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Kubo-Anderson theory of polariton line shape
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We apply the Kubo-Anderson stochastic theory of molecular spectral line shapes to the case of polaritons
formed in the collective strong-coupling regime. We investigate both the fast and slow limits of the random
frequency modulation of the emitter as well as the intermediate regime and show how the interplay between the
characteristic timescales of the cavity and the molecular disorder is expressed in the observed polaritons line
shapes. The analytical solution obtained for the slow limit is valid for any ratio between the inhomogeneous
broadening of the molecules and the Rabi splitting, which is especially relevant for molecular polaritons where
these two quantities can be of the same order of magnitude.
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I. INTRODUCTION

When the interaction between a photon and an electronic
or vibrational transition is strong enough that their rate of
energy exchange exceeds that of their respective losses, new
hybrid light-matter states known as polaritons are formed [1].
One of the most interesting features of this strong light-matter
coupling regime is the collective interaction of an ensemble
of emitters with the electromagnetic field in optical cavities.
Spectroscopically, this collectivity translates into an energetic
(Rabi) splitting between the two polariton modes that scales
with the square root of the number of emitters [2]. This col-
lective response and the concept of a polariton as a coherent
superposition of states with many different excited molecules
naturally raises a question about the possible role of disorder.
An interesting spectroscopic as well as numerical observation
is that, in the presence of static disorder and for a suffi-
ciently large Rabi splitting, the polariton linewidth does not
inherit the inhomogeneous broadening of the cavity-free emit-
ters [3–6]. Instead, the polariton broadening is exclusively due
to the homogeneous linewidth of both of its constituents, the
cavity and emitter resonances.

Several works have investigated this subject and closely
related matters in the past, mostly within the context of
semiconductor microcavities [4,5,7–20]. Typically, numeri-
cal simulations were carried out to investigate the effect of
static disorder on the polariton linewidth, while the effect of
(fast) dynamic disorder, which is responsible for the homo-
geneous broadening, is usually treated phenomenologically.
Despite recent interest in the role of disorder in polaritonic
phenomena [21–47], especially within the context of molec-
ular polaritons (in which molecular transition bands are quite
broad in comparison to atomic systems or semiconductors),
an analytic theory capable of describing the effect of both
static and dynamic disorders in the polariton line shape is
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missing. We address this point by extending the Kubo-
Anderson theory of a stochastic molecular line shape [48–53]
to the case of many molecules that respond collectively to an
optical excitation and, via the same collective response, form
polaritons when interacting with resonance cavity modes.
Typically, within Kubo theory, the fast and slow limits of
frequency fluctuations are characterized as the limits of a unit-
less modulation parameter α ≡ τc� [53] (see below), which
reflects the competition between two timescales: the timescale
for frequency modulations τc and the inverse magnitude of the
amplitude of these frequency modulations 1/�. Our present
extension of the theory to the N-molecule case requires that
we account for an important third timescale: the inverse of the
Rabi splitting 1/�R, which encompasses both the molecule-
cavity-mode coupling strength and the collective response of
the molecular system. Our theory yields simple analytical
results in the slow and fast limits of the disorder dynamics
and can be evaluated numerically for the intermediate case.
The line-shape expression we obtain for the slow limit is valid
for any ratio between the inhomogeneous broadening of the
molecules and the Rabi splitting �/�R, which is especially
relevant for molecular polaritons, in which the broadening
due to static disorder can be a significant fraction of the
Rabi splitting.

A. Kubo-Anderson theory of stochastic molecular line shape

The starting point of the Kubo-Anderson theory of stochas-
tic line shape is to model a molecular transition as a classical
harmonic oscillator whose frequency randomly fluctuates
about a central frequency ω0 due to the interaction with a
thermal environment [53]. The dynamics of such an oscillator
is described by the following equation of motion:

ȧ = −i[ω0 + δω(t )]a. (1)

The main assumption of the model is that the stochas-
tic time-dependent frequency fluctuation δω(t ) caused by
environmental motions is a random stationary Gaussian
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process characterized by an average 〈δω(t )〉 = 0 and an
autocorrelation function for which a common model is
〈δω(t )δω(t + τ )〉 = �2e−τ/τc with a correlation time τc =

1
�2

∫ ∞
0 dτ 〈δω(t )δω(t + τ )〉, where � =

√
〈δω2〉 is the ampli-

tude of the random frequency modulations. The line shape
may then be obtained by calculating the Fourier transform
of the autocorrelation function of the amplitude a, I (ω) =∫ ∞
−∞ dt e−iωt 〈a∗(0)a(t )〉, and different physical behaviors are

encountered depending on the relative magnitude of the corre-
lation time τc and the amplitude of the frequency modulations
�. Analytical solutions can be obtained in two extreme limits
characterized by the magnitude of the dimensionless parame-
ter α ≡ τc�.

