of objects embedded in a medium ful-
filling the condition mentioned above revealed the existence
of a stable equilibrium position which depends on the size of

the objects as well as on temperature [20,21]. We extend this
approach to nonreciprocal materials in vacuum, for which,
except for a study within the pairwise summation approxi-
mation [9], only planar geometries have been examined so
far. Specifically, we will analyze the Casimir force for two
dissimilar PEMC spheres for arbitrary radii and distances. Of
particular interest is the influence of thermal fluctuations since
the temperature can serve as an external control parameter.
The sphere-plane geometry will be included in our analysis as
a limiting case.

PEMC spheres have been studied before and are currently a
topic of ongoing research. Previous work by Ruppin [22] and
more recent work [23,24] already examined the behavior of a
PEMC sphere in a light field where the latter also computed
the radiation force exerted on the sphere.

In the following, we will provide analytical and numerical
results for the Casimir interaction between two dissimilar
PEMC spheres to cover the full range of parameters. Ex-
isting analytical results [25] restricted to the short-distance
limit at zero temperature will be extended to include low-
temperature corrections, the large-distance limit as well as the
high-temperature limit at arbitrary distances. Our numerical
results are based on a plane-wave description introduced ear-
lier for dielectric spherical objects [26]. Here, we adapted this
approach to include bi-isotropic materials.

This paper is organized as follows. In Sec. II, we describe
the scattering of electromagnetic waves at a single bi-isotropic
sphere including the limiting case of a sphere consisting of
a PEMC material. Section III continues with a brief intro-
duction to the scattering approach to the Casimir interaction
and its application to spherical objects. Next, we apply the
scattering formalism to calculate the Casimir interaction for
short (Sec. IV) and large separations (Sec. V) between the
PEMC spheres. Additional analytical results for the Casimir
interaction are obtained for high temperatures in Sec. VI. In
Sec. VII, we examine whether a sum rule for the Casimir
force derived for the plane-plane geometry [17] carries over
to the sphere-sphere setup. Section VIII discusses the Casimir
force over the whole range of distances, temperatures, and ge-
ometrical parameters. We investigate the conditions for which
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temperature can serve as a control parameter to switch from
attraction to repulsion as well as the conditions for stable equi-
librium positions. Concluding remarks are given in Sec. IX,
and the Appendix contains some definitions and technical
details.

II. SCATTERING AT A PEMC SPHERE

The reflection operator at a single sphere is the main in-
gredient for the scattering approach to the Casimir interaction
which we will discuss in the next section. We can profit from
previous work [27] by starting with a bi-isotropic model from
which a PEMC can be obtained as a limiting case.

The constitutive equations for a bi-isotropic material in the
frequency domain are given by(

D
B

)
=

(
ε α

β μ

)(
E
H

)
(1)

with the permittivity ε and the permeability μ. The bi-isotropy
parameters α and β account for the magneto-to-electric and
electro-to-magnetic coupling, respectively. All four param-
eters are scalar functions of the frequency. If the Onsager
reciprocal relation α = −β∗ is violated, the material is non-
reciprocal (see, e.g., [28] for a review). The constitutive
equations above are, for example, used to describe topological
insulators (see, e.g., [29] for a review).

The reflection operator R of a spherical object is usually
expressed in a spherical-wave basis |�, m, P, s〉. Each multi-
pole mode is defined by its angular momentum � = 1, 2, . . .

with m = −�, . . . 0, . . . �, the polarization P, which is either
electric (E) or magnetic (M) and a parameter s which de-
scribes an incoming (reg) or outgoing (out) wave with respect
to the sphere center. Within the (2 × 2)-dimensional polariza-
tion subspace of the spherical-wave basis, the matrix elements
of the reflection operator for a bi-isotropic sphere can be
expressed as

〈P|R|P′〉 = −iP′−P(R)P,P′ , (2)

where we associate P = 1 (P = 2) to E (M) polarized modes
and the matrix R contains the Mie coefficients which for
bi-isotropic materials were derived in [27]. As the consti-
tutive equations used there differ from (1) and we consider
imaginary frequencies instead of real frequencies, we provide
explicit expressions for the Mie coefficients in Appendix A.

By choosing the material parameters in the constitutive
equation (1) as

α = β = q, ε = q cot(θ ), μ = q tan(θ ), (3)

one obtains a PEMC by taking the limit q → ∞. This class
of materials is parametrized by the angle θ taking values
between 0 and π/2. The two boundary cases correspond to the
perfect electric (PEC) and perfect magnetic (PMC) conductor,
respectively [19]. According to the choice of α and β in (3),
PEMC are nonreciprocal.

It can be shown that the reflection matrix in (2) for a PEMC
sphere can be expressed as

RPEMC = DRPECD−1 , (4)

where RPEC is the reflection matrix for a perfect electric con-
ductor while the duality transformation matrix

D =
(

cos(θ ) sin(θ )
− sin(θ ) cos(θ )

)
(5)

depends on the material parameter θ [30]. Explicit expressions
are given in (A12)–(A14).

Clearly, PEMC constitute an idealization of real nonreci-
procal materials. For a theoretical study, however, they allow
to characterize the material properties of the system by the
single parameter θ . We can thus analyze the interplay between
geometry, temperature, and material properties of the system.
Furthermore, they may provide a guiding line for future exper-
iments aiming at realizing Casimir repulsion by making use of
nonreciprocal materials. Moreover, the PEMC model allows
us to derive analytical results for the Casimir interaction, as
can be seen in the following sections.

III. SCATTERING APPROACH TO THE CASIMIR
INTERACTION

The scattering approach to the Casimir effect was origi-
nally developed for objects consisting of reciprocal materials
[31,32]. A recent general study confirmed that in thermal equi-
librium, the scattering approach holds even for nonreciprocal
objects [33]. For two nonreciprocal plates, this was already
shown in [12].

In our calculations, we will evaluate as the primary quan-
tity the Casimir free energy F from which the Casimir force
F can be obtained by taking the derivative with respect to the
surface-to-surface distance L between the objects according to

F = −∂F
∂L

. (6)

At finite temperatures, the Casimir free energy can be
expressed as a sum over Matsubara frequencies ξn =
2πkBT n/h̄:

F = kBT

2

∞∑
n=−∞

f|n| (7)

with

fn = ln det[1 − M(iξn)] = −
∞∑

r=1

trMr (iξn)

r
. (8)

The round-trip operator

M = T12R2T21R1 (9)

describes the scattering process of the electromagnetic field
between the two objects. The operator R accounts for the
reflection at an object and the operator T translates the elec-
tromagnetic field from the reference frame of one object to the
other (see Fig. 1).

