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Comparative study of fast-electron-impact ionization of a hydrogen
atom in circularly and linearly polarized laser fields
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We consider ionization of the hydrogen atom by fast electron impact in the presence of a laser field with
circular or linear polarization, in the first-order Born approximation in the scattering potential. We use a
semiperturbative approach in which the interaction of the laser field with the incident and outgoing electrons
is treated nonperturbatively by Gordon-Volkov wave functions, while the laser-atom interaction is treated in
first-order perturbation theory. Analytical expressions, in a closed form, for the direct and exchange atomic
transition amplitudes are employed. A simplified formula of the total laser-assisted triple-differential cross
section (TDCS) is obtained at low values of the photon energy and small momentum of the residual ion.
We study the role of laser field polarization and provide a comparative analysis of TDCSs for circularly and
linearly polarized laser fields as a function of polar angles of the outgoing electrons at different photon energies.
An asymmetric noncoplanar scattering geometry is examined, in which the polar and azimuthal angles of the
scattered electron are fixed, while the ejected electron is detected at different angles. The numerical results for
TDCSs by a circularly polarized laser field are compared to those derived by a linearly polarized laser field and
notable differences are found in both magnitude and angular distributions of the TDCSs.
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I. INTRODUCTION

The ionization of atoms by electron impact, referred to
as the (e, 2e) process, is one of the fundamental processes
in atomic physics that allows understanding of the electronic
structure of the target and residual ions and collision dynamics
and is of interest in other fields such as astrophysics or plasma
physics which need accurate scattering cross sections [1–3].
The early (e, 2e) experiments used this process as a tool [4] for
measuring the momentum distribution of the ejected electrons
at high kinetic energies, in coplanar symmetric scattering
geometries. Many (e, 2e) experiments have been performed
with different target atoms and in several scattering configura-
tions, and electron momentum spectroscopy (EMS) has been
developed to provide information on the electronic structure
of atoms and molecules [5–7]. Over the past 40 years the
study of electron-impact ionization of an atom in the pres-
ence of a laser field [8] has attracted increasing interest. The
Coulomb-Volkov wave function was first proposed by Jain
and Tzoar [9] to take into consideration the influence of the
Coulomb field of the nucleus on the slow ejected electron,
and the effect of the Coulomb interaction in laser-assisted
(e, 2e) collisions on hydrogen atoms was studied in many
papers by using various wave functions of the ejected electron
[8,10–12]. Later on, the semiperturbative theory of Byron and
Joachain [13] for laser-assisted electron-hydrogen scattering
in which the atomic dressing was included in the first-order
time-dependent perturbation theory (TDPT) was extended to
the laser-assisted (e, 2e) process in hydrogen [14], showing
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a strong dependence on the laser field parameters, for fast
incident and scattered electrons and slow ejected electrons,
in an asymmetric coplanar geometry. For a bichromatic laser
field, the coherent phase control in electron-hydrogen ioniz-
ing collisions in an asymmetric coplanar scattering geometry
was investigated by Milošević and Ehlotzky [15], at low
photon energies with the atomic dressing described within
the closure approximation. For linearly polarized (LP) and
circularly polarized (CP) laser fields, Taïeb et al. [16] stud-
ied the influence of laser polarization on the laser-assisted
(e, 2e) process in hydrogen for slow ejected electrons in an
asymmetric coplanar geometry and showed that a CP laser
can give a significantly larger TDCS than for the LP case.
Later on, Makhoute et al. [17] showed, for the He atom, that
a CP laser can give a significantly larger TDCS than for the
LP case of the laser-assisted (e, 2e) process at low energies
of the ejected electrons. Recently, new theoretical studies of
laser-assisted EMS for ejected electrons of high energies and
large momentum transfer have shown that the atomic dress-
ing terms, obtained in the closure approximation, modify the
laser-assisted triple-differential cross section (TDCS) at low
photon energies in the symmetric noncoplanar EMS kinemat-
ics, for both LP and CP laser fields [18,19].