(1) α � 1 represents the fast limit, that is, the situation
where the dynamics of the environment is fast relative to
that of the oscillator. A Lorentzian line shape I (ω) = 2�

ω2+�2

is obtained in this limit with a half width at half maximum
� = τc�

2 = α� that can be much narrower than the am-
plitude of the frequency modulation, a phenomenon known
as motional narrowing that has been extensively investigated
in NMR spectroscopy [54–56]. Note that the fast limit of
the Kubo-Anderson theory is equivalent to the Markovian
Bloch-Redfield theory, where it becomes clear that the in-
trinsic relaxation of the system (with contributions from both
population relaxation and pure dephasing) is responsible for
the so-called homogeneous broadening.

(2) α � 1 corresponds to the slow limit where the dynam-
ics of the bath is slow compared to the inverse of the amplitude
of the random frequency modulations. A Gaussian line shape

I (ω) =
√

2π
�2 e− ω2

2�2 is obtained in this case, characterized by
a width � whose inhomogeneous character stems from the
fact that each oscillator in an ensemble will experience dif-
ferent frequency shifts because of the slow dynamics of the
environment, i.e., every oscillator will experience a “different”
environment.

II. THEORY OF THE POLARITON LINE SHAPE

The Kubo-Anderson solution of the line shape of randomly
modulated molecules treats a single molecule interacting with
the radiation field and takes an average over an ensemble of
such molecules. A naive extension to the molecule-in-cavity
problem would be to consider an ensemble of systems, each
comprising a single molecule and a cavity mode. However,
such an extension is not relevant to many realistic experimen-
tal situations where the strong-coupling regime is achieved
by employing many molecules collectively coupled to the
cavity mode. By contrast, a physically sound extension of the
Kubo-Anderson model consists of a cavity photon ac coupled
to N molecules a j , essentially a Tavis-Cummings model [57]
with modulated molecular transition frequencies. Note that
the (static) disordered Tavis-Cummings model was recently
investigated via the Green’s-function approach [30,36–38],
and external environment effects on polaritonic response
have also been studied [58,59]. Here we follow Anderson and
Kubo and investigate both the static- and dynamic-disorder
cases and the transition between them. We represent the
molecules by classical harmonic oscillators [60] which, un-
der driving by an incident radiation field Fe−iωt [61], evolve

according to [62]

ȧc(t ) = −iωcac − iu
N∑
j

a j − κac + iFe−iωt ,

ȧ j (t ) = −i[ωm + δω j (t )]a j − iuac − γ a j, (2)

where ωc is the photon frequency, ωm is the time-independent
molecular transition frequency, δω j (t ) is the random fre-
quency modulation of the molecular transition, u is the
single-molecule coupling strength, and κ and γ are the
dampings of the photon and molecules, respectively [63]. In
the on-resonance case with ωc = ωm, the cavity response in
the strong-coupling regime is characterized by two polari-
ton peaks separated by the (collective) Rabi splitting �R =
2
√

Nu. At steady state, the solutions oscillate with the driving
frequency, i.e., ac(t ) = āc(t )e−iωt and a j (t ) = ā j (t )e−iωt , so
the equations of motion become

˙̄ac(t ) = −iω̄cāc − iu
N∑
j

ā j − κ āc + iF, (3a)

˙̄aj (t ) = −i(ω̄m + δω j (t ))ā j − iuāc − γ ā j, (3b)

where we have defined ω̄c ≡ ωc − ω and ω̄m ≡ ωm − ω.
The average total energy of the system 〈E (t )〉 = ωc〈a∗

c ac〉 +∑N
j ωm〈a∗

j a j〉 [64] satisfies, at steady state,

〈
dE

dt

〉
=

〈
dE

dt

〉
in

+
〈

dE

dt

〉
out

+
〈

dE

dt

〉
cav−mol

= 0, (4)

allowing us to identify the pumping and damping contribu-
tions as well as the energy exchange between the cavity and
the molecules,〈

dE

dt

〉
in

= iωc(F 〈ā∗
c 〉 − F ∗〈āc〉), (5a)

〈
dE

dt

〉
out

= −2κωc〈|āc|2〉 − 2γωm

N∑
j

〈|ā j |2〉, (5b)

〈
dE

dt

〉
cav−mol

= iu
N∑
j

(ωc − ωm)(〈ā∗
j āc〉 − 〈ā∗

c ā j〉). (5c)

The absorption line shape may be obtained by evaluating

I (ω) = i(F 〈ā∗
c 〉 − F ∗〈āc〉) (6)

as a function of the incident frequency ω. To this end we need
to find only 〈āc〉. For a single molecule outside the cavity, this
approach leads to the familiar Kubo-Anderson result (see the
Appendix for details).