In the second equality in (8) we made use of Jacobi’s
formula and the Mercator series. The summation index r
accounts for the number of round trips of the electromagnetic
field between the two objects. The single-round-trip contribu-
tion is thus obtained by retaining only the term with r = 1.
While the round-trip expansion is particularly useful to derive
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FIG. 1. Scattering geometry consisting of two spheres or, in the
limit R1 → ∞, a sphere in front of a plane placed along the z axis
with a surface-to-surface distance L. In the sphere-sphere geometry,
we also define the distance L = L + R1 + R2 and for the sphere-
plane setup we will use L = L + R2. The objects are made of PEMC
with parameters θ1 and θ2. The round-trip operator (9) is indicated by
the black loop in the gap.

analytical results, numerical approaches are usually based on
evaluating the determinant in (8).

At zero temperature, the Matsubara sum turns into an inte-
gral over imaginary frequencies ω = iξ . In the opposite limit
of high temperatures, the free energy

FT = kBT

2
f0 (10)

depends exclusively on the contribution of the Matsubara fre-
quency ξ0. This expression is proportional to the temperature
and of purely entropic origin.

In order to calculate the Casimir free energy, we evaluate
the trace in (8) in an appropriate basis set, depending on
the geometry of the scattering problem. We will specifically
consider the setup depicted in Fig. 1 consisting of two spher-
ical particles with radii R1 and R2 at a surface-to-surface
distance L and made of PEMCs with parameters θ1 and θ2.
The sphere centers are located on the z axis and serve as
origins of the reference frames in which the reflection of
electromagnetic waves is described. Their distance is given by
L = L + R1 + R2. We will later make use of the aspect ratio

x = L

Reff
(11)

with the effective radius

Reff = R1R2

R1 + R2
. (12)

In the limit R1 → ∞, the sphere-sphere geometry turns into
the sphere-plane geometry. The transition from equally sized
spheres to a sphere in front of a plane can be described by the
dimensionless parameter

u = R1R2

(R1 + R2)2
(13)

which takes values between 0 in the case of the sphere-plane
geometry and 1

4 for two spheres of equal radii.
While the reflection operator matrix elements are con-

veniently expressed in the spherical-wave basis introduced
in Sec. II, a plane-wave description is better suited for the
translation operator. For the plane-wave basis, we employ the
angular spectral representation [34]. Omitting the imaginary
frequency ξ , which is constant during the whole round trip, we
denote the basis by |k, p,±〉, where k = k( cos(ϕ), sin(ϕ))
is the transversal part of the wave vector K. The dispersion
relation can then be expressed as ξ 2 = c2(κ2 − k2), where κ

is the imaginary wave-vector component in z direction. The
polarization p of the plane wave is defined with respect to
a plane perpendicular to the z axis and can be transverse
magnetic (TM) or transverse electric (TE). The signs ± refer
to the direction of propagation along the z axis. Within the
plane-wave basis, the translation operator is diagonal with the
matrix elements

〈k, p,±|T |k′, p′,±〉 = e−κLδ(k − k′)δp,p′ . (14)

The trace over the r-fold round-trip operator (8) in the plane-
wave basis is thus given by [35]

trMr =
∑

p1,...,p2r

∫
dk1 . . . dk2r

(2π )4r

r∏
j=1

e−κ2 jLe−κ2 j−1L

× 〈k2 j+1, p2 j+1,−|R2|k2 j, p2 j,+〉
× 〈k2 j, p2 j,+|R1|k2 j−1, p2 j−1,−〉, (15)

where cyclic indices 2r + 1 ≡ 1 are used to account for the
trace.

Within the plane-wave basis, the reflection operator can be
determined by means of a basis change

〈p|R|p′〉 =
∑

P,P′=E,M

〈p|P〉〈P|R|P′〉〈P′|p′〉 (16)

and making use of the reflection matrix elements in the
spherical-wave basis discussed in Sec. II and Appendix A.
For simplicity, we omitted in (16) all indices of the bases,
except for the polarization. The basis transformation coeffi-
cients 〈p|P〉 and 〈P|p〉 can be found in [36]. Together with (2)
we thus obtain for a bi-isotropic sphere [25]

〈k, p|R|k′, p′〉 = 2πc

ξκ
[ASp,p′ + (−1)p+p′

BSp̄,p̄′

− (−1)pCSp̄,p′ + (−1)p′
DSp,p̄′ ]. (17)

In the notation above, we associate p̄ with the opposite polar-
ization to p and we set p = 1 (p = 2) for TE (TM) polarized
waves. The coefficients A, B, C, and D account for the polar-
ization transformations and are given in [35]. They depend on
the incoming and outgoing wave vectors A = A(K, K′). Sp,p′

are the elements of the amplitude scattering matrix [27] and
are reproduced in (A15) for imaginary frequencies and our
definitions of the reflection matrix elements.

As indicated in (10), the high-temperature limit of the
Casimir free energy is determined by the zero-frequency con-
tribution, for which the amplitude scattering matrix simplifies.
The polarization-changing coefficients B, C, and D in (17)
vanish in this limit, while A tends to one [35]. Furthermore,
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following the argument given in Appendix A, even in the
plane-wave basis the leading order of the reflection coef-
ficients for a PEMC sphere in the low-frequency limit is
obtained by a duality transformation

〈p|R|p′〉 = 2πc

ξk
(DSPECD−1)p,p′ . (18)

Here, SPEC defines the amplitude scattering matrix for a
perfect reflector in the low-frequency limit (A18). This sim-
plification at very low frequencies will allow for analytical
calculations of the Casimir interaction in the high-temperature
regime.

IV. SHORT-DISTANCE ASYMPTOTICS

If the sphere radii are large compared to the surface-to-
surface distance R1, R2 	 L, the Casimir force is commonly
treated within the proximity-force approximation (PFA) [37].
This approximation treats the Casimir interaction between the
spheres in close vicinity as the interaction between paral-
lel plate segments. As demonstrated in [25], the PFA result
for two PEMC spheres can be obtained from an asymptotic
expansion of the reflection coefficients for large radii. The
round-trip decomposition of the Matsubara frequency contri-
butions (8) was found as

fn,PFA = −Reff

∫
dk

2πκ
Re[Li2(e2iδ−2κL )], (19)

where Lin(z) is the polylogarithm of order n.
The integral over k can be calculated explicitly and yields

fn,PFA = − 1

2x
Re[Li3(e2iδ−2nτ )], (20)

where x is the aspect ratio defined in (11) and τ = 2πL/λT

is a dimensionless temperature with the thermal wavelength
λT = h̄c/kBT . The coefficients (20) and, as a consequence,
the Casimir energy depend only on the difference of the
PEMC parameters θ1,2 of the two spheres

δ = |θ2 − θ1|. (21)

The limiting values δ = 0 and π/2 correspond to two identical
PEMC spheres and to a PEC and a PMC sphere, respectively.
The nature of the Casimir force thus changes from attractive
for two symmetric particles [38] to repulsive with increasing
δ.

In the zero-temperature limit, we already confirmed in [25]
that our PFA result agrees with the one obtained by Rode et al.
[17] and earlier ones [39,40] obtained for a scalar field with
pseudoperiodic boundary conditions

EPFA = − h̄c

720πL

1

x
[π4 − 30δ2(π − δ)2]. (22)

This expression for the Casimir energy changes sign between
δ = 0 and π/2 and according to (6) the Casimir force changes
sign as well. The critical value of δ at which the force vanishes
is given by

δT =0
crit =

⎛
⎝1 −

√
1 − 2

√
2

15

⎞
⎠π

2
= 0.961 . . .