Höhr et al. [20,21] reported the first kinematically com-
plete experiment for electron-impact ionization of He atoms
in the presence of a λ = 1064 nm laser pulse for fast electrons
of 1 keV and observed significant differences of the TDCSs
in comparison to the results obtained in the absence of the
laser field. More recently, Hiroi et al. [22] observed laser-
assisted electron-impact ionization of Ar atoms and reported
that the intensity of the angle integrated signal for one-
photon absorption was about twice as large when compared to
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previous theoretical calculations in which the atomic dressing
was neglected [10,11].

The goal of the present work is to study the ionization of
hydrogen by fast electron impact in the presence of a laser
field in the general case of asymmetric noncoplanar scatter-
ing geometries. The laser-assisted processes have a nonlinear
character, which consist in absorption (emission) of photons
from (to) the laser field, and from a theoretical point of
view, the H atom is the most interesting simple target and
closed-form expressions for the TDCS can be derived. An-
other motivation of our paper is to check if the enhancement
effect of the CP versus the LP laser field is still present in
the case of fast projectile and ejected electrons. We inves-
tigate the role of laser field polarization on the TDCS for
the laser-assisted (e, 2e) process and perform a comparative
analysis of TDCSs by circularly and linearly polarized laser
fields. Because the laser-assisted (e, 2e) process is a complex
problem, a semiperturbative approach is used as described
in our previous work [23], and our theoretical framework
presents the following distinctive features. The interaction of
a laser field with the incident and outgoing electrons is treated
nonperturbatively by Gordon-Volkov wave functions [24,25],
while the laser-atom interaction is treated in the first-order
perturbation theory in the laser field. We consider nonrela-
tivistic collisions in which the kinetic energies of the incident
and outgoing electrons are much higher than the atomic unit
and therefore we are able to use the first-order Born approx-
imation in the electron-atom scattering potential taking into
consideration the exchange effects [26,27]. The influence of
the residual ion on the outgoing electrons is neglected, be-
cause the Coulomb field of the residual ion is weak compared
to the laser field strength [28–30]. In order to avoid direct one-
and multiphoton ionization processes, the intensity of the laser
field is considered moderate, i.e., much lower than the atomic
unit, 3.51 × 1016 W cm−2. In contrast to earlier theoretical
works involving laser fields of circular polarization [16,18],
the present semiperturbative approach is beyond the two-level
model; it not only includes the atomic dressing effects at low
photon energies, but takes into consideration the exchange
effects and is valid for incoming and outgoing electrons of
high energies.

The organization of the paper is the following. In Sec. II
we briefly describe the theoretical approach used in the laser-
assisted ionization of the H atom by fast electron collisions
and introduce the analytical expressions for the transition
amplitudes and TDCS. At low-photon energies, we derive a
simplified analytic formula of the total TDCS in the laser-
assisted (e, 2e) ionization process, summed over the number
of exchanged photons, which includes the atomic dressing in
the lowest order in the photon energy. We also examine the
factorization of the TDCS formula at low photon energies. In
Sec. III we present our numerical results, where the TDCSs
for laser-assisted electron impact ionization of hydrogen are
analyzed as a function of the polar angles of the outgoing
electrons at different photon energies. We perform a qualita-
tive comparison with the experimental results published by
Höhr et al. [21], for the He atom. We study the polarization
effects on the angular distribution of the TDCS by comparing
the CP and LP laser field contributions. The importance of
the atomic dressing effects is also discussed. We investigate

how the azimuthal distributions of the ejected electrons are
modified by the CP and LP laser fields at different polar angles
of the scattered electron. In Sec. IV we provide a summary
and discuss our conclusions. Unless specified otherwise, we
use atomic units (a.u.) throughout this paper.

II. THEORETICAL APPROACH

We study the ionization of the H atom by electron impact in
the presence of a laser field, namely, the laser-assisted (e, 2e)
process

e−(Ei, ki ) + H(1s) + Nγ (ω)

→ e−(Es, ks) + e−(Ee, ke) + H+(q), (1)

where Ei (s) and ki (s) are the kinetic energy and the momentum
vector of the incident (scattered) projectile electron, respec-
tively, Ee and ke are the kinetic energy and the momentum
vector of the ejected electron, respectively, and q is the recoil
momentum vector of the ionized target. The N represents
the net number of photons exchanged by the projectile-atom
system with the laser field and ω is the photon energy [27].
The CP laser field is treated classically and within the dipole
approximation is described as a monochromatic electric field