We proceed by integrating Eq. (3b),

ā j (t ) = ā j (t0)e−iω̄m (t−t0 )−γ (t−t0 )−i
∫ t

t0
δω j (t ′′ ) dt ′′

− iu
∫ t

t0

dt ′ e−iω̄m (t−t ′ )−γ (t−t ′ )−i
∫ t

t ′ δω j (t ′′ ) dt ′′
āc(t ′), (7)
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where the first term corresponds to the transient and only the
second contributes to the steady-state solution. Using Eq. (7)
in Eq. (3a), we find

˙̄ac(t ) = −(iω̄c + κ )āc + iF

− u2
N∑
j

∫ t

−∞
dt ′ e−iω̄m (t−t ′ )−γ (t−t ′ )e−i

∫ t
t ′ δω j (t ′′ )dt ′′

āc(t ′).

(8)

Also, at steady state (i.e., t → ∞), āc(t ′) can be taken outside
the integral using the following argument: When t ′ is large
(i.e., t ′ → t), āc(t ′) is a constant, while when t ′ is small (i.e.,

t ′ → −∞), the term vanishes. This leads to

˙̄ac(t ) = −(iω̄c + κ )āc + iF

− u2āc

∫ t

−∞
dt ′ e−iω̄m (t−t ′ )−γ (t−t ′ )

N∑
j

e−i
∫ t

t ′ δω j (t ′′ )dt ′′
.

(9)

Irrespective of the timescale of the frequency modulation,

N∑
j

e−i
∫ t

t ′ δω j (t ′′ )dt ′′ ≈ N
〈
e−i

∫ t
t ′ δω j (t ′′ )dt ′′ 〉

(10)

is a reasonable approximation for large N , leading to

˙̄ac(t ) = −(iω̄c + κ )āc + iF − Nu2āc

∫ t

−∞
dt ′ e−iω̄m (t−t ′ )−γ (t−t ′ )〈e−i

∫ t
t ′ δω j (t ′′ )dt ′′ 〉

, (11)

and because at steady state 〈 ˙̄ac〉 = 0, it follows that

〈āc〉 = iF

iω̄c + κ + Nu2
∫ t
−∞ dt ′ e−iω̄m (t−t ′ )−γ (t−t ′ )

〈
e−i

∫ t
t ′ δω j (t ′′ )dt ′′ 〉 . (12)

Knowing that 〈e−i
∫ t

t ′ δω j (t ′′ )dt ′′ 〉 is a function of t − t ′ in the
present model (see the Appendix), we have

〈āc〉 = iF

iω̄c + κ + Nu2
∫ ∞

0 dt e−iω̄mt−γ tφ(t )
, (13)

where the line-shape function φ(t ) appears,

φ(t ) = 〈
ei

∫ t
0 δω j (t ′ )dt ′ 〉

, (14)

a quantity well known in the Kubo-Anderson work [49,50,65].
Equation (13) will be our starting point to investigate the
two limiting cases in which the molecular transition is either
homogeneously or inhomogeneously broadened, as well as
the intermediate regime.

As a final remark, note that in order to obtain a tractable ex-
pression such as Eq. (13) for both the fast and slow limits (see
below), it was crucial to use Eq. (10) before taking ensemble
averages. If we had otherwise set ˙̄ac = 0 in Eq. (9) for the slow
case and taken the average over realizations, we would have
obtained a far more complex expression for 〈āc〉 in the slow
limit that would have required some approximation in order
to be solved.

