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Calculation of electron-impact and photoionization cross sections of methane
using analytical Gaussian integrals
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The ionization by photon or electron impact of the inner (2a,) and outer (1¢,) valence orbitals of the CHy
molecule is investigated theoretically. In spite of a number of approximations, including a monocentric approach
and a rather simple distorting molecular potential, the calculated cross sections are overall similar to those of
other theoretical methods and in reasonable agreement with experimental data. The originality of the present
approach stands in the way we evaluate the transition matrix elements. The key ingredient of the calculation
scheme is that the continuum radial wave function of the ejected electron is represented by a finite sum of
complex Gaussian-type orbitals. This numerically expensive optimization task is then largely compensated by
rather simple and rapid analytical calculations of the necessary integrals, and thus all ionization observables,
including cross section angular distributions. The proposed and implemented Gaussian approach is proved to
be numerically very reliable in all considered kinematical situations with ejected electron energy up to 2.7 a.u.
The analytical formulation of the scheme is provided here for bound molecular states described by monocentric
Slater-type orbitals; alternatively, one may also use monocentric Gaussian-type orbitals for which the formulation
is even simpler. In combination with complex Gaussian functions for the continuum states, an all-Gaussian
approach with multicentric bound states can be envisaged.
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I. INTRODUCTION

Atomic and molecular collision processes remain an ac-
tive research area, both for their fundamental interest and
for numerous applications for which data are needed. Ex-
perimental measurements of observables provide challenges
to theoreticians who attempt to solve quantum mechanical
many-body problems by necessarily making some approx-
imations. Among the many existing processes, the photon
or electron impact ionization of polyatomic molecules is a
difficult one to describe theoretically (see, e.g., [1-3]). Indeed,
on top of the multielectron target structure, the multicen-
tric nature of the problem makes well-established atomic
scattering tools inadequate and inappropriate. This is true
already for small molecules such as water or methane and is
worse with molecules lacking simple symmetries and/or of
increasing size.

For atomic ionization processes, experimental advances
allow nowadays for measurements of angular distributions of
multiply differential cross sections, thus providing stringent
tests to theoretical models. Theoretical developments have
also made enormous progress. For example, they allow today
for an essentially exact numerical calculation of the pure
three-body problem in the continuum (see, e.g., [4]), such as
with calculations of differential cross sections for the single
ionization of hydrogen by electron impact (see, e.g., [S—7]) or
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for the double photoionization of helium (see, e.g., [8—11]).
Over the last decades, and going beyond the three-body case,
the ionization of other atoms by photons or electrons has
been studied through a variety of nonperturbative and pertur-
bative methods; each of them presents advantages but also
limitations, necessarily entails some approximations to the
many-body problem, and has different degrees of success.
Many methods exist also in the case of molecular targets.
From a theoretical point of view, one critical issue when
dealing with ionization processes in molecules is to describe
accurately continuum states on extended spatial domains, that
is to say, the wave function of an electron ejected from
a complex, anisotropic, multicentric system. Obviously, as
molecular targets of increasing size are considered, the radial
domain in which the interactions play a role is larger, and
the evaluation of transition matrix elements may also present
some challenges since integrals of oscillatory functions need
to be evaluated. Compared to the bound part of the spec-
trum for which very accurate quantum chemistry tools are
available, one may state that the continuum part of molecular
spectra is relatively not so well mastered, except possibly for
diatomic molecules. As a result, and because of the many-
body aspects of the system, calculated ionization observables
are generally only in fair agreement with available experimen-
tal data. There is clearly room for improvement, especially
when the focus is on the angular distributions of differential
cross sections, which provide the most detailed information
on the physical process.

The spherical symmetry of atomic targets allows for
standard partial wave techniques to be implemented within
scattering theory. Such tools have to be adapted or modified
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in the case of molecules. For bound states the multicentric
aspects are essentially mastered, in particular with the use of
real Gaussian-type orbitals (rGTOs) centered on different nu-
clei (see, e.g., [12]); the calculation of one- and two-electron
integrals is greatly facilitated by a number of mathematical
properties, including the Gaussian product theorem (see, e.g.,
[13]). In the case of continuum states proper multicentric
expansions are cumbersome to provide, and the evaluation
of related integrals presents serious difficulties. The aim of
this paper is to present a method that contributes in tackling
this issue. The key idea is to represent accurately molecular
continuum states with a finite sum of complex Gaussian-type
orbitals (cGTOs). As will be demonstrated, this leads to a
closed-form formulation for an efficient calculation of ion-
ization matrix elements, at least in a one-center framework.
By extension, the mathematical properties of Gaussian func-
tions allow us to envisage, in future developments, a similar
methodology but in a multicentric approach.

Real GTOs have a widespread success in molecular bound
calculations, and a large number of optimized sets are today
available for a variety of systems. Compared to bound states,
relatively fewer attempts have been made to investigate and
to systematically optimize rGTOs for calculations over con-
tinuum states [14-25]. Because of their unsuitable functional
form, they appear to be inefficient in reproducing the fast os-
cillatory behavior of continuum wave function above certain
energies and over sufficiently large radial domains.

In a previous work, we have investigated the advantage of
using cGTOs over the standard rGTOs in representing oscil-
lating and nondecreasing wave functions [26,27]. cGTOs, that
is, GTOs with complex-valued exponents, have been intro-
duced in molecular resonances calculation in the framework
of the complex basis function method [28-30]. They have
been applied to photoionization of atoms and small molecules
for total cross section calculations [31-34], and more re-
cently, for the calculation of differential cross sections and
photoelectron angular distributions [35-37]. Another field of
application of cGTOs is the electron dynamics in molecular
systems [38,39]. In such a case, the exponents but also the
coordinates centers of the Gaussian functions are allowed to
be complex values. In [40] we have presented a single-center,
one-active-electron approach using cGTOs to study molecular
photoionization of water and ammonia. The construction of
c¢GTOs was achieved by fitting them, through a least-squares
technique, to a set of regular Coulomb functions with different
energies on a discrete radial grid (the optimization procedure
was originally developed with rGTOs [15,16] and recently
extended to ¢cGTOs [26]). It turns out [40] that the cGTOs
exponents optimized in this way can be employed for distorted
wave functions in the same energy and distance ranges with-
out significant loss of accuracy.