E(t ) = iE0(e−iωtε − e−iωtε∗)/2, (2)

where E0 denotes the amplitude, ε = (e j + iel )/
√

2 repre-
sents the polarization vector of the CP electric field, and e j

and el denote unit vectors in two orthogonal directions in
the polarization plane. The corresponding vector potential
A(t ) = − ∫ t dt ′E(t ′) is calculated from Eq. (2) as

A(t ) = (E0/ω)[e j cos(ωt ) + el sin(ωt )]/
√

2. (3)

A. Scattering matrix in direct and exchange channels

The calculation of the scattering amplitude is a very
challenging task due to the complex three-body interaction:
projectile and ejected electrons, the H atom, and the laser field.
We employ a theoretical framework similar to the one devel-
oped in [23] and therefore we briefly describe the model and
approximations used to calculate the TDCS. We consider fast
incoming and outgoing electrons with kinetic energies much
higher than the energy of a bound electron of the H atom in its
first Bohr orbit. Moreover, we consider an external laser field
of moderate intensity and neglect the Coulomb interaction
between the fast outgoing electrons and residual ion in the
wave functions of the scattered and ejected electrons [28–30].
At sufficiently high kinetic energies of the projectiles it is
well established that the first-order Born approximation in the
scattering potential can be employed to describe the ionization
process by electron impact [14,26,27]. Briefly, we utilize a
semiperturbative approach of the laser-assisted (e, 2e) process
which is similar to that employed by Byron and Joachain for
free-free transitions [13], in which the second-order Born cor-
rection in the scattering potential is negligible in comparison
with the laser-dressing effects. Since the mass of the residual
ion is much larger than the electron mass, we neglect the effect
of the laser field on the residual ion. We should underline that
the present theoretical model differs from that of Taïeb et al.
[16], since the fast incoming and outgoing electrons wave
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functions are treated to all orders in the laser field and the
atomic wave function is corrected to the first order in the laser
field [31].

The incident and outgoing electrons are assumed to have
sufficiently high kinetic energies such that the scattering
process is well treated within the first-order Born approxi-
mation in the potential Vd (r0, r1) = −1/r0 + 1/|r1 − r0| for
the direct scattering channel and the potential Vex(r0, r1) =
−1/r1 + 1/|r1 − r0| for the exchange scattering channel,
where r0 and r1 are the position vectors. In order to describe
the laser-assisted (e, 2e) process (1), we employ the direct
and exchange scattering matrix elements [32,33], which are
calculated as

SB1
d = −i

∫ ∞

−∞
dt

∫
d3r0

∫
d3r1χ

∗
ks

(r0, t )χ∗
ke

(r1, t )

× Vd (r0, r1)χki (r0, t )�1s(r1, t ), (4)

SB1
ex = −i

∫ ∞

−∞
dt

∫
d3r0

∫
d3r1χ

∗
ks

(r1, t )χ∗
ke

(r0, t )

× Vex(r0, r1)χki (r0, t )�1s(r1, t ), (5)

where χki , χks , and χke represent the wave functions of the
incoming and outgoing electrons interacting with the laser
field and �1s represents the wave function of the bound elec-
tron embedded in the laser field. At kinetic energies higher
than 200 eV, it is known that the plane-wave approximation
agrees well with the experimental observations in the absence
of a laser field [26,34] and therefore we can take advantage
of the Gordon-Volkov wave functions [9,35,36]. Hence, we
describe the initial and final states of the projectile electron,
as well the final state of the ejected electron interacting with
the electric field [Eq. (2)] by nonrelativistic Gordon-Volkov
wave functions [24,25] as

χk(r, t ) = (2π )−3/2 exp

(
ik · r − iEkt − ik · α(t )

− i

2

∫ t

dt ′A2(t ′)
)

, (6)

where r and k represent the position and momentum vectors,
respectively, and Ek = k2/2 is the kinetic energy. The vector
α(t ) = ∫ t dt ′A(t ′) describes the classical quiver motion of a
free electron in an external electric field, and by integrating
the vector potential given by Eq. (3) we easily derive, for a CP
laser field,

αCP(t ) = (α0/
√

2)[e j sin(ωt ) + el cos(ωt )], (7)

and αLP(t ) = α0e j sin(ωt ) for a LP laser field, where α0 =√
I/ω2 is the amplitude of oscillation and I = E2