π

4
. (23)

Here and in the following, it is convenient to express critical
angles in units of the central angle π/4 corresponding to a
situation halfway between equal materials and a PEC-PMC
setup.

The force thus changes its sign at δcrit and is attractive
for systems with δ < δcrit while being repulsive for δ > δcrit .
In the following, we are going to determine the temperature
and distance corrections to the PFA result (22) and analyze
how δcrit changes when we increase the temperature or the
separation between the spheres.

A. Temperature corrections to PFA

We will now examine the temperature corrections to the
critical angle introduced in (23). We thus consider the case
L 
 λT 
 Reff for δ > 0, where the temperature corrections
for τ 
 1 can be calculated by applying the Mellin transform
of the exponential in (20). After performing the sum over the
Matsubara frequencies (7), we obtain

FPFA = − kBT

4x

[
Re[Li3(e2iδ )] + 2

∫ c+i∞

c−i∞

ds

2π i
�(s)ζ (s)

× Re[Lis+3(e2iδ )](2τ )−s

]
, (24)

where �(s) and ζ (s) refer to the gamma function and the
Riemann zeta function, respectively. The integration contour
in the complex plane is chosen such that c > 1. For δ > 0,
the integrand has single poles at s = 1, 0 and −2n − 1 with
n = 0, 1, 2, . . . . The pole at s = 1 accounts for the zero-
temperature result (22). The leading temperature corrections
then arise from the poles at s = 0,−1, and −3. Applying
Cauchy’s theorem and evaluating the residues, we find for the
low-temperature expansion

�FPFA = FPFA − EPFA

= − h̄c

720πLx
[5(π2 − 6δ(π − δ))τ 2 + τ 4 + O(τ 6)],

(25)

where we used the representation of the polylogarithm in
terms of the Bernoulli polynomials [41, Eq. 24.8.3]

Lin(e2π iz ) + (−1)nLin(e−2π iz ) = − (2π i)n

n!
Bn(z). (26)

In the limit δ = π/2, our result agrees with the one in [42].
The range of validity of our result can be tested by com-

paring the low-temperature expansion with the numerically
evaluated Matsubara sum. Figure 2 shows the numerically
calculated temperature corrections represented by dots and the
asymptotic expansion (25) represented by lines as function of
the effective temperature τ = 2πL/λT and for different values
of δ. With decreasing temperature, the asymptotic expansion
converges towards the numerically exact results as expected.

Already the results displayed in Fig. 2 indicate that δcrit de-
pends on temperature. In fact, the low-temperature corrections
for δ = δT =0

crit (filled squares) become positive for nonvanish-
ing temperatures, suggesting that the value of the critical angle
decreases with increasing temperature. This expectation is
further corroborated by the high-temperature limit of the free
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FIG. 2. Temperature corrections to the PFA result (22) for the
Casimir energy in units of kBT for various values of δ. The symbols
depict the numerically exact values and the solid lines represent the
low-temperature expansion given in (25).

energy in the PFA limit given by the first term in (24) as

FT,PFA = −kBT

4x
Re[Li3(e2iδ )] (27)

which is in agreement with results found in the literature
for δ = 0 and π/2 [43,44]. The high-temperature expression
implies that the Casimir force vanishes at a critical value

δT →∞
crit = 0.923 . . .

π

4
, (28)

i.e., at a value below the zero-temperature critical value (23).
A numerical evaluation of the temperature dependence of

δcrit yields the solid line in Fig. 3 showing that δcrit decreases
monotonically with increasing temperature from the zero-
temperature value (23) to the high-temperature value (28).
The dotted line indicates the value of δ where the Casimir
free energy vanishes. As the expressions (22) and (27) for the
Casimir free energy at zero temperature and high tempera-
tures, respectively, factorize into contributions depending on
L and δ separately, the Casimir free energy and the Casimir

FIG. 3. The temperature dependence of δcrit in the PFA regime is
shown by the solid line. For comparison, the value of δ for which the
free energy vanishes is depicted by a dotted line. The dashed lines
indicate the low-temperature value (23) and the high-temperature
value (28) of the critical angle.

FIG. 4. Geometrical correction to the zero-temperature PFA re-
sult (22) for a sphere-plane setup, i.e., u = 0, as a function of the
aspect ratio (11) for the values of δ used in Fig. 2 and indicated by
the same symbols. The solid lines refer to the values obtained from
(29) while the dashed lines represent the dipole-plane approximation
(42) valid for large distances.

force vanish at the same value of δ in these two limits. This no
longer holds at intermediate temperature, as can be seen from
the low-temperature expansion (25) where the dimensionless
temperature τ introduces an additional dependence on L.

The results for the temperature dependence of δcrit dis-
played in Fig. 3 imply that if we choose a system which can
be described by a parameter in-between δT =0

crit and δT →∞
crit , the

Casimir force in the PFA regime will change from attractive
to repulsive with increasing temperature. The transition oc-
curs at temperatures around kBT ≈ 0.2h̄c/L, which at room
temperature corresponds to a distance of about L = 1.5 μm.
The enhancement of Casimir repulsion due to thermal fluc-
tuations was also predicted for systems with metallic-based
metamaterials [45] or in magnetodielectric systems [46]. In
these cases, the repulsion originates from the contribution of
the zero-frequency TE modes.

B. Geometrical corrections to PFA

Going beyond PFA at zero temperature involves taking the
leading corrections of an asymptotic expansion of (15) for x =
L/Reff 
 1 into account. A detailed analysis can be found in
[25] where the leading geometrical corrections �EPFA = E −
EPFA are shown to read as

�EPFA ≈ h̄c

720πL

[
20(π2 − 6δ(π − δ))

− 1 − 3u

3
(π4 − 30δ2(π − δ)2)

]
. (29)

The geometrical corrections depend on the parameter u
introduced in (13) which takes values between 0 and 1

4 cor-
responding to the sphere-plane geometry and a setup of two
equally sized spheres, respectively. The u dependence indi-
cates that with increasing separation, curvature effects become
more important.

In order to verify that the leading correction to the PFA
result is correct, we compare it with exact numerical re-
sults, which was not done in Ref. [25]. Figure 4 depicts the
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numerically calculated geometrical corrections over the whole
range of aspect ratios x for the sphere-plane geometry, i.e.,
u = 0. The four data sets correspond to the values of δ used in
Fig. 2 ranging from π/5 to π/2 and indicated here by the same
symbols. As expected, for small aspect ratios, the results con-
verge towards the values given by (29) and depicted by solid
lines. In contrast, for large aspect ratios, the results approach
the dashed lines representing the energy for a dipole-plane
setup as given below by (42) for τ̃ → 0.