A. Fast limit

In the fast-modulation limit, one sets φ(t ) = e−�t [49,50].
Equation (13) then leads to

〈āc〉 = iF

iω̄c + κ + Nu2

iω̄m + γm

, (15)

where γm = γ + � is the total relaxation rate of the molecule,
with pure dephasing rate � and lifetime broadening γ . From
Eq. (6) we find the spectrum has a Lorentzian profile,

I (ω) = |F |2 2κ|iω̄m + γm|2 + 2γmNu2

|(iω̄c + κ )(iω̄m + γm) + Nu2|2 , (16)

with the poles located at

ω = ωc + ωm − i(γm + κ )

2

±
√

Nu2 +
(

ωc − ωm + i(γm − κ )

2

)2

. (17)

On resonance, we define ω0 ≡ ωc = ωm, and by assuming√
Nu � (γm − κ )/2, which is reasonable since we are inter-

ested in the collective strong-coupling regime, we find the two
polariton peaks at ω0 ± √

Nu − i
2 (γm + κ ). These peaks are

split by the collective Rabi splitting �R, and each one inherits
half of the original broadening of the cavity and molecular
resonances. In particular when γm = κ , Eq. (16) becomes

I (ω) = |F |2
(

γm

(ω̄0 − √
Nu)2 + γ 2

m

+ γm

(ω̄0 + √
Nu)2 + γ 2

m

)
.

(18)

B. Slow limit

A shortcut to explore the effect of static disorder on polari-
ton broadening is to use the fact that in the slow-modulation
limit, δω j are time independent. Hence, ˙̄ac = 0, and ˙̄a j = 0,
so from Eq. (3) for the on-resonance case we have

āc = iF

iω̄0 + κ + ∑N
j

u2

i(ω̄0 + δω j ) + γ

, (19)

and the line shape for a given realization [using Eq. (6) with-
out the ensemble average] is

I (ω) = |F |2 2κ(
ω̄0 − ∑N

j

u2

ω̄0 + δω j

)2
+ κ2

, (20)
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where for the sake of simplicity we have neglected homo-
geneous broadening (γ = 0). To make progress we expand
the denominator for δω j/ω̄0 � 1 (which is satisfied in the
vicinity of the polariton frequencies where ω̄0 ∼ ±√

Nu for
strong enough coupling) and find

I (ω) = |F |2 2κ(
ω̄0 − Nu2

ω̄0
+ u2

ω̄2
0
WN

)2
+ κ2

, (21)

where we have defined WN ≡ ∑N
j δω j . This random num-

ber is characterized by the average 〈WN 〉 = 0 and variance
〈δW 2

N 〉 = N〈δω2
j 〉. To understand the effect of static disorder

on the position and broadening of the peaks we must analyze
the zeros of the following term:

ω̄0 − Nu2

ω̄0
+ u2

ω̄2
0

WN = 0. (22)

We proceed to solve the above expression for ω̄0 = ω̄0
0 +

�ω̄0, where ω̄0
0 = ±√

Nu and the effect of static disorder is
contained in �ω̄0. To lowest order in �ω̄0 we find

�ω̄0 = − u2

2ω̄0
0

2 WN . (23)

The variance of this term represents the effect that static
disorder has on the broadening and is given by

〈
δ�ω̄2

0

〉 =
(

u2

2ω̄0
0

2

)2〈
δW 2

N

〉 ∼
〈
δω2

j

〉
N

. (24)

We see that 〈δ�ω̄2
0〉1/2 scales like 1/

√
N , confirming that in

the collective regime, polaritons are immune to broadening
due to static disorder for sufficiently large Rabi splitting. Note
that the 1/

√
N scaling result was recently obtained with a

more involved treatment [36].
A general expression for the line shape in the detuned case

(i.e., without insisting that ωm = ωc) can be obtained using
φ(t ) = e− 1

2 �2t2
[49,50] (see the Appendix) in Eq. (13), leading

to

〈āc〉 = iF

iω̄c + κ + Nu2
√

π
2�2

(
1 − iErfi

[
ω̄m−iγ√

2�2

])
e− (ω̄m−iγ )2

2�2

(25)

and

I (ω) = |F |2 2(κ + γ̃ )

(ω̄c + �)2 + (κ + γ̃ )2
, (26)

where γ̃ (ω) ≡ Nu2
√

π
2�2 e− ω̄2

m
2�2 and �(ω) ≡ −γ̃ Erfi[ ω̄m√

2�2
],

with Erfi denoting the imaginary error function; for simplicity
we have disregarded the intrinsic homogeneous broadening γ

in the line-shape expression. This line shape is Lorentzian,
and in addition to the cavity broadening κ there is one of
molecular origin γ̃ . Note that Eq. (26) is valid for any ratio of
the Rabi splitting and inhomogeneous broadening �R/� and
therefore can describe the line shape of molecular polaritons
for the important and common case that the inhomogeneous
broadening of the molecular species is a considerable fraction
of the Rabi splitting.