0 is the in-
tensity of the laser field. As shown in Eq. (6), at moderate
electric-field strengths the largest effect of the laser on the
free electron is determined by the dimensionless parameter
kα0 = √

2EkI/ω2, which depends on the photon and elec-
tron energies and on the laser intensity. For example, a laser
intensity of 1 TW cm−2, a photon energy of 1.55 eV, and
an electron kinetic energy of 0.2 keV result in a value of
kα0 � 6.3, while the ponderomotive (quiver) energy acquired
by the electron in the electric field, Up = I/4ω2, is about
0.06 eV and hence it can be safely neglected compared to

the photon and unbound electrons energies employed in the
present paper. Obviously, both kα0 and Up increase with laser
intensity and decrease with photon energy. We should stress
that, at small kinetic energies of the ejected electron below
50 eV [2,8,37], the Coulomb-Volkov wave functions would
provide a more accurate treatment, which is beyond the scope
of this paper.

The interaction of the H atom in its ground state with
an electric field of moderate strength is studied within the
first-order TDPT. As mentioned in the Introduction, to prevent
the direct one-photon and multiphoton ionization processes
we consider that the electric-field strength is weak in compar-
ison to the atomic unit, E0 � 5.14 × 109 V cm−1, i.e., E0 is
much lower than the Coulomb field strength experienced by
an electron in the first Bohr orbit of hydrogen atom. Thus,
an approximate solution for the wave function of an electron
bound to a Coulomb potential in the presence of the electric
field, the laser-dressed wave function, is expressed as

�1s(r1, t ) = [
ψ1s(r1, t ) + ψ

(1)
1s (r1, t )

]
× exp

(
−iE1t − i

2

∫ t

dt ′A2(t ′)
)

, (8)

where r1 is the position vector, ψ1s is the unperturbed wave
function of a hydrogen atom in the ground state, and ψ

(1)
1s

is the first-order perturbative correction to the atomic wave
function in the external laser field. The explicit analytical form
of the first-order radiative correction ψ

(1)
1s is given in [23]. For

the electric field given by Eq. (2) we use the analytical formula
[31,38–40] of the first-order radiative correction

ψ
(1)
1s (r1, t ) = −α0ω

2
[ε · w100(E+

1 ; r1)e−iωt

+ ε∗ · w100(E−
1 ; r1)eiωt ], (9)

where we take advantage of the linear-response vector w100 of
the hydrogen atom in its ground state [31] that depends on the
energies E+

1 = E1 + ω + i0 and E−
1 = E1 − ω, which refer to

one-photon absorption and emission, where E1 = −13.6 eV
is the energy of the H atom in the ground state.

Nevertheless, since we assume that the incoming and out-
going electrons have high kinetic energies, the calculation
simplifies as we use the Gordon-Volkov wave functions, and
thus closed-form expression for the scattering amplitude can
be derived [23]. In order to perform the time integration we
develop the oscillating part of the Gordon-Volkov wave func-
tions occurring in the scattering matrix elements (4) as a series
of the ordinary Bessel functions of the first kind JN ,

e−iα(t )·q =
+∞∑

N=−∞
JN (Xq )exp[−iN (ωt − φq )], (10)

in which q = ki − ks − ke represents the recoil momentum
vector of the ionized target, Xq = α0|ε · q| is the argument of
the Bessel function, namely,

X CP
q = (α0/

√
2)[(e j · q)2 + (el · q)2]1/2, (11)

X LP
q = α0|e j · q|, (12)

for CP and LP laser fields, and φq is the dynamical phase
angle of ε with respect to q, given by exp(iφq) = ε · q/|ε · q|.
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To start with the direct scattering channel, by substituting the
electronic and atomic wave functions (6) and (8) into Eq. (4)
and then using Eq. (10) and performing the integration with
respect to time, we obtain the direct scattering matrix for the
laser-assisted (e, 2e) ionization process (1),

SB1
d = −2π i

+∞∑
N=Nmin

TN,dδ(Es + Ee − Ei − E1 − Nω)eiNφq ,

(13)

where we have factorized the dynamical phase eiNφq and
the δ Dirac function that ensures energy conservation. The
number of emitted photons is limited and cannot be smaller
than the integer value Nmin = 	(Ee − Ei − E1)/ω
. The total
nonlinear transition amplitude TN,d in the direct channel can
be expressed as a sum of two terms

TN,d = T (0)
N,d + T (1)

N,d, (14)

where T (0)
N,d and T (1)

N,d denote the electronic and atomic transi-
tion amplitudes for the direct ionization channel, respectively.