In this work, we formulate, implement, and apply the
c¢GTO approach to study the simple ionization of methane
(CHy4) by electronic or photonic impact. We consider the inner
[2a,, next highest occupied molecular orbital (NHOMO)] and
outer [1z,, highest occupied molecular orbital (HOMO)] va-
lence orbitals. We show that all the transition elements needed
to calculate the observables in both processes can be written
in closed form, and thus easily evaluated. The focus on the
methane molecule is justified in several ways. It is the smallest

hydrocarbon, known to be the most prevalent greenhouse gas
emitted on earth from human and animal activities. Methane
also presents practical interest in astrophysics, radiobiology,
and the development of technological plasma device (see,
e.g., [41] and references therein). In this work, the interest
on methane is primarily motivated by the quite vast number
of fundamental studies available in the literature for the two
processes under consideration; see, e.g., Refs. [3,42-51] about
photoionization and Refs. [52—-68] about differential cross
sections for ionization by electronic impact. This allows for
comparisons of the present cross section results with several
experimentally available data sets and other theoretical re-
sults to test the applicability and efficiency of the proposed
Gaussian approach comprehensively.

The remaining of this paper is as follows. In Sec. II we
present the theoretical framework for both photoionization
and electron impact ionization. Next we describe both the
initial (bound) and final (continuum) molecular states. For the
latter a cGTO representation is used; a table of the optimized
exponents is provided. We then proceed by giving the ana-
lytical formulas that allow one to calculate all the necessary
matrix elements. Results of calculations of ionization cross
sections of the inner (2a;) and outer (1¢,) valence orbitals of
CH, are presented in Sec. III. First, the proposed analytical
Gaussian approach is validated with purely numerical calcu-
lations; then cross sections are compared with data sets from
the literature. Finally, a summary and some perspectives of
future developments are given in Sec. IV.

Atomic units (a.u.) in which 7 =e =m, =1 are used
throughout unless otherwise specified.

II. THEORETICAL FRAMEWORK

In this section we present the one-active-electron frame-
work used to study the simple ionization of methane by
electronic or photonic impact. We first recall the standard ob-
servables of interest and then focus on the proposed Gaussian
approach, leading to analytical formulas for all the integrals
required in the calculations. We will elaborate extensively on
the case of electronic impact ionization, while, for photoion-
ization, only the essential formulas previously introduced in
[40] will be summarized here, for self-consistency.

For both photonic and electronic collisions, we consider
some initial bound molecular orbital ¢;(r) [usually defined in
the molecular (MOL) frame] whose ionization energy is de-
noted V; and occupation number N;. The electronic structure
of CHy is (1a%2a%1t26), and we will focus on the outer and
inner valence molecular orbitals 1#, and 2a; for which experi-
mental data are available. During the collision, one electron is
ejected with wave vector k. and associated energy E;, = k2 /2.
Throughout the paper, we will use the standard partial wave
expansion for the continuum wave function of the outgoing
electron,

2 ~
Y (1) = \/; D e ””k";i’)n’"(f)n'”*(ke), (1)
IR ¢

where u; , is the radial function, §; denotes the phase shift
for a given angular momentum /, and )Z” are the complex

spherical harmonics. The notations 7 and k, stand for the solid
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angles associated, respectively, with r and k, in the laboratory
frame centered on the heaviest atom of the molecule and with
the z axis defined as the direction of the incident projectile.

The laboratory frame (LAB) can be rotated into the molec-
ular frame (MOL) by using Wigner rotation matrices .@;f,)n (,@ )
[69] involving the Euler angles %. The spherical harmonics
transform according to

1
Y moL = Y Dan(Z)Y,"|Las. )

=1

Since in the considered experiments the molecular target is
randomly oriented, an average over all orientations of the
calculated observables must be performed before a theory-
experiment comparison can be done.

A. Photoionization

For self-consistency, we outline the essential formula-
tion for evaluating the two main observables measured in
molecular photoionization experiments, namely, the cross sec-
tion o(k,) and the asymmetry parameter 8. For a detailed
derivation, we refer the reader to [40,51,70,71]. During a
photoionization process, an incident electromagnetic radiation
with energy E, interacts with a molecular target, producing
an ionized molecule and an ejected electron (photoelectron)
in the outgoing continuum state ¥, (r):

¥ + CHs — CHJ + e (Kke),
with energy conservation
E, =E, +V,. 3)

The photoelectron angular distribution is given by the differ-
ential cross section [72,73]

do™ 47’k E, |
dk: c
¢ being the speed of light in vacuum. For a photon with lin-
ear polarization along the direction €, the transition elements

between the initial and the final states can be written in the
dipole approximation as

T 4)

TPK%)

W 1T 1¢0) (5)

J

where the superscript (%) refers to the gauge choice: 7%) =

r in length gauge and 7 = -L-¢ . p in velocity gauge.
To take into account the random molecular orientation, the
common approach consists in a rotation of 7 and Yy into
the molecular frame [see Eq. (2)], followed by an averagé over
all the possible molecular Euler angles & [70,71]. For sub-
sequent calculations, we need to write the rotated transition
operators ’72% in the molecular frame:

T = Z 10( %) —rY”(r)
n=-—1 —/_/
1
=3 2% T (6)

u=-1
and

1
~ -1
T = 2 Do) 7V

n=—1
1
=3 2B T 7
n=—1

In Eq. (7), V,, denotes the spherical tensor components of
the gradient operator [69]. After angular averaging, the dif-
ferential cross section for linearly polarized photons takes the
traditional form [70,71]

doP1&) U(")(k ) w
~— = [1+ B Py(cos ()], (8)
m o B P

where the integrated cross section is
do@
o(%(ke):/ Z N ©)

and the asymmetry parameter ,B(j )is given by

B (k) =5 2. (10)

InEq. (8), 2(x) =
mial, and 6 = (é/,\ke) is the scattering angle in the laboratory

frame. The key quantities to be computed A(L% (k,) are given
by the following sums [40,51]:

%(3x2 — 1) is the second Legendre polyno-

A(Lg)(ke)z—ngy S i e O (MY

¢ Li,my, oy bymo, o

Iy my, i

X (_I)ml_,uvl

y 1 1 L
nr —M2 —p+ U2

where §; stand for the phase shifts of the continuum partial waves (1), <

AA(g)

L.y AT€ the gauge-dependent integrals

A4(@)

QL+1D2L+1D2L+1) (ll L

L>(1 1 L> (11)
0O 0 o0oJ\0O O O

L
my— 2 )’

I L
mp  mp

Iy I
—mp  ny

rl’;) is the 3 j-Wigner symbol [69] and

@ —/(”’k( 0k yn )) T gi(r) dr. (12)
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The calculation of observables relies on an efficient evalua-
tion of these integrals, a task that the present work aims to
accomplish. Their precise form strongly depends on the basis
sets selected for the description of u;, (r) and ¢;(r). More
insights will be given in the dedicated Sec. IIF, where it
is shown that those integrals become analytical when using
c¢GTOs expansions for the continuum radial function.

B. Ionization by electronic impact

We now provide the basic formulas necessary to describe
the simple ionization of methane by electronic impact,

e~ (ko) + CHy — CH; (Q) + ¢ (k¢) + ™ (ke),

where Kg, ks, and K. are the wave vectors of the incident,
scattered and ejected electrons, respectively. Neglecting the
recoil energy of the ionized molecule Q, the conservation of
energy is written as

k2 Kk
Tousses 1

The experimental data analyzed below correspond to rela-
tively high incident and scattered energies, and to asymmetric
energy sharing (i.e., ks > k). Although it entails some degree
of approximation, in such kinematical conditions, we work
here in the framework of the first Born approximation and
neglect exchange between the scattered and the ejected elec-
trons. The triple differential cross section (TDCS) is defined
by [74,75]

d3o (2 _ &ksk‘,‘T.(e’ze) 2 (14)
dQdQ.dE,  4m? ky 'V ’
where the scattering amplitude is given by
T2 = (W |V | W), 1)

In Eq. (15), W' represents the wave function of the system
(incident electron-neutral molecule) before ionization, while
W/ represents that of the system after the collision (scat-
tered electron-ejected electron-ionized molecule). V' denotes
the interaction between the incident electron and the target
composed of M nuclei and N electrons:

Yz Yoo
V= - , 16
,;|Rm—ro|+j;|rj—ro| (10

where rg, r; and R,, are, respectively, the position vectors of
the incident electron, of the jth bound electron and of the mth
nucleus. For a neutral target Z%:] Zn = N.

In the frozen-core approximation, the neutral molecule
CH,; and the ionized molecule CHI are described by
the same molecular orbitals. This approximation leads to the
single-active-electron (position r, N = 1) model where the
dimensionality of the integrals is reduced from 3(N + 1) to 6.
Moreover, if we neglect the spatial distribution of the nuclei
R,, &~ 0 [76], the scattering amplitude becomes

1 1
-— |¢i(l‘)1ﬁo(l’o)>,
[r —ro| [rol
(17)

T = <w,; (1) Y(xo) |

where vy, ¥y, and 'ﬁk_e are the wave functions of the incident,
scattered, and ejected electrons, respectively. We also suppose
that the incident and scattered electrons are described by plane
waves. By using Bethe’s integral, the integration over ry leads
to the following expression in the laboratory frame:

4
T = q_jowf];(r) 4T = 11gi(r).  A8)

with the transferred momentum
q = ko — k. (19)

The matrix element (18) depends on the orientation of the
molecule with respect to the laboratory frame defined by
Euler angles Z. Since the molecules are randomly oriented in
the experiments, an average over all the possible orientations
has to be performed. The explicit calculation of (18) using
Gaussian integrals will be detailed in Sec. ITF.

C. Molecular orbitals

The molecular orbitals of methane considered in this
work are expressed as linear combinations of Slater-type
orbitals (STOs) centered on the heaviest nucleus following
Moccia [77]:

Ni
¢i(r) = Ciyr e Y (). (20)
j=1

Yl;"’ denotes the complex spherical harmonics where the
values of {/;, m;} are chosen depending on the irreducible
representation of the tetrahedral molecular symmetry group
T; and the maximum /; does not exceed 3. The nonlinear
parameters {n;, {;} were optimized together with the geomet-
rical equilibrium configuration by minimizing the total energy
at the Hartree-Fock level, where n; are restricted to integers
< 8. The linear coefficients were obtained by the usual self-
consistent field procedure. The number of STOs actually used
for molecular orbitals of methane is typically N; ~ 7-15. The
C-H distance corresponding to the equilibrium configuration
is 2.080 a.u., and the ionization energy V; is 13.71 eV and
25.05 eV for the 11, and 2a; states, respectively.