FIG. 1. (a) γ̃ and (b) � parameters as a function of the driving
frequency. The blue line in (b) corresponds to the exact value, while
the red line corresponds to the approximate one given in Eq. (27).
The dashed black and gray lines indicate the polariton frequencies
[poles of Eq. (26)]. The model parameters used here are ωc =
ωm = 0, κ = 0.02, γ = 0, � = 0.1, α = 50, and �R = 0.6.

In Fig. 1 we plot γ̃ and � as a function of the driving
frequency ω to gain some intuition on the significance of these
parameters, with the dashed lines indicating the polariton
frequencies. We do this for ωc = ωm = 0, κ = 0.02, α = 50,
� = 0.1, and �R = 0.6. We see that γ̃ is a Gaussian function
centered at ωm with a variance of �, which is the amplitude
of the frequency modulations. When the Rabi splitting is
much larger than �, γ̃ does not contribute at the polariton
frequencies, as easily seen in Fig. 1(a), and therefore, the
width of the Lorentzian in Eq. (26) will be solely given by the
cavity resonance broadening κ . Regarding the � parameter
which determines the frequency of the poles of Eq. (26), as
we can see in Fig. 1(b) (blue line), when the driving frequency
coincides with the polariton frequencies (dashed vertical black
lines), �(ω) exactly corresponds to this value.

In Fig. 2 we plot analytical results for the spectrum in the
slow-modulation limit, where we vary the relative size of the
Rabi splitting with respect to the amplitude of the random
frequency modulation �R/�. We see that while outside the
cavity the spectrum has a Gaussian profile, the polariton line
shape in the strong-coupling regime is much narrower, with
a Lorentzian line shape whose width is reduced as the Rabi
splitting increases relative to the inhomogeneous broaden-
ing. Note that for �R/� ≈ 2 the two polariton peaks are
already visible despite the Rabi splitting being only twice
the inhomogeneous broadening. This is a common situation
in molecular polaritons; for instance, in [66] the molecular
band had a Gaussian-like profile with a FWHM ∼ 530 meV,
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FIG. 2. Analytical spectrum for the slow-modulation limit in the
non-cavity case [Eq. (A15)] and for the cavity case [Eq. (26)] for
different ratios of the Rabi splitting divided by the amplitude of
the random frequency modulation, �R/�, where �R = 2

√
Nu. The

model parameters used here are ωc = ωm = 0, κ = 0.02, γ = 0,
� = 0.1, and α = 50.

which corresponds to � ∼ 300 meV, and the Rabi splitting
was ∼600 meV. Also, note that for �R/� ≈ 4 (pink line) the
narrowing in the line shape is already quite noticeable. We
mention in passing that for small �R/�, the two polariton
bands arise from many eigenstates with a small cavity photon
contribution and not two clean polaritons, as already exten-
sively discussed in the literature [21,23,45,66].

We now further investigate the spectrum in Eq. (26) in
the limit where the Rabi splitting is much larger than the
amplitude of the frequency modulations. At the polariton fre-
quencies, for small detuning, ω̄m ∼ ±√

Nu, so by expanding
� and γ̃ for

√
Nu/

√
2� � 1 we find that

�(ω) = −Nu2

ω̄m
+ O

(
1√
N

)
+ iγ̃ (27)

and γ̃ → 0. Thus, in the limit when �R/� � 1, γ̃ vanishes
at the polariton frequencies, and only the cavity broadening
remains. Note that the 1/

√
N scaling is in agreement with

the result we obtained in Eq. (24). In Fig. 1(b) we plot this
approximate � (red line) and verify that in the vicinity of the
polariton frequencies, its value is very close to the exact one
(blue line). Within this limit, the spectrum is then given by the
following Lorentzian [which is consistent with Eq. (21)]:

I (ω) = |F |2 2κ(
ω̄c − Nu2

ω̄m

)2
+ κ2

. (28)

In the strong-coupling regime (
√

Nu � κ/2) and on res-
onance (ω0 ≡ ωc = ωm), the poles of this expression are
located at ω ∼ ω0 ± √

Nu − iκ/2 and ω ∼ ω0 ± √
Nu +

iκ/2 and correspond to the two polariton peaks. In Fig. 3
we plot the spectrum in Eq. (26) (solid lines) and compare
it to the approximate one in Eq. (28) (dashed lines) for
a series of parameters, where we increase the ratio of the
Rabi splitting relative to the amplitude of the random fre-
quency modulations. We observe that as �R/� increases, both
spectra converge.