The geometrical corrections presented in Fig. 4 let us
expect that the critical angle δcrit where the Casimir force
changes its sign not only depends on the temperature but also
on the aspect ratio. This dependence will be discussed in more
detail in Sec. VIII by making use of the data presented in
Fig. 8.

V. LONG-RANGE ASYMPTOTICS

If the two objects are sufficiently far apart from each
other, the exponential decay of the translation matrix element
(14) implies that the main contribution to the free energy is
given by the single-round-trip expression obtained from (8)
by retaining only the term with r = 1. For L 	 Reff, i.e., for
distances much larger than the radius of the smaller sphere, it
is even sufficient to restrict the single-round-trip result to the
dipole contribution � = 1. Then, the trace over the round-trip
operator in the multipole basis is given by

trM ≈
∑

P=E,M

1∑
m=−1

〈1, m, P|M|1, m, P〉. (30)

The evaluation of the coefficients depends on the geometry
under examination. Both the sphere-sphere and sphere-plane
geometry have in common that one object is given by a sphere.
Separating the reflection operator of the sphere from the rest
of the round-trip operator thus leads to

〈m, P|M|m, P〉 =
∑

P′=E,M

U (m)
P,P′ 〈m, P′|R1|m, P〉, (31)

where, for simplicity, we drop the multipole moment from
the states as in this section it always takes the value � = 1.
Furthermore, we made use of the fact that the reflection matrix
in the multipole basis is diagonal with respect to � and m.

The matrix elements of the reflection operator for a PEMC
sphere are given by (2), where the reflection matrix (4) in the
dipole limit yields

RPEMC ≈ 1

6

(
ξR

c

)3(1 + 3 cos(2θ1) 3 sin(2θ1)

3 sin(2θ1) 1 − 3 cos(2θ1)

)
.

(32)

The matrix elements

U (m)
P,P′ = 〈m, P|T12R2T21|m, P′〉 (33)

account for the translation operators and the remaining re-
flection operator in the multipole basis. In order to specify
the matrix elements (33), we need to distinguish between the
sphere-sphere and sphere-plane setups.

A. Dipole-dipole limit

For two spheres with radii R1, R2 much smaller than the
surface-to-surface distance L, we can employ the dipole ap-
proximation also for the larger sphere. The matrix elements
(33) can thus be written as

U (m)
P,P′ =

∑
P′′,P′′′

〈m, P|T12|m, P′′〉〈m, P′′|R2|m, P′′′〉

× 〈m, P′′′|T21|m, P′〉 . (34)

The eigenvalue m of the z component of the angular momen-
tum is conserved because the translations take place along
the symmetry axis of the setup. The matrix elements for the
reflection operator are defined in (32) and the matrix elements
of the translation operator in the spherical-wave basis can be
found in Eqs. (38)–(40) of Ref. [47].

After performing the sum over the Matsubara frequencies
in (30), we obtain

Fdip-dip = − h̄c

2πL

(
R1R2

L2

)3
[

cos2(δ)( fP,P(τ̃ ) + fP,P̄(τ̃ ))

− sin2(δ)

(
4

5
fP,P(τ̃ ) + 5

4
fP,P̄(τ̃ )

)]
, (35)

where fP,P(τ̃ ) and fP,P̄(τ̃ ) are analytic functions of the ef-
fective temperature τ̃ = 2πL/λT which account for channels
conserving or changing polarization upon translation, respec-
tively. Note that the dimensionless temperatures τ and τ̃ use
different distances L and L, respectively. These functions can
be found in Ref. [47] and are reproduced in (B1) for con-
venience. In the zero-temperature limit τ̃ → 0, the Casimir
energy is given by

Edip-dip = − h̄c

16πL

(
R1R2

L2

)3

[8 + 135 cos(2δ)]. (36)

For δ = 0 and π/2 the expressions agree with the results
obtained in Refs. [48] and [4], respectively.

In the previous section, it was already suspected that δcrit

changes with the distance between the spheres. The upper
bound for the critical angle in the zero-temperature limit can
now be determined from (36) and yields

δT =0
crit = 1

2
arccos

(
− 8

135

)
= 1.037 . . .

π

4
. (37)

The critical angle, where the force vanishes, thus increases
with distance as can be seen by comparing (37) with (23) for
short separations. A more complete picture will be given in
Fig. 8 and discussed in Sec. VIII.

In the high-temperature limit τ̃ → ∞, the contribution of
the polarization-mixing channels fP,P̄ vanishes and the free
energy yields

FT,dip-dip = −3kBT

8

(
R1R2

L2

)3

[1 + 9 cos(2δ)] (38)

which also agrees with a result in the literature for δ = 0 [48].
The magnetoelectric effect, responsible for the repulsion, re-
duces due to the vanishing polarization-mixing channels. The
critical angle is thus shifted towards a larger value compared
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FIG. 5. The critical angle δcrit as function of the temperature is
shown as solid line in the limit of large distances between the spheres.
The dotted line refers to the values of δ where the free energy changes
its sign and the dashed lines indicate the low-temperature value (37)
and high-temperature value (39) of the critical angle.

to the zero-temperature case

δT →∞
crit = 1

2
arccos

(
−1

9

)
= 1.070 . . .

π

4
. (39)

Compared with the high-temperature result for short distances
(28), one finds that the critical angle increases as the separa-
tion between the spheres grows. The distance dependence is
thus similar to the one found in the low-temperature regime.

As can be seen from the solid line in Fig. 5, the critical
angle δcrit increases monotonically with increasing tempera-
ture, which is consistent with the growth of δcrit with larger
distances between the spheres. For systems with δ in-between
the two limiting cases (37) and (39), the force changes from
repulsion to attraction upon increasing the temperature. The
transition occurs at temperatures kBT ≈ 0.8h̄c/L. The mono-
tonic increase of δcrit with increasing temperature at large
distances is in contrast to the opposite behavior found in the
PFA regime as displayed in Fig. 3.

B. Dipole-plane limit

Next, we consider the sphere-plane geometry for large
distances. The reflection operator in (33) thus describes a
PEMC plane. As the translation coefficients (14) are diagonal
in the plane-wave basis, the matrix elements are conveniently
expressed as

U (m)
P,P′ =

∑
p,p′=TE,TM

∫
dk

(2π )2
e−2κL〈m, P|k, p〉

× 〈k, p|R2|k, p′〉〈k, p′|m, P′〉 (40)

with L = L + R. PEMCs are idealized systems, where the
reflection coefficients of a planar surface neither depend on
the frequency nor on the incoming and outgoing wave vector.
In the polarization subspace, the reflection matrix elements
for a plane characterized by the PEMC parameter θ2 are thus
given by [17,49]

〈p|R2|p′〉 =
(

cos(2θ2) − sin(2θ2)

− sin(2θ2) − cos(2θ2)

)
. (41)

Together with the basis transformation coefficients men-
tioned in connection with (16), the Casimir free energy can be
calculated analytically and yields

Fdip-plane = − h̄c

2πL

(
R

L

)3

cos(2δ)[gP,P(τ̃ ) + gP,P̄(τ̃ )]. (42)

The functions gP,P(τ̃ ) and gP,P̄(τ̃ ) account for the channels
conserving and changing polarization during translation, re-
spectively. They can be found in [47] and are reproduced in
(B2) for convenience.