D. Continuum wave functions
The radial functions u; t, (r) in the partial wave expansion
(1) are the solution of the ordinary differential equation,
1d>  I(I+1)
2dr? 2r2

k2
+ UmOI(r)]uz,kg(r) = Eeuz,ke(l’% 21

where U™!(r) is a molecular central potential felt by the
ejected electron. Although it is not a very proper approach,
the approximation of a molecular potential with radial sym-
metry is justified here by the tetrahedral symmetry of the
CH,4 molecule. A substantial advantage of using such a central
potential is that the explicit calculation of the angular average
over Euler angles in the (e, 2¢) case can be bypassed [62,78].
In this contribution, we have investigated two choices for the
potential U™ (r).

As a very first approximation, it is possible to consider a
pure Coulomb potential U™!(r) = —z/r, the ejected electron

052810-4



CALCULATION OF ELECTRON-IMPACT AND ...

PHYSICAL REVIEW A 109, 052810 (2024)

CH4 (2a;) CHg4 (1t)

251
ro)
E 2.0 A
C
S 15
(@)
9]
W 101
[7)]
§ 0.51 —— GTOs-(L)
(@) —— cGTOs-(V)

0.0

1.8

1.5

0.9

0.6 1

0.3

===~ Stener 2002

===+ Novikovskiy 2019
X Backx 1975

<+ Van der Wiel 1976
® Marr 1980

0.1

25 30 35 40 45 50 55 60 65 70 15 20 25 30 35 40 45 50 55 60

Photon energy (eV) Photon energy (eV)

FIG. 1. Partial photoionization cross section ¥ (k,) (top panels) and asymmetry parameter 8‘“)(k,) (bottom panels) as a function of
the photon energy E, [in eV, see Eq. (3)], for orbitals 2a, (left panels) and 1¢, (right panels) of CH,. Present results using cGTOs in both
length (L) and velocity (V) gauges are compared with results from other theoretical methods: TD-DFT by Stener et al. [48] (dashed line) and
single-center method of Novikovskiy et al. [50] (dark red dotted line), and experimental points: Backx and Van der Wiel [44] (green diagonal

crosses), Van der Wiel et al. [45] (straight violet crosses), and Marr et al. [46] (red spots).

feeling over the whole space the asymptotic charge z = 1.
The Coulomb phase shift is given by §; = arg[I'(l + 1 + 1n)]

J

up i, (r) =F(n, k.r)

= (2k,r) e 7

2T (20 +2)

with the Sommerfeld parameter n = —z/k., and the radial
functions are the regular Coulomb functions,

ek R+ 14 1n, 20 +2; —2ik,r), (22)

where | F| is the Kummer confluent hypergeometric function [79,80].
The Coulomb approximation is quite crude. As an improvement, we also consider a distorted model. We assume that the
ejected electron feels a distorted radial potential, obtained as the angular average of the static exchange potential associated with

molecular orbital ¢; [62,78,81]:

M Nvo N2

Zm |¢i’(r)|
U, R, =-S — 2—84) | dr L 23
(r. (R,,)) m§=1: |r—Rm|+,.§,=1:( ,)/ L (23)

Index i’ denotes the molecular orbitals in the form (20) and
Nmvo = 5 is the total number of doubly occupied orbitals for
methane: lay, 2ay, 1ty 1tyy, and 1f,. The charge Z,, is 6 for
the carbon atom and 1 for each hydrogen atom while R,, is the
position of the mth nucleus. By applying an angular average to
this anisotropic potential [78,81], we obtain a radial potential
Uim"] (r), labeled with respect to the selected ionized orbital ¢;.
It turns out that using STOs as in (20) for ¢y such potential
has an analytic expansion in terms of incomplete Gamma
functions [78]. This average model potential (see Fig. 2 in
[62]) is dominated by the carbon nucleus charge at small
distances, Uim"l(r) ~ —6/r, it possesses a local minimum at
r = 2.08 a.u. corresponding to the radial distance of the hy-
drogen atoms, and it behaves as a Coulomb-like potential at
large distances, Uim"l(r) ~ —1/r. Distorted continuum wave

(

functions u; x,(r), for a given energy range and over a finite
spatial grid, can then be numerically calculated using for
example the RADIAL code [82].

E. Representation of the continuum wave functions using
optimal sets of complex Gaussians

The key idea to simplify the calculations of the transition
matrix elements is to employ cGTOs to represent the radial
functions, solutions of the differential equation (21),

N
PORES| —[as]i 12
u i, (r) = r't E [esl g e, (24)

s=1

The exponents {«;} and the coefficients {c;} of cGTOs are
complex-valued; the real part of the exponents is positive
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FIG. 2. TDCS for ionization by electronic impact of the inner
(2a,) valence orbital of CHy4, as a function of ejection angle 6,, at
fixed scattering angle of 6; = —6°, E; = 500 eV, E, = 37 eV (as in
the experiments of Lahmam-Bennani et al. [52]). For a Coulomb
wave for the ejected electron (red line) or a distorted wave (black
thick line), the results obtained with the cGTO approach are com-
pared to the purely numerical ones (blue and orange dashed lines).
The vertical lines indicate the momentum transfer direction and its
opposite.

as to ensure integrability. Compared to the expansion pro-
posed and used in [26,40], numerical efficiency is improved
by systematically introducing the term r/*! that reproduces
the correct behavior of u;, (r) at small r [see behavior in
Eq. (22) for the pure Coulomb case]. Note that the coefficients
depend on the partial wave number / and the wave number
k. while the exponents depend only on /. In other words, for
a fixed /, we use a series of N exponents to represent a set
of radial functions {u,}; with different &,; for each function
within this set, a combination of N linear coefficients [c;]; x, is
optimized.

1. Optimization of the exponents for Coulomb functions

The aim is to generate suitable sets of cGTOs that incor-
porate the behavior of continuum wave functions required
to describe an electron ejected with an energy up to, say,
k?/2 ~ 2 a.u.. Here we outline the numerical approach used
to generate such optimal sets of complex exponents. For more
technical details we refer the reader to [26,40].