In what follows, we briefly describe the first term in
Eq. (14), namely, the electronic transition amplitude T (0)

N,d that
represents the transition amplitude in which the atomic dress-
ing is ignored and only the projectile electron contribution
is included [23]. After performing the integration over the
coordinates r0 and r1, the electronic transition amplitude can
be written as

T (0)
N,d = − 1

(2π )2
JN (Xq ) f B1

ion. (15)

The scattering amplitude

f B1
ion = − 2

�2

√
8

π

(
1

(1 + q2)2
− 1(

1 + k2
e

)2

)
(16)

has a form similar to the direct scattering amplitude in the
absence of a laser field, i.e., with q and � evaluated at N = 0,
calculated in the first-order plane-wave Born approximation,
for ionization of the H atom by electron impact [1,36]. Here �

denotes the amplitude of the momentum transfer vector from
the incident to the scattered electron � = ki − ks = ke + q.
The first term in large parentheses in Eq. (16), (1 + q2)−2,
gives rise to the binary encounter peak [41], which occurs
at the minimum value of the residual ion momentum q, and
the multiplicative factor −2/�2 is connected to the first-order
Born amplitude corresponding to scattering by the Coulomb
potential −1/r0. We should underline that in the direct elec-
tronic transition amplitude (15) the polarization of the laser
field is only contained in the argument of the Bessel function
Xq, thus being decoupled from the scattering amplitude f B1

ion.
This characteristic is a consequence of employing the Gordon-
Volkov wave functions for fast electrons at moderate laser
intensities [8,42–45].

Now we briefly describe the other term on the right-hand
side of Eq. (14), namely, the atomic transition amplitude T (1)

N,d.
This term corresponds to the laser-assisted processes in which
the H atom absorbs or emits one photon and then is subse-
quently ionized by electron impact and is related to the atomic
dressing, i.e., the modification of the atomic state by the laser
field described by the first-order radiative correction ψ

(1)
1s in

Eq. (9). After integrating over the projectile coordinate r0, the
direct first-order atomic transition amplitude can be expressed
as

T (1)
N,d = − α0ω

2

[
JN−1(Xq )M(1)

at (ω)e−iφq

+ JN+1(Xq )M(1)
at (−ω)eiφq

]
, (17)

where one photon is absorbed (emitted) by the bound electron
from (to) the laser field and the rest of the N − 1 (N + 1)
photons are exchanged between the projectile electrons and
the laser field [23]. Here we should recall that for a CP field
the exponential terms involving the dynamical phase e±iφq are
complex numbers, while for a LP field they are equal to 1 or
−1. In Eq. (17), M(1)

at (ω) represents the specific first-order
atomic transition matrix element which refers to one-photon
absorption

M(1)
at (ω) = − 1√

23π3�2
[ε · q̂J101(ω, q)

− ε · k̂eJ101(ω,−ke)], (18)

where q̂ and k̂e denote unit vectors that define the direction of
vectors q and ke, respectively. In order to obtain the first-order
atomic transition matrix element for one-photon emission,
M(1)

at (−ω), the replacements are made in Eq. (18), namely,
ω → −ω and ε → ε∗. Here J101 represents a specific radial
integral which is analytically evaluated as described in [23,46]
in terms of the Appell hypergeometric functions F1 of two
variables. The first-order atomic matrix element (18) is written
in a closed form that explicitly contains the dot products ε · q̂
and ε · k̂e, which allows us to analyze the effect of the laser
field polarization. We should mention that the last term on
the right-hand side of both the electronic scattering amplitude
and atomic matrix elements (16) and (18), respectively, occurs
because of the nonorthogonality of the Gordon-Volkov wave
function of the ejected electron and the H atom wave function.
The general structure of the atomic matrix element (18) is
also similar to other laser-assisted processes with the vectors
q and ke replaced by vectors which are specific to each par-
ticular process, such as laser-assisted scattering of electrons
by hydrogen atoms [47–50], laser-assisted electron-impact
excitation of hydrogen atoms [44,45,51], or laser-assisted re-
combination of hydrogenic atoms [52].