At zero temperature, the functions gP,P and gP,P̄ are given
by the numerical factors 15

16 and 3
16 , respectively. In the spe-

cial case δ = 0, our result thus agrees with the one obtained
in Ref. [50]. In Fig. 4, the dipole-plane result (42) at zero
temperature is depicted by the dashed lines for various values
of δ. In the high-temperature limit, the polarization-changing
contribution gP,P̄ vanishes while gP,P yields 3τ̃ /8 which is in
agreement with Ref. [51] for δ = 0.

In the large-distance limit, the force changes its sign at
the central angle, i.e., δcrit = π/4, for all temperatures. The
critical angle only becomes dependent on temperature, if we
take terms of the order of (R/L)6 and higher into account.
These terms originate from higher multipole orders as well as
from multiple scatterings between the objects.

VI. HIGH-TEMPERATURE LIMIT

In the previous two sections, we have presented analytical
results for small and large distances between the two objects.
In order to gain a more complete understanding of the full
range of distances, we consider the high-temperature limit,
where analytical calculations of the Casimir interaction are
possible. Recent studies [25,33] showed that already the
single-round-trip contribution provides useful insight
into the Casimir interaction over the whole distance range
between the objects. In the high-temperature limit (10), the

FIG. 6. Ratio of the high-temperature free energy FT and the
single-round-trip result F (1)

T scaled by ζ (3) as a function of the
conformally invariant distance scale y − 1 for different values of δ

and geometrical parameters u = 0 (solid lines) and u = 1
4 (dashed

lines). The dotted lines represent the values 1, 2
3 , 8

9 , and 3
4 for the

ratio in the PFA limit corresponding to δ = 0, π/6, π/3, and π/2,
respectively.
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single-round-trip expression

F (1)
T = −kBT

2
trM(0) (43)

can be calculated analytically. By inserting the reflection ma-
trix elements (18) into (15), we find that the trace can be

expressed in terms of the traces of the round-trip operators
for two PEC spheres (δ = 0) and the combination of a PEC
and a PMC sphere (δ = π/2) as

trM = cos2(δ)trMPEC-PEC − sin2(δ)trMPEC-PMC. (44)

The traces for the two limiting cases are given by

trMPEC-PEC = R1R2

π2L2

∫ 1

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−(x2

1+x2
2 )e−(y2

1+y2
2 )
[(

cosh
(
χ

(1)
12

) − 1
)(

cosh
(
χ

(2)
21

) − 1
)

+ (
cosh

(
χ

(1)
12

) − 2t1 cosh
(
t1χ

(1)
12

))(
cosh

(
χ

(2)
21

) − 2t2 cosh
(
t2χ

(2)
21

))]
(45)

and

trMPEC-PMC = R1R2

π2L2

∫ 1

0
dt

∫ ∞

−∞
dx

∫ ∞

−∞
dy e−(x2

1+x2
2 )e−(y2

1+y2
2 )[(cosh

(
χ

(1)
12

) − 1
)(

cosh
(
χ

(2)
21

) − 2t2 cosh
(
t2χ

(2)
21

))
+ (

cosh
(
χ

(1)
12

) − 2t1 cosh
(
t1χ

(1)
12

))(
cosh

(
χ

(2)
21

) − 1
)]

. (46)

Here, we performed a variable transformation (xi, yi ) = √
kiL( cos(ϕi/2), sin(ϕi/2)) (see Ref. [52] for more details). The

argument of the hyperbolic cosine reads as χ
(n)
i j = 2Rn(xix j + yiy j )/L. The integrals are of Gaussian type and can be calculated

by following the approach given in Ref. [53], which leads to

trMPEC-PEC = y

y2 − 1
+ 1

z
+ z

6
ln

(
z2(y2 − 1)

(yz + 1/2)2

)
−

∑
σ=±

[
1

2y + ασ

− 1

6
√

z

1

α
3/2
σ

ln

(
2y2 + ασ y − 1 + √

ασ z

2y2 + ασ y − 1 − √
ασ z

)]
(47)

and

trMPEC-PMC = y

y2 − 1
+ z − 2y

2
ln

(
z2(y2 − 1)

(yz + 1/2)2

)
−

∑
σ=±

[
1

2y + ασ

− 1

2
√

z

1

α
3/2
σ

ln

(
2y2 + ασ y − 1 + √

ασ z

2y2 + ασ y − 1 − √
ασ z

)]
. (48)

In the high-temperature limit, the traces are only functions
of the geometrical parameters of the system, with

y = L2 − R2
1 − R2

2

2R1R2
= 1 + x + u

2
x2, (49)

where y is a conformally invariant distance scale. The param-
eters x and u were introduced in (11) and (13), respectively.
Furthermore, we introduced

z = 2y + α+ + α− (50)

with

α± = 1 − 2u ± √
1 − 4u

2u
. (51)

The result for the sphere-plane geometry follows by taking
the limit u = 0 implying that α− vanishes while α+ goes to
infinity. The terms for σ = + in (47) and (48) thus yield
zero. By summarizing the remaining terms one finds that the
repulsive magnetoelectric term and the attractive term become
identical in the sphere-plane limit and read as

trMu=0
PEC-PEC = trMu=0

PEC-PMC

= y

y2 − 1
− 1

2y
+ y

2
ln

(
y2 − 1

y2

)
. (52)

In Fig. 6, we compare the single-round-trip free energy
scaled by the Apéry constant ζ (3) with the exact high-
temperature result for δ = 0, π/6, π/3, and π/2. At large
distances, the ratio approaches 1/ζ (3) thus confirming that the

single-round-trip result becomes exact. At small distances, it
differs from the exact result only by a factor of order 1. In
view of (10) and (20), the ratio at small distances is given by

FT

F (1)
T

= Re[Li3(e2iδ )]

cos(2δ)
for x 
 1. (53)

The solid lines for u = 0 and the dashed lines for u = 1
4 for

the same value of δ barely differ because the data are shown
as a function of the conformally invariant distance scale y − 1
which itself depends on u.

The monotonic behavior of the ratio FT /F (1)
T can be cap-

tured by a rational model [54]

�δ =
n∏

k=1

ey−1 − 1 + νk (δ)

ey−1 − 1 + μk (δ)
(54)

with the expansion coefficients obtained from a fit to
the numerical results and given in Table I. The maximal
relative deviation is of the order of a few per mill as indicated
in the last column. The combination of the rational model
with the single-round-trip result thus leads to a simple ap-
proximation of the free energy over the whole distance range.
Note that for the special case u = 0 and δ = π/4 the single
round trip does not contribute. Then, the next order in the
round-trip expansion (8) needs to be considered, which will
be discussed in the next section.
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TABLE I. Expansion coefficients for the rational model (54)
fitting the ratio FT /F (1)

T for u = 0 and 1
4 . The last column shows

the maximal relative deviation � for all values of u and y.