We consider L + 1 sets of regular Coulomb functions (22)
defined as

T AF(r) = F(n, kyr)bo= (25)

»+++5 Vmax

for | =0,...,L. In each set we take vp,x =7 regular
Coulomb functions defined on a momentum grid k, = 0.5 +
0.25(v—1) au., v=1,...,7, up to a comfortable radial
distance R = 30 a.u. For each set .%;, we optimize N = 30
¢GTOs with complex exponents {«1, ..., ay};. The optimiza-
tion is performed using a two-step iterative algorithm where
the exponents and the coefficients are alternatively optimized.
After picking some initial choice of exponents spanning a
large interval of real parts following Ref. [26], (1) a linear

least-squares optimization is applied to update the coeffi-
cients {c,} for the current set of exponents and (2) the set of
exponents {o;} is updated to minimize some cost function
using a nonlinear method. Step (1) is performed by a least-
squares fitting technique, while the second step makes use of
a trust region algorithm [83]. The optimization of the N = 30
complex exponents is equivalent to a 2N = 60-variable op-
timization in real space. The trust region algorithm requires
reasonable initial values for the Gaussian exponents. From
our experience [40], picking the initial values of the real
parts so that they span a large domain (following a geometric
progression, typically from 10~ to 10%) allows the optimiza-
tion to perform efficiently. We iterate over steps (1) and (2)
until a reasonable convergence is reached. The cost function
was chosen as a normalized sum over the modulus of the
differences between the fitted functions (25) and their cGTOs
expansions (24) on the radial grid. An extra penalty function
was added to this sum in order to avoid the convergence of
the real part of two different exponents to the same value. Ta-
ble I reports the obtained exponents for [ =0, ..., 5, ordered
according to their real parts.

Note that the convergence of the optimized exponents with
respect to the number of cGTO has been checked within
the selected ranges of radial distance and energy. Should the
domain of interest be larger than 30 a.u., or should the electron
energy reach much higher values, the basis set would necessi-
tate using more cGTO terms [26].

2. Optimization of the coefficients for distorted waves

Although the cGTOs in Table I are initially optimized to fit
regular Coulomb functions, we have observed that the same
sets of exponents can be used to accurately reproduce dis-
torted radial functions in similar energy and radial ranges (and
even at slightly higher energies). Using the distorted waves
arising from Eq. (21) for a given energy range, we need only
to perform once the linear least-squares optimization of the
coefficients {c,} [step (1) in the algorithm explained above],
which can be done at a low computational cost.

F. Matrix elements evaluation using closed-form integrals

Thanks to the use of cGTOs representation (24), we de-
rive in this section closed-form expressions for all integrals
required to evaluate the observables of Secs. Il A and II B.

1. Photoionization: Dipole transition elements

Using ¢GTOs allows to easily write the dipole transition
elements in both length () and velocity (¥') gauges in
closed form as first demonstrated in [27,40]. Here we summa-
rize the main expressions for each gauge in a more compact
formalism adapted to the Gaussian fitting of the form (24).
After substituting the molecular orbital (20) and the partial
wave expansion of the continuum wave function (1), and per-
forming the angular integrations with standard tools [69,84],
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the transition element (12) can be written as

1

M;f:“ =(=1"c (%ZCU( “moon m; )IC” R” 81,1,£1 S 411 (26)

where the superscript indicates the length ¢4 = £ and velocity ¢ = ¥ gauges. The different factors in (26) read as follows:

(DI, ifl=1;—1,
Ky, = . ) (27)
(D LFT il =141,
=1, R =T (@onj+ 1),
1
= R = —GTk ) + 1 = T b ) Tk (Gomy = D (28)
y .
[
with terms
, 1 ifl=1+1, 09 T2 = T (. %) — Ty (a2 %), (34)
S P FNS Ry B where
The Rﬁ) quantities in (28) contain the radial integrals (47-[) 2 1
Jj (D v
defined as T (q: %) = Zc,] Z Pim (RS (35)
e V==l
Tt = [ el a0
0
N;
By substituting now the radial function u; ;, (r) by its cGTOs T(2> a 4r \/Z l Cii(—1)i e o
expansion (24), these integrals are given as a sum of closed- (@:%) = @\ rmk, Z_} u(1)7e T i o)
form integrals: =
lj
al © . D ()Y, (ke 36
T (. n) ~ 2[03]7,k2/ ol gt L g X v;[v vim (R)Y, " (ke)- (36)
=1 0 J— J

N
= e GUasli ¢ L +n+1), (31
s=1

where G can be evaluated as

r 1 11 y2
Gla,y,n) = ((nt])U(nJr 'y>

4a) 2 2 E’ E
Tn+1) 2
SR Dn+1<L>, (32)
Qa) > 2\ V2«

U (a, b; 7) being the Tricomi function and D,(z) the parabolic
cylinder function [79,80]. Numerical values of those two
special functions can be easily computed using standard math-
ematical packages [85].

2. Ionization by electronic impact

We proceed now to the calculation of the transition matrix
element (18) in the (e, 2¢) case. We make use of the Rayleigh
expansion in terms of the spherical Bessel function j, [69,84],

9T — 47 Z 1 jo(gr) Y (@Y (P, (33)
A

of the molecular orbital (20) and of the partial wave expansion
(1) with the Gaussian representation (24). The angular part of
the integration is performed with standard tools [69,84]. The
transition integral (18) can then be written as the sum of two

Equations (34), (35), and (36) take into account the rotation
(2) of the spherical harmonics associated with the § and the k
directions into the molecular frame, with Euler angles Z.In
(36) the radial integrals J; x, are the same as those appearing
in the case of photoionization, namely, (30), and can be cal-
culated through Egs. (31) and (32). In contrast, the elements
S}J/ in the first contribution (35) are a little more complicated,
being defined as

S = 231811/1'"(7/(;) Zlkfl (Im|x, m —v;|l;v;)
I,m A
X (Yxm_‘}j(@))*zl,ke,x(é"j,nj, q), 37)

with the Gaunt coefficients denoted as [69]

{1y Iy 3Ly ma) = / YUY YRR AR, (38)
and the radial integrals defined as

L&, nq) = /000 (up, (M) e " ji(gryrtdr.  (39)

In order to evaluate the integrals Z (39), we use the cGTOs
representation (24), leading to

N oo
a2 —
Lk, (&, n, g~ E [cs];‘,kg/ e lodi 1 g=tr
0

s=1

j)\(qr) rl‘H—H—l dr.