FIG. 3. Analytical spectrum for the slow-modulation limit cal-
culated with Eq. (26) (solid lines) and Eq. (28) (dashed lines). Note
that as the Rabi splitting increases relative to the inhomogeneous
broadening, the approximate spectra converge to the exact ones. The
model parameters used here are ωc = ωm = 0, κ = 0.02, � = 0.1,
and α = 50.

C. Intermediate regime

We can also explore the intermediate regime where the
correlation time of the random frequency modulations is com-
parable to the inverse of their amplitude, i.e., α ≡ τc� ≈ 1.
To investigate the transition between the slow and fast limits
we numerically calculate the spectrum with Eqs. (6) and (13).
In this general case the ensemble-averaged quantity is given
by [50,65] (see the Appendix)

φ(t ) = exp

[
−α2

(
t

τc
− 1 + e−t/τc

)]
, (29)

with α ≡ τc� determining the transition between the fast
(α � 1) and slow (α � 1) limits. In Fig. 4 we plot numerical
results for varying parameter α, which controls the timescale
of the frequency modulations relative to their amplitude. In
all cases the spectrum smoothly transitions from the dynamic-
to the static-disorder limit. For the two limits, α = 0.02 and
α = 50.0, we plot (black dashed lines) the analytical spectrum
which overlaps with the numerical results. While outside the
cavity the line shape is very different in the fast and slow
limits (Lorentzian vs Gaussian), such a difference is reduced
inside the cavity as �R/� increases. For instance, in Fig. 4(c),
the line shape is fairly narrow regardless of α. Also, in these
plots we can see that the frequency of the polariton peaks
in the slow limit is slightly larger than that in the fast limit
(±2

√
Nu), reflecting the effect of � in Eq. (26). Only when

�R � � do the polariton frequencies for the slow limit coin-
cide with those of the fast limit.

III. POLARITON LINEWIDTH

We further examine the effect of dynamic disorder and
Rabi splitting on the polariton linewidth by fitting the polari-
ton peak to either a Lorentzian,

I (ω) = Ap
γp

(ω − ωp)2 + γ 2
p

, (30)
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FIG. 4. Calculated spectrum for (a) the non-cavity case and cav-
ity cases (b) �R/� = 2 and (c) �R/� = 6 for the fast- (α = 0.02,
red), intermediate- (α = 0.2, green), and slow- (α = 50.0, blue)
modulation limits. The analytical spectrum for the fast and slow
limits is also shown by black dashed lines, overlapping with the nu-
merical results. Note that the non-cavity Lorentzian for the fast limit
in (a) has been multiplied by a factor of 0.05. The model parameters
used here are ωc = ωm = 0, κ = 0.02, γ = 0, and � = 0.1.

or a Voigt profile,

I (ω) = Ap

√
2π

σ 2
p

R[W (z)], z = (w − wp + iγp)√
2σ 2

p

, (31)

where ωp is the central position of the peak, Ap is an am-
plitude, W (z) = e−z2

Erfc[−iz] is the Faddeeva function, and
Erfc denotes the complementary error function. Note that
when fitting our data to a Voigt profile, we extract two pa-
rameters (γp and ωp), both of which are reported below.

In Fig. 5 we show the polariton linewidth as a function of
�R/�. Note that since we are considering the zero-detuned

FIG. 5. Polariton linewidth as a function of �R/� for (a) fast-,
(b) intermediate-, and (c) slow-disorder cases. Linewidth extracted
from fitting to either a Lorentzian profile [Eq. (30)] or Voigt profile
[Eq. (31)]. The model parameters used here are ωc = ωm = 0, κ =
0.02, γ = 0, and � = 0.1.

case, both polaritons are equally broadened. For the fast-
disorder case (α = 0.02), the linewidth is Lorentzian, as
expected. For the intermediate-disorder case (α = 0.2), the
linewidth is also Lorentzian and is slightly reduced as �R/�

increases. For the slow-disorder case (α = 50), polariton nar-
rowing for increased Rabi splitting is more evident, where
one can clearly see a crossover between a Gaussian and a
Lorentzian broadening.

In Fig. 6 we plot the polariton linewidth as a function of α

for the �R/� = 2 case shown in Fig. 4(b). While for α � 1,
i.e., the fast- and intermediate-disorder cases, the linewidth
is Lorentzian, for α � 1, i.e., the static-disorder limit, the
linewidth is Gaussian.