δ ν1 ν2 μ1 μ2 � × 103

0 0.01148 0.18511 0.01103 0.16069 4.6
π/6 0.00020 0.07213 0.08928 0.00021 5.1
π/3 0.17655 0.25447 0.20505 0.20505 5.0
π/2 0.00468 0.21056 0.23221 0.00471 1.9

VII. SUM RULE

Rode et al. [17] observed that the Casimir force between
two parallel PEMC planes at zero temperature obeys the sum
rule ∫ π/2

0
dδ F (δ) = 0 (55)

when integrated over the system parameter δ. As the distance
dependence factors out, the corresponding integral over the
Casimir energy vanishes as well. A similar sum rule was found
for the Casimir energy between a PEMC plate and a Weyl
semimetal [55].

For two spheres, the sum rule can be expected to still hold
in the PFA regime. At zero temperature, this can indeed be
shown by integrating (22) over δ while at finite temperatures
one can make use of the series expansion of (20). More
interesting is the large-distance limit. Starting from the dipole-
dipole result (35), one finds∫ π/2

0
dδ F (δ) = − h̄c

32L2

(
R1R2

L2

)3

[18g(τ̃ ) cosh(τ̃ )

+ 18g(τ̃ )2 + 14g(τ̃ )3 cosh(τ̃ )

+ 2g(τ̃ )4(2 cosh2(τ̃ ) + 1)] (56)

with g(τ̃ ) = τ̃ / sinh(τ̃ ). As a consequence, the sum rule is
violated at zero temperature∫ π/2

0
dδ F (δ) = −7

4
h̄c

(R1R2)3

L8
(57)

as well as in the high-temperature limit∫ π/2

0
dδ F (δ) = −9π

8
kBT

(R1R2)3

L7
(58)

and for all temperatures in-between.
The situation is different when one of the spheres is re-

placed by a plane. At small distances, the sum rule is still
fulfilled like for the case of two spheres. However, from the
dipole-plane result (42) one finds that the sum rule is also
satisfied for large distances. Therefore, at large distances the
transition from two spheres to a sphere in front of a plane is
discontinuous.

In order to obtain a complete picture of the violation of the
sum rule in the high-temperature limit, we present in Fig. 7
numerical results as a function of the distance for two equally
sized spheres (u = 0.25, open triangles), for two spheres of
considerably different size (u = 0.05, open diamonds and u =
0.01, open squares), and for a sphere and a plane (u = 0, filled

FIG. 7. Integral of the dimensionless Casimir force (59) in the
high-temperature limit scaled by the geometrical factor y3. The lower
panel depicts the results of the integral for the sphere-sphere geom-
etry with u = 0.01 (open squares), u = 0.05 (open diamonds), and
0.25 (open triangles). For large separations y − 1 	 1, the curves
converge towards the dipole-dipole result −9π/64 as indicated by
the dotted line. The upper panel zooms into the upper left region of
the lower panel and displays, in addition, the results for the sphere-
plane setup (u = 0) as filled circles. The dashed line corresponds to
the values obtained from the double-round-trip approximation.

circles). We scale the dimensionless integral over the thermal
Casimir force

I = L
kBT

∫ π/2

0
dδ FT (δ) (59)

by the geometrical factor y3 which reproduces the large-
distance behavior of the Casimir force for both the sphere-
plane and sphere-sphere setup. The value of the integral turns
out to always possess a negative sign, implying that the en-
closed area to the left of the critical angle, for which the force
is attractive, is larger than the area to the right.

The lower panel of Fig. 7 shows how the violation of
the sum rule increases from the PFA regime on the left to
the dipole-dipole regime on the right. At large distances, the
scaled dimensionless integral approaches the asymptotic value
−9π/64 as indicated by the dotted line. The upper panel
represents a zoom into the upper left region of the lower panel,
allowing us to also present numerical data for the plane-sphere
setup. Clearly, in this case the violation of the sum rule is
significantly smaller than for the sphere-sphere setup.

The case of very different sphere radii is particularly
interesting. We present data for u = 0.01 and 0.05, which
according to (13) for such small values is close to the ratio
of the sphere radii. In the small-distance regime, the vio-
lation of the sum rule is close to the one obtained for the
plane-sphere setup. For intermediate distances, the violation
starts to decrease before increasing again in order to approach
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the large-distance result. One thus observes a nonmonotonic
behavior of the scaled integral y3I.

With the integral (59) for u = 0 vanishing in the dipole-
plane limit, an analytical description for the plane-sphere
setup in the regime y � 1 requires to go beyond this limit
and even beyond the single-round-trip approximation (44).
Accounting for two round trips, the trace over the square of
the round-trip matrix yields

trM2
u=0 = cos2(2δ)trM2

PEC-PEC − sin2(2δ)trM2
PEC-PMC.

(60)

The double-round-trip expression for the respective limiting
cases of δ = 0 and π/2 can be obtained from the single-
round-trip results (47) and (48) for two spheres with the same
radii [56] by replacing y by 2y2 − 1. The explicit expressions
are given in Appendix C. As the two traces in (60) differ, the
double-round-trip expression depicted by the dashed curve in
the upper panel of Fig. 7 describes the leading violation of the
sum rule at intermediate and large distances between sphere
and plane.

VIII. DISCUSSION

In the previous sections, we have examined the Casimir
interaction for small and large distances as well as for low and
high temperatures. The Casimir force was found to vanish for
a critical material parameter δcrit which depends on the ge-
ometry and the temperature. In the following, we will discuss
these results by focusing on the existence of an equilibrium
position and its dependence on the temperature. While stable
equilibrium positions were ruled out for reciprocal objects in
vacuum [57], they are possible for nonreciprocal materials
[33] as we shall see.

In Fig. 8, we show the curves of vanishing Casimir force
as a function of the aspect ratio x and the material parameter
δ for the sphere-plane geometry (u = 0, solid lines) and two
equally sized spheres (u = 1

4 , dashed lines). The depicted
curves delimit a region where curves for intermediate val-
ues of u can be found as is exemplified by the blue shaded
area related to the case of zero temperature. The curves in
Fig. 8 separate regions of repulsive Casimir force at smaller
distances and attractive Casimir force at larger distances. They
are therefore associated with stable equilibrium positions. For
both geometries, blue and red curves depict the zero- and
high-temperature limit, respectively. Curves for finite tem-
peratures lie in-between as indicated by the yellow shaded
area for u = 0. All curves increase monotonically in δ with
increasing distance and converge towards the critical angles
computed earlier and depicted by the dotted lines for small
and large distances.