(40)
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The individual integrals appearing in this sum have an oscillat-
ing integrand because of the Bessel function, as investigated
in [86]. Their evaluation may not be easy depending on the

J

(- A P | e’ , e
Ji(2) = 2, Z(_l) ax(r + ) (W - (=D Z2k+1> +
k=0

where the polynomial coefficients are given by
(A +k)!
ar(h+3) =
09

2kk\ (A — k)!

values of ¢, A, g,n, and [. The calculation of (40) can be
facilitated by applying the finite Hankel representation of the
spherical Bessel functions (formulas 10.49.1 and 10.49.2 of
Ref. [87]),

(—ay 102 i it
k 1 Py
> Z (=1 a2k+1()»+§) (Z2k+2+(_1) _zzk“)’
k=0

(41)

k=0,1,...,A
(42)

k=A+1,1242,...

The square brackets in the upper summation boundaries [x] denote the integer part of x, and a sum is ignored if the lower
summation boundary exceeds the upper one. Substituting this expression in (40), we obtain

N

Tiea(@ong) =Y [edi [T @ on g les]) + I3 (¢n, g, [es]))]s (43)

s=1

where the Il(lkzl integrals can also be expressed in terms of the G(«, y, n) integrals given by Eq. (32),

RV At L
II(,lk)e,x(é',n,q, [as]}"):( 2 Z( Yax(h+3)

(Gl ¢ —1g,n+1—2k) = (=1)"G(as]y, £ +1g,n+1—2k)], (44)

2 PR
k=0
[(A=1)/2] k 1
o (=0 (—=Dazyq1(A+ 3
T @mglal)="—— 3 2;2( el
k=0 q
x [Goslf ¢ —1g,n+1—2k — 1)+ (=D*G(a], ¢ +1g.n+1 =2k — 1)]. 45)

Despite the heavy appearance of the above formulas and sums,
each term is actually easy to evaluate because the G quan-
tities just require a good routine for the parabolic cylinder
function [85]. If the initial target state ¢;(r) is expanded over
monocentric GTOs rather than STOs as in Eq. (20), the radial
integrations are much simpler; we refer to [86] for the formu-
las and a detailed numerical investigation.

The transition amplitude obtained through (34) is then sub-
stituted in the differential cross section formula (14), followed
in principle by Euler-angle averaging. This last step can actu-
ally be bypassed in the present calculations, due to the use
of a preaveraged potential U™!(r) (see details in Sec. IID).
We finally get the TDCS for the electron impact ionization of
methane in a very efficient way.

III. RESULTS

The reliability of the proposed Gaussian approach is now
being tested in realistic conditions inspired by experimental
results taken from the literature. We will also compare the
Gaussian results with those of other benchmark theoretical
approaches using similar assumptions. We focus on two target
orbitals of methane, the highest occupied molecular orbital
1t, and the next highest occupied molecular orbital 2a;. We
would like to emphasize that in the method proposed in this
work the most demanding part of the calculation is the opti-
mization of the cGTO exponents. However, this preliminary

(

first step has to be performed only once for a chosen energy
range. Typically, the multidimensional optimization takes one
day with one CPU for each value of /. The subsequent steps,
i.e., the cross section calculations, are relatively rapid due to
the analytical formulation derived in Sec. II: typically, 30 s of
CPU time for each energy abscissa in the case of photoioniza-
tion, and a few hours for one TDCS point at a given angle in
the (e, 2e) case.

A. CH4 photoionization

The photoionization cross section o) (k, ) and asymmetry
parameter 8“)(k,) are presented in Fig. 1. Results of the
c¢GTO approach with the distorting molecular potential (see
details in Sec. IID) are shown for both length and velocity
gauges, together with available experimental points and two
selected theoretical results.

For both orbitals, the Gaussian cross section obtained
in velocity gauge agrees best with the experimental points
(experimental uncertainties are not shown) [44,45]. The the-
oretical results reproduce the main features of the energy
dependency: for the 2a; orbital, the shape of the maximum
around 40 eV and the absolute values are good; for the 1#,
orbital, except at low photon energy, the decreasing shape
and the absolute values of the results agree equally well with
experimental points.
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Cross sections obtained in the length gauge are larger and
clearly overestimate the experimentally observed magnitude;
however, the general tendencies are still correctly recovered.
The Gaussian results are also compared with TD-DFT results
of Stener et al. [48] (obtained in length gauge) and with the
single-center method of Novikovskiy ef al. [50] (obtained in
velocity form). None of them (including the present results)
give uniformly perfect agreement, but the order of magnitude
of the discrepancies between theoretical with experimental
points or among theoretical results remains acceptable.

The bottom panels of Fig. 1 show the results for the
asymmetry parameter, compared with available experimental
points of [46] for the 1z, orbital between 15 and 30 eV (to
our knowledge, no experimental data are available outside this
energy range, nor for the 2a; orbital). The agreement is not so
good, but this is not totally surprising because the asymmetry
parameter is related to the photoelectron angular distribution
which is strongly sensitive to the quality of the wave functions
used in the calculation. In contrast to what is observed for
cross sections, larger absolute values are obtained in velocity
gauge. A comparison with benchmark TD-DFT results [48],
obtained in length gauge, shows that the general trends are
similar. Our velocity gauge results agree best with TD-DFT
results in the case orbital 2a;, whereas length gauge results are
somehow closer to the TD-DFT and to experimental points in
the case of orbital 1z,.