In Fig. 7 we explore the effect of detuning on the lower
polariton linewidth for the slow-disorder case. The different
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FIG. 6. Polariton linewidth as a function of α for �R/� = 2.
Linewidth extracted from fitting to a Voigt profile [Eq. (31)]. The
model parameters used here are ωc = ωm = 0, κ = 0.02, γ = 0, and
� = 0.1.

shapes of the curves reflect the fact that the lower polariton
evolves from more photon-like to more molecule dominated
as the detuning � = ωc − ωm increases. Note that similar
plots were reported in the past for exciton polaritons in semi-
conductor microcavities [8,9] and very recently for molecular
polaritons [44].

IV. CONCLUSIONS

We extended Kubo-Anderson’s theory of the stochastic line
shape to a model problem of coupled, driven, and damped
(classical) harmonic oscillators describing polaritons formed
in the strong-coupling regime. We derived analytic expres-
sions for the polariton line shape in the limits of fast and slow

FIG. 7. The linewidth of the lower polariton (LP) as a function
of detuning, � = ωc − ωm, for different �R/�. The photonic weight
(Hopfield coefficient) is calculated for the LP in the case of a nondis-
ordered Tavis-Cummings model. The linewidth corresponds to the
half width at half maximum extracted from the spectra. The model
parameters used here are ωc = 0, κ = 0.02, γ = 0, �R = 0.5, and
α = 50. The inset zooms into the data points for the �R/� = 10
case.

disorder of the molecular transition frequency and numeri-
cally explored the intermediate regime as well. Our theory
predicts that polaritons inherit half the original homogeneous
broadening of the cavity and molecular resonance, while static
disorder does not contribute to their broadening for large
enough Rabi splitting, in agreement with experimental obser-
vations and previous numerical calculations. Our results also
provide an analytical expression for the polariton line shape
valid for any degree of static disorder relative to the Rabi
splitting, which is especially relevant within the context of
molecular polaritons, in which the inhomogeneous broaden-
ing of the molecular transition can be a significant fraction of
the Rabi splitting.
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APPENDIX: RETRIEVING THE ORIGINAL
KUBO-ANDERSON RESULT

In the original Kubo-Anderson model, the line shape of the
randomly modulated oscillator in Eq. (1) was obtained by cal-
culating the Fourier transform of the autocorrelation function
of the amplitude a [51]. The physical justification behind this
approach is that the Wiener-Khintchine theorem states that the
spectral decomposition of the autocorrelation function of a
random stationary process corresponds to its power spectrum.
Also, the position of the oscillator is x ∼ (a + a∗), and so at
thermal equilibrium, 〈x(0)x(t )〉 ∼ 〈a∗(0)a(t )〉 [65].

In the main text we used a different approach to extend
the Kubo-Anderson theory to the case of the polariton line
shape. In particular, we obtained the spectral response by
calculating the steady state of a collection of coupled, driven,
and damped harmonic oscillators. In the following we show
that this approach reduces to the original Kubo result for
the case of a single molecule. The equation of motion for
a driven and damped oscillator with a randomly modulated
frequency is

ȧ(t ) = −i[ω0 + δω(t )]a − γ a + iFe−iωt , (A1)

where we now drop the j index for the molecule. We are
looking for the steady state, where the solutions will oscillate
with the driving frequency. By setting ā = ae−iωt and ω̄0 ≡
ω0 − ω, the equation of motion reads

˙̄a(t ) = −i[ω̄0 + δω(t )]ā − γ ā + iF. (A2)

In the steady state, the average energy is constant with time,
〈 dE

dt 〉 = 0, yielding

−2γ 〈|ā|2〉 + i(F 〈ā∗〉 − F ∗〈ā〉) = 0, (A3)
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and so the absorption spectrum may be calculated by eval-
uating the first term, which corresponds to the damping
contribution, or the last two terms, which correspond to the
driving energy input.

The solution to the differential equation in Eq. (A2) is
given by

ā(t ) = ā(t0)e−iω̄0(t−t0 )−γ (t−t0 )−i
∫ t

t0
δω(t ′ ) dt ′

+ iF
∫ t

t0

dt ′ e−iω̄0(t−t ′ )−γ (t−t ′ )−i
∫ t

t ′ δω(t ′′ ) dt ′′
. (A4)

We are interested in the long-time dynamics, the stationary
state. By taking t0 = −∞, the first term does not contribute,
and the solution is given by the second term. Hence,

〈ā〉 = iF
∫ t

t0

dt ′ e−iω̄0(t−t ′ )−γ (t−t ′ )φ(t, t ′), (A5)

where

φ(t, t ′) ≡ 〈
e−i

∫ t
t ′ δω(t ′′ ) dt ′′ 〉

. (A6)