In our discussion of the PFA corrections in Sec. IV B, we
observed that curvature effects become more important as the
distance between the objects increases. The results presented
in Fig. 8 confirm that the variation in the critical angle is
smaller for a sphere in front of a plane as compared to two
equally sized spheres. From a practical point of view, however,
we are not so much interested in the effect of a variation of
sphere radii which is difficult to realize, but rather in the effect
of the more easily controllable temperature on the existence
and variation of the equilibrium positions. The geometrical

FIG. 8. Curves of vanishing Casimir force separating regions of
attractive and repulsive force are shown as a function of the aspect
ratio x and the material parameter δ. Solid and dashed lines corre-
spond to the sphere-plane geometry (u = 0) and two equally sized
spheres (u = 1

4 ), respectively, while blue and red curves indicate the
zero-temperature case and the high-temperature limit, respectively.
The region covering all temperatures for u = 0 is shaded in yellow
while the region covering all aspect ratios in the zero-temperature
limit is shaded in blue. The dotted lines indicate the asymptotic
values for small and large distances. The arrows mark the opposite
change of the equilibrium position with increasing temperature for
u = 1

4 for different values of δ.

parameter u and the material parameter δ are thus fixed in the
following.

We start with the sphere-plane geometry. According to the
blue and red solid lines depicted in Fig. 8, the equilibrium
distance increases with increasing temperature if 0.96π/4 �
δ < π/4. Equilibrium positions do not exist for any tempera-
ture if the material parameter δ exceeds π/4. In the regime
0.92π/4 � δ � 0.96π/4, the Casimir force can only van-
ish for not too low temperatures. A clearer picture of the
temperature dependence can be obtained from Fig. 9, where
the Casimir force relative to the Casimir force for two per-
fect reflectors (δ = 0) is shown as a function of the aspect
ratio and the temperature. The chosen material parameters
δ = 0.95π/4 and 0.98π/4 lie in the second and first ranges
of material parameters, respectively, and correspond to two
distinct scenarios. For the first value, an equilibrium position
only exists for L/λT above 0.2 which at room temperature cor-
responds to distances of above 1.5 µm. Below this threshold,
the force is always attractive. For δ = 0.98π/4, on the other
hand, there exists an equilibrium distance for all temperatures,
which increases until the high-temperature distance depicted
by the solid red line in Fig. 8 is reached.

Turning to two equally sized spheres (u = 1
4 ), we first note

that according to Fig. 8 there exists a critical material parame-
ter of approximately 0.99π/4 where the equilibrium distance
is independent of temperature. Below this value, the sphere-
sphere geometry behaves qualitatively like the sphere-plane
geometry discussed before. As the lower black arrow illus-
trates, the equilibrium distance is pushed to larger distances
as temperature increases. The behavior changes for material
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FIG. 9. Casimir force relative to the Casimir force for two perfect
reflectors as a function of the effective distance and temperature
for the sphere-plane geometry (u = 0) with δ = 0.95π/4 (left) and
0.98π/4 (right). Negative (positive) values correspond to repulsion
(attraction). The Casimir force vanishes along the solid line.

parameters in the range 0.99π/4 � δ � 1.04π/4. There, the
equilibrium distance decreases as the temperature increases,
as indicated by the upper arrow and shown in Fig. 10 on
the left for the specific material parameter π/4. For even
larger values of δ like for the case δ = 1.05π/4 shown in
the right panel of Fig. 10, the Casimir force vanishes only for
sufficiently large temperatures.

As already mentioned in Sec. II, PEMCs constitute an
idealized system, leading to the question how well such an
electromagnetic response can be achieved. Structural realiza-
tions of PEMCs were already discussed in, e.g., [58], where
the PEMC behavior of a gyrotropic slab can be tuned by a
series of parameters. The required behavior, however, can only
be achieved in a relatively small frequency window while the
Casimir effect depends on the response at all frequencies.
Within a specific model, it was therefore concluded that no
repulsive Casimir force could be realized [59]. On the other

FIG. 10. Casimir force relative to the Casimir force for two
perfect reflectors as a function of the effective distance and temper-
ature for two equally sized spheres (u = 1

4 ) with δ = π/4 (left) and
1.05π/4 (right). Negative (positive) values correspond to repulsion
(attraction). The Casimir force vanishes along the solid line.

hand, even small-bandwidth PEMCs can reduce the strength
of the attractive force and our results show that including
temperature allows to tune this effect. Additionally, a recent
study [60] proposed a realization of a metamaterial which
behaves like a perfect magnetic conductor over a broad range
of frequencies. Similar approaches might emerge in the future
to realize broadband PEMCs and make them more relevant for
Casimir physics.

IX. CONCLUSIONS

In this paper, we have extended the study of the Casimir
interaction between perfect electromagnetic conductors to two
spherical objects at finite temperatures. The Casimir inter-
action depends on a material parameter δ which tunes the
magnetoelectric response and thus allows for a transition be-
tween an attractive and a repulsive Casimir force.

We found that the transition point δcrit depends on the
geometric parameters as well as on temperature. For values
of δ around π/4, there exist sphere-sphere and sphere-plane
setups where an equilibrium configuration is possible. The
existence of equilibria requires the use of nonreciprocal ma-
terials to which PEMCs belong. For practical purposes, it is
of particular interest that the equilibrium distance depends
on the temperature, thus offering a scenario where the sign
of the Casimir force can be controlled. Our theoretical study
of the idealized system of perfect electromagnetic conductors
may serve as a guide to explore more realistic materials for a
geometry commonly employed in Casimir experiments.
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APPENDIX A: SCATTERING COEFFICIENTS
FOR A BI-ISOTROPIC SPHERE

We consider the scattering at a general bi-isotropic sphere
of radii R in vacuum described by the matrix element

〈�, m, P, out|R|�′, m′, P′, reg〉 = −iP′−PRP,P′δ�,�′δm,m′ . (A1)

While the angular momentum variables �, �′, m, and m′ are
conserved during the scattering process, this is not the case
for the polarization. The coefficients RP,P′ account for the Mie
coefficients as introduced in (2). The polarization-conserving
scattering coefficients at imaginary frequencies ξ = −iω are
given by

REE(iξ̃ ) = C�(ξ̃ )
W R

� (ξ̃ )AL
� (ξ̃ ) + W L

� (ξ̃ )AR
� (ξ̃ )

V R
� (ξ̃ )W L

� (ξ̃ ) + V L
� (ξ̃ )W R

� (ξ̃ )
, (A2)

RMM(iξ̃ ) = C�(ξ̃ )
V R

� (ξ̃ )BL
� (ξ̃ ) + V L

� (ξ̃ )BR
� (ξ̃ )

V R
� (ξ̃ )W L

� (ξ̃ ) + V L
� (ξ̃ )W R

� (ξ̃ )
, (A3)

where we introduced for convenience

C�(ξ̃ ) = (−1)�
π

2

I�+1/2(ξ̃ )

K�+1/2(ξ̃ )
. (A4)

Here, I�+1/2(ξ̃ ) and K�+1/2(ξ̃ ) are modified Bessel functions
of first and second kind, respectively, of fractional order. The
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dimensionless frequency is given by

ξ̃ = ξR

c
. (A5)

Moreover, we adopted the notation from Ref. [61] and defined
the following auxiliary variables:

AL,R
� (ξ̃ ) = {I, ξ̃} − m∓{I, ξ̃mL,R},

BL,R
� (ξ̃ ) = m∓{I, ξ̃} − {I, ξ̃mL,R},

V L,R
� (ξ̃ ) = m∓{I, ξ̃mL,R} − {K, ξ̃ }, (A6)

W L,R
� (ξ̃ ) = {I, ξ̃mL,R} − m∓{K, ξ̃ },

where following Ref. [62] we introduced the notation

{I, z} = I ′
�+1/2(z)

I�+1/2(z)
+ 1

2z
(A7)

with I = I, K . The relative refractive indices mL,R for left-
and right-polarized light are given by

mL,R =
√

εμ − [(β + α)/2]2 ± i(β − α)/2. (A8)

The indices m± account for the relative impedances

m± = 1

ε
[
√

εμ − [(β + α)/2]2 ∓ i(β + α)/2]. (A9)

It can easily be verified that the Mie coefficients for the
electric and magnetic modes yield the known results in the
isotropic limit, where α = β = 0. The polarization-mixing
coefficients are defined as

RME(iξ̃ ) = iC�

[{I, ξ̃ } − {K, ξ̃}]
× m−{I, ξ̃mR} − m+{I, ξ̃mL}

V R
� (ξ̃ )W L

� (ξ̃ ) + V L
� (ξ̃ )W R

� (ξ̃ )
, (A10)

REM(iξ̃ ) = iC�

[{I, ξ̃} − {K, ξ̃}]
× m−{I, ξ̃mL} − m+{I, ξ̃mR}

V R
� (ξ̃ )W L

� (ξ̃ ) + V L
� (ξ̃ )W R

� (ξ̃ )
. (A11)

In the PEMC limit, we find according to (3) that mL,R

goes to infinity while m± = ∓i tan(θ ) with θ taking values
between 0 and π/2 accounting for a perfect electric and
perfect magnetic conductor, respectively. The polarization-
conserving Mie coefficients thus yield

REE = −C�

[
cos2(θ )

{I, ξ̃ }
{K, ξ̃} + sin2(θ )

]
, (A12)

RMM = −C�

[
cos2(θ ) + sin2(θ )

{I, ξ̃}
{K, ξ̃}

]
. (A13)

The polarization-mixing coefficients are the same in the
PEMC limit and they are given by

REM = RME = −C�

[ {I, ξ̃ }
{K, ξ̃ } − 1

]
sin(2θ )

2
. (A14)

It can now easily be shown that the Mie coefficients for a
PEMC sphere can be obtained from the coefficients for a PEC
by performing the transformation given in Eq. (4).

The reflection matrix elements in the plane-wave basis are
expressed in terms of the amplitude scattering matrix (17).

The scattering matrix connects an incident plane wave with
a plane wave in the far field of the object and is given by

Sp,p′ =
∞∑

�=1

2� + 1

�(� + 1)
[RP,P′τ�(z) + (−1)p−p′

RP̄,P̄′π�(z)],

(A15)

where we identify p = 1 (2) with TM (TE) and P = 1 (2)
with E (M). The angular functions τ�(z) and π�(z) defined in
Ref. [61] depend on the ingoing and outgoing wave vectors

z = − c2

ξ 2
[kk′ cos(ϕ − ϕ′) + κκ ′]. (A16)

The term proportional to π� can be neglected in the zero-
frequency limit. The amplitude scattering matrix for a PEMC
sphere can thus be expressed in terms of the scattering matrix
for a PEC sphere

SPEMC = DSPECD−1 (A17)

with the transformation matrix defined in (5). The matrix
elements of the PEC scattering matrix are

(SPEC)TM,TM = ξR

c
[cosh(χ ) − 1],

(SPEC)TE,TE = −ξR

c

[
cosh(χ ) − 2

∫ 1

0
t cosh(tχ )dt

]
,

(A18)

where the argument of the hyperbolic cosine is defined as

χ = 2R
√

kk′ cos

(
ϕ − ϕ′

2

)
. (A19)

APPENDIX B: DIPOLE LIMIT

The Casimir free energy for large distances can be
expressed in terms of dimensionless functions. For the sphere-
sphere geometry the functions introduced in (35) are given by

fP,P(τ̃ ) = 5
8 [6g(τ̃ ) cosh(τ̃ ) + 6g2(τ̃ ) + 5g3(τ̃ ) cosh(τ̃ )

+ g4(τ̃ )[1 + 2 cosh2(τ̃ )]

+ g5(τ̃ ) cosh(τ̃ )[2 + cosh2(τ̃ )]],

fP,P̄(τ̃ ) = 1
2 [g3(τ̃ ) cosh(τ̃ ) + g4(τ̃ )[1 + 2 cosh2(τ̃ )]

+ g5(τ̃ ) cosh(τ̃ )[2 + cosh2(τ̃ )]], (B1)

where g(τ̃ ) = τ̃ / sinh(τ̃ ) with τ̃ = 2πL/λT . The functions
can also be obtained by combining Eqs. (42)–(46) in Ref. [47].

The large-distance behavior for the sphere-plane geometry
(42) is characterized by the following functions:

gP,P(τ̃ ) = 3
16 [2g(τ̃ ) cosh(τ̃ ) + 2g2(τ̃ ) + g3(τ̃ ) cosh(τ̃ )],

gP,P̄(τ̃ ) = 3
16 g3(τ̃ ) cosh(τ̃ ) (B2)

which can be found in Eqs. (20)–(22) of Ref. [47].

APPENDIX C: DOUBLE ROUND TRIP
IN THE HIGH-TEMPERATURE LIMIT

In this Appendix, we give the double-round-trip expres-
sion for the sphere-plane geometry in the high-temperature

052815-12



SWITCHING THE SIGN OF THE CASIMIR FORCE … PHYSICAL REVIEW A 109, 052815 (2024)

limit. The expression can be obtained from the single-
round-trip result for two equally sized spheres, due to the
reflection symmetry of the two-sphere setup with respect
to a plane perpendicular to the z axis. The surface-to-

surface distance between the spheres can as a result be
seen as twice the distance for the sphere-plane geometry.
Hence, after setting u = 1

4 in (47) and (48) and replacing
y with 2y2 − 1, we obtain the following double-round-trip
expressions:

trM2
PEC-PEC = 2y2 − 1

4y2(y2 − 1)
+ 1

4y2
+ 2y2

3
ln

(
y6(y2 − 1)

(y2 − 1/4)4

)
− 2

4y2 − 1
+ 1

6y
ln

(
4y3 − 3y + 1

4y3 − 3y − 1

)
, (C1)

trM2
PEC-PMC = 2y2 − 1

4y2(y2 − 1)
+ ln

(
y6(y2 − 1)

(y2 − 1/4)4

)
− 2

4y2 − 1
+ 1

2y
ln

(
4y3 − 3y + 1

4y3 − 3y − 1

)
, (C2)

where y = 1 + L/R with the surface-to-surface distance L between a plane and a sphere with radius R.
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