A similar comparison was presented in [40] for two other
XH,, molecules, namely, water and ammonia. In all cases,
including the present calculations on CHy, the cGTO descrip-
tion of the continuum is shown to be reliable to calculate
photoionization observables.

B. CH; ionization by electronic impact in coplanar geometry

Our investigation now turns to electronic impact ionization
of methane. Several series of experimental data collected in
coplanar asymmetric geometry are considered here for com-
parison and assessment of the cGTO calculations.

We have first calculated the TDCS for the kinematic pa-
rameters of the Lahmam-Bennani et al. experiment [52] where
the scattered electron is detected at an energy of 500 eV,
with ejected electron energy of 12 eV, 37 eV, or 74 eV, and
a scattering angle of the fast outgoing electron at ; = —6°.
In this experiment, the low-energy electron analyzer is swept
around the plane over angular ranges 6, € [25°, 160°] and
6, € [200°, 335°]. In such kinematical and geometrical con-
figurations, the angular distributions feature two peaks: one
close to the momentum transfer direction (known as binary
peak) and one in the opposite direction (known as recoil peak).
The cGTO results for the ionization of the inner 2a; orbital
are shown in Fig. 2 for an ejected electron energy E, = 37 eV
with two different choices of the continuum wave function: ei-
ther a pure Coulomb wave (a quite crude choice) or a distorted
wave (see details in Sec. II D). Calculations based on ana-
lytical integrals using cGTO expansions are compared with
results obtained with numerical integrals, that is to say, using
the “exact” original wave functions and numerical quadrature.
The perfect agreement shows that the cGTO representation
of the continuum and the associated analytical integrals are
fully reliable. The same agreement is found also for other

kinematical situations and also when ionizing the 1¢#, orbital.
This being ascertained, all the TDCS to be presented hereafter
have been obtained with the Gaussian analytical approach
proposed in this work. In Fig. 3 we compare theoretical and
experimental results, for both the 2a; and 1#, orbitals, and for
three values of the ejected energy. All other theoretical curves
and experimental points have been normalized to the maxi-
mum point of the distorted wave calculation at the main binary
peak, independently for each panel of Fig. 3. Our theoretical
results using the Coulomb wave function reproduce those
published TDCS within the same approximation [52,62] (not
shown in Fig. 3) [88]. The obtained TDCS recover the main
binary peaks but clearly fail to reproduce the recoil peaks ob-
served in the measurements. The distorted wave calculations
lead to a better agreement, especially for the 2a; orbital where
the relative amplitudes of the recoil and binary peaks agree
quite well with the experiment. Our distorted wave results are
globally similar to those obtained within the complex Kohn
method (CKM) [57] in which the interaction between the
ejected electron and the residual molecular ion is treated in
a close coupling method (in [57] the spatial distribution of the
hydrogen nuclei is properly taken into account; see Ref. [76]).
They are also very similar in both shape and magnitude (not
shown) to those obtained with the multicenter distorted-wave
method (MCDW) [63] in which the continuum wave function
of the slow ejected electron is calculated in a multicenter po-
tential of the residual ion. The similarity in calculated TDCSs
indicates that the anisotropic potential plays no major role,
at least for methane and for the considered geometrical and
kinematical configuration.

The three calculations (present cGTO distorted wave,
MCDW [63], and CKM [57]) provide an agreement with the
measurements that is overall acceptable. As expected from the
first Born approximation, the cGTO TDCS is symmetric with
respect to the momentum transfer direction and the angular
shift of the experimental binary peak is not reproduced.

As asecond test, we have explored the kinematical parame-
ters presented in the more recent experiments of Ali ez al. [66],
i.e., an incident electron energy of 250 eV, an ejected electron
with either energy 50 eV or 30 eV, and several fixed scattering
angles of the fast outgoing electron (6, between —20° and
—30° with 2.5° steps). The low-energy electrons are detected
over the angular range 6, € [27.5°, 130°], with a focus on the
binary region. The cGTO TDCS are presented in Fig. 4 for
the target orbital 1¢, with an ejected electron energy of 50 eV.
Figure 4 also collects the experimental data and some of the
theoretical results of [66]. In this experiment, the data associ-
ated with different scattering angles were internormalized so
that only one point, the maximum of the 6, = —20° curve, was
used to normalize the experimental data to the distorted wave
calculation for all panels of Fig. 4. The earlier measured data
of [59] at 6, = —20° are also reported. The distinctive feature
of the TDCS from 11, state is the splitting of its binary peak
into a double peak appearing with increasing scattering angle,
due to the p-type character of this orbital, as previously pre-
dicted in [62] and observed in [66]. Again, the present cGTO
results compare quite well with the experimental results.
The double peak structure is well reproduced. As expected,
the angular shift of the binary peak from the direction of the
momentum transfer direction is not recovered due to the first
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FIG. 3. TDCS for ionization by electronic impact of the inner (2a,, left panels) and outer (1z,, right panels) valence orbitals of CHy,
as a function of ejection angle 6,, at fixed scattering angle of 6; = —6°, with kinematical parameters of Lahmam-Bennani et al. [52], E; =
500 eV, E, = 12 eV (upper panels), 37 eV (middle panels), and 74 eV (lower panels). The present cGTO calculations with the ejected electron
described by a Coulomb wave (red line) and a distorted wave (black thick line) are compared with the complex Kohn method (CKM) results
(blue dashed line) [57] and the experimental points [52]. The vertical lines indicate the momentum transfer direction and its opposite. The
relative experimental data have been normalized at the binary peak maximum to the cGTO theoretical curve obtained with the distorted

potential.