This average quantity may be calculated from cumulant aver-
ages as in [67],

φ(t, t ′) = e− 1
2

∫ t
t ′ dt1

∫ t
t ′ dt2〈δω(t1 )δω(t2 )〉. (A7)

For the standard Kubo-Anderson model we assume that
〈δω(t )δω(t + τ )〉 = �2s(τ ), where � =

√
〈δω2〉 and s(τ ) =

s(−τ ). After some manipulation of the integral (as in [65])
one can show that

φ(t, t ′) = e−�2
∫ t̃

0 dτ s(τ )(t̃−τ ), (A8)

where t̃ = t − t ′. Taking s(τ ) = e−τ/τc [52], we obtain

φ(t̃ ) = exp

[
−α2

(
t̃

τc
− 1 + e−t̃/τc

)]
(A9)

which is a function of t − t ′. After a change of variables in
Eq. (A5) we find

〈ā〉 = iF
∫ ∞

0
dt e−iω̄0t−γ tφ(t ), (A10)

where

φ(t ) = 〈
ei

∫ t
0 δω(t ′ ) dt ′ 〉

. (A11)

The fast (α � 1) and slow (α � 1) limits of the Kubo-
Anderson model from Eq. (A9) result in

φ(t ) =
{

e−�t , fast limit, � = τc�
2,

e− 1
2 �2t2

, slow limit.
(A12)

The spectrum may now be calculated analytically with the last
two terms in Eq. (A3) together with Eq. (A10).

In the fast limit, the spectrum is given by

I (ω) = |F |2
(∫ ∞

0
dt eiω̄0t−γ t e−�t +

∫ ∞

0
dt e−iω̄0t−γ t e−�t

)

= |F |2 2(γ + �)

ω̄2
0 + (γ + �)2

, (A13)

which reduces to the Kubo-Anderson result (when γ = 0): a
Lorentzian line shape with width � representing the case of
homogeneous broadening (due to pure dephasing). In the slow
limit the spectrum is given by

I (ω) = |F |2
( ∫ ∞

0
dt eiω̄0t−γ t e− 1

2 �2t2

+
∫ ∞

0
dt e−iω̄0t−γ t e− 1

2 �2t2

)

= 1

2
|F |2

√
2π

�2

(
Erfc

[
(−iω̄0 + γ )√

2�2

]
e

1
2�2 (−iω̄0+γ )2

+ Erfc

[
(iω̄0 + γ )√

2�2

]
e

1
2�2 (iω̄0+γ )2

)
, (A14)

where Erfc is the complementary error function. By setting
γ = 0 we recover the Kubo-Anderson result of a Gaus-
sian line shape representing the case of inhomogeneous
broadening:

I (ω) = |F |2
√

2π

�2
e− ω̄2

0
2�2 . (A15)
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obviously be on the molecule, ȧ j (t ) = −i[ωm + δω j (t )]aj −
γ aj + iFe−iωt .

[63] The relaxation parameter γ is needed to facilitate the steady-
state treatment that follows. It may be set to zero at the end
of the calculation or kept to reflect the finite lifetime of indi-
vidual molecules. Collective (superradiant) relaxation (see, e.g.,
[39,40]) is disregarded in the present treatment.

[64] We have not included the δω j (t ) contribution to the energy
because these fluctuations are much smaller than ωm.

[65] A. Nitzan, Chemical Dynamics in Condensed Phases: Relax-
ation, Transfer and Reactions in Condensed Molecular Systems
(Oxford University Press, Oxford, 2006).

[66] J. Mony, C. Climent, A. U. Petersen, K. Moth-Poulsen, J. Feist,
and K. Börjesson, Photoisomerization efficiency of a solar ther-
mal fuel in the strong coupling regime, Adv. Funct. Mater. 31,
2010737 (2021).

[67] R. Kubo, Generalized cumulant expansion method, J. Phys.
Soc. Jpn. 17, 1100 (1962).

052809-10

https://doi.org/10.1016/j.xcrp.2022.100841
https://arxiv.org/abs/2308.04385
https://doi.org/10.1103/RevModPhys.25.269
https://doi.org/10.1143/JPSJ.9.316
https://doi.org/10.1143/JPSJ.9.935
https://doi.org/10.1007/BF02834709
https://doi.org/10.1063/1.1703941
https://doi.org/10.1103/PhysRev.73.679
https://doi.org/10.1103/PhysRev.170.379
https://doi.org/10.1063/5.0036905
https://doi.org/10.1007/s11433-016-0228-6
https://doi.org/10.1002/adfm.202010737
https://doi.org/10.1143/JPSJ.17.1100