Born approximation. Comparison within theoretical results
remains very satisfactory, the cGTO calculation being close to
the results of earlier calculations using generalized Sturmian
functions (GSFs) [66,78]. Both are symmetric with respect to
the momentum transfer and differ from the results obtained
with the molecular three-body distorted wave (M3DW) ap-
proach [2,66]. This is to be expected since the latter uses for
the initial bound state a Dyson molecular orbital for the active
electron, and for the final state two distorted waves multiplied
by an electron-electron distortion factor; moreover, contrary
to our case, exchange is included. The discrepancies between
the theoretical methods (GSF and M3DW), and between the-
oretical and experimental points, have been analyzed in [66].
The present results confirm this global picture with a similar
agreement as the orders of magnitude are concerned. Indeed,
since the TDCS have been internormalized, Fig. 4 provides
not only a visual comparison of the shapes but also an insight
of the TDCS relative magnitudes at different scattering angles.

Similar conclusions can be drawn from the analysis of
Fig. 5 where the TDCS is shown for an ejected electron energy

of 30 eV, all other parameters remaining unchanged. With
this lower ejection energy, the agreement between theory and
experiment is better at low scattering angles. Discrepancies
appear at larger scattering angles when the double peak fades
in the experimental data but remains in the present cGTO
(Coulomb or distorted) and GSF theoretical curves.

TDCS calculation using cGTO-expanded wave functions
and analytical integrals thus succeed in reproducing the
main features of experimental (e, 2¢) TDCS for methane in
coplanar asymmetric geometry and with different sets of kine-
matic parameters. These results validate the present Gaussian
methodology as a reliable tool for the theoretical description
of collision processes involving continuum states.

IV. SUMMARY

We have studied theoretically the ionization of the inner
(2a;) and outer (1#,) valence orbitals of the CH; molecule,
by both photon and electron impact. Inspired by the available
experimental data, we have considered here ejected electrons
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FIG. 4. TDCS for ionization by electronic impact of the outer
(17;) valence orbital of CHy, as a function of the ejection angle
0., for different values of the scattering angle (from top to bottom)
0, = —20°, —22.5°, —25°, —27.5°, and —30° with kinematical pa-
rameters of Ali et al. [66], E; = 250 eV, E, = 50 eV. The present
¢GTO calculations with the ejected electron described by a Coulomb
wave (red line) and a distorted wave (black thick line) are com-
pared with the theoretical (M3DW, dashed blue, and GSF, dashed
orange) curves and with the experimental points published in [66].
For 6, = —20°, the experimental points of [59] are also shown. The
vertical dotted lines indicate the momentum transfer direction. The
experimental data, as well as the M3DW and the GSF results, have
been normalized to the cGTO curve obtained with distorted potential
at the binary peak maximum for ; = —20°.

with energy up to about 2.7 a.u. For the photoionization,
within the dipolar approximation, we have looked at the
energy dependence of the cross section and the asymmetry
parameter related to the angular distribution of the ejected
electron. For the electron impact ionization, within the first
Born approximation, we have focused on the angular distribu-
tions of the triple differential cross sections related to (e, 2e)
experiments in coplanar asymmetric geometries, in which the
incident electron is scattered with an energy much larger than

E=250 eV, E,=30 eV
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M3DW — - |
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FIG. 5. Same as Fig. 4 but for E, = 30 eV. The experimental
data, as well as the M3DW and the GSF results, have been normal-
ized to the cGTO curve obtained with distorted potential at the binary
peak maximum for 6, = —20°.

the ejected electron. For both processes, we have worked
within a one-center approach, and with bound molecular tar-
get states described by Slater-type orbitals provided in the
literature. The ejected electron is described by a continuum
state of a model molecular central potential; the corresponding
radial function is subsequently represented by a finite sum
of complex Gaussian-type orbitals, i.e., GTO with complex-
valued exponents. With these ingredients, we have provided
the formulation to calculate all ionization matrix elements
analytically. The present paper has given solid evidence that
the calculation scheme works very well.

In spite of the approximations, the calculated ionization
observables for CHy are of fair quality. For photoionization,
when compared to other theoretical results and experimental
data, an overall acceptable agreement is found in the velocity
gauge, especially for the outer 1z, orbital. For electron impact
ionization, and for different sets of kinematical and geometri-
cal parameters, a reasonable agreement is found with TDCS
obtained by other theories using similar approximations and
also with measured angular distributions.
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In our opinion, more importantly than the calculated cross
sections it is the approach itself which opens yet unexplored
perspectives. The originality stands in the use of ¢cGTO to
represent the continuum radial function. In the present study
such representation is demonstrated to be sufficiently accurate
for energies up to 2.7 a.u. and spanning a radial domain
of 30 a.u. It is used here in combination with one-center
molecular bound states described by a sum of Slater-type
orbitals, leading to ionization matrix elements in closed form.
The analytical formulation is even simpler if monocentric
Gaussian-type orbitals are used. With practically no effort,
it can be readily adapted for both ionization processes, the
radial integrals reducing to well-known Gaussian integrals
(we refer to [86] for the formulas and a numerical investiga-
tion). The proposed approach allows one to envisage treating

molecular processes, for example, with large molecules as
long as the wave function is practically negligible beyond
30 a.u. (as was the case for a small molecule such as
CH,). Moreover, the analytical character of the matrix ele-
ments is maintained also in a multicentric GTO description
of the target. In that case, the formulation, whether in ra-
dial or Cartesian coordinates, makes use of the Gaussian
mathematical properties extended to the complex plane [89].
As a consequence our Gaussian approach should allow us
to consider studying molecular processes with molecules
whose orbitals are issued, for example, by the Gaussian
package [90]. Finally, it is our intention to further develop
the method by considering multicentric continuum states,
whose ¢GTO representation would lead to an all-Gaussian
approach.
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