Because it is well known that EMS experiments [5,6]
involve fast incoming and outgoing electrons with kinetic
energies of comparable order of magnitude, the theoretical
model includes as well the exchange effects between the scat-
tered and ejected electrons in both the electronic and atomic
contributions. As we have previously noted, the exchange
scattering matrix element (5) is obtained from the direct one
by interchanging the position coordinates r1 and r0 of the
outgoing electrons in the direct potential and in the Gordon-
Volkov wave functions χks and χke in Eq. (4). Thus, by using
Eq. (10) and performing the integration with respect to time in
Eq. (5), we obtain the exchange scattering matrix for the laser-
assisted (e, 2e) process in the first-order Born approximation
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in the exchange potential Vex,

SB1
ex = −2π i

+∞∑
N=Nmin

TN,exδ(Es + Ee − Ei − E1 − Nω)eiNφq ,

(19)

where the total nonlinear transition amplitude for the ex-
change channel can be written as a sum of two terms TN,ex =
T (0)

N,ex + T (1)
N,ex. In what follows, we briefly present the elec-

tronic transition amplitude for the exchange channel [23].
After performing the radial integration with respect to the co-
ordinates r0 and r1, the electronic transition amplitude in the
exchange channel, in which the atomic dressing contribution
is neglected, can be written as

T (0)
N,ex = − 1

(2π )2
JN (Xq )gB1

ion,ex, (20)

where

gB1
ion,ex = − 2

�2
e

√
8

π

1

(1 + q2)2
(21)

is the electronic amplitude in the exchange channel for ioniza-
tion of the hydrogen atom by electron impact, which agrees
with the Born-Ochkur approximation [32,33,53] derived in
the absence of the laser field, i.e., with q and �e evaluated
at N = 0. Here �e denotes the amplitude of the momentum
transfer vector from the incident to the ejected electron �e =
ki − ke. Because the electron-nucleus interaction term −1/r1

in the exchange scattering potential gives zero contribution
to Eq. (5), the interelectronic interaction only, 1/|r1 − r0|,
contributes to the transition amplitude in the exchange chan-
nel. Therefore, the exchange scattering amplitude gB1

ion,ex can

be obtained from the direct one f B1
ion by interchanging the

outgoing electrons momenta ks and ke and dropping the −1/r0

interaction term in the direct potential.
Finally, we briefly present the first-order atomic transition

amplitude for the exchange scattering channel [23]. Similarly
to the direct scattering, T (1)

N,ex can be written as

T (1)
N,ex = − α0ω

2

[
JN−1(Xq )M(1)

at,ex(ω)e−iφq

+ JN+1(Xq )M(1)
at,ex(−ω)eiφq

]
, (22)

where M(1)
at,ex(ω) represents the first-order atomic transition

matrix element for the exchange scattering, which is related
to one-photon absorption

M(1)
at,ex(ω) = − ε · q̂√

23π3�2
e

J101(ω, q), (23)

and M(1)
at,ex(−ω) refers to one-photon emission which can be

derived from Eq. (23) by making the replacements ω → −ω

and ε → ε∗. We should mention that for fast incident and
scattered electrons with kinetic energies much higher than
the atomic unit and slow ejected electrons with Ee � Es, the
electronic and atomic terms related to the exchange channel
can be safely neglected in comparison to the direct channel.
However, we stress that the exchange terms cannot be ne-
glected if the momentum transfers �e and � have comparable
magnitudes.

B. Perturbative theory in the low-photon-energy
approximation at N = ±1

Now it is interesting to derive some useful and simple ana-
lytical formulas for the direct and exchange atomic transition
amplitudes, by retaining the lowest-order terms in the expan-
sion of the atomic matrix elements M(1)

at,d(ω) and M(1)
at,ex(ω)

in powers of the photon energy, which is known as the low-
frequency approximation (LFA). When the photon energy is
low compared to the ionization energy of the H atom ω �
|E1|, the following approximate expression can be used in the
low-photon-energy limit for the atomic radial integral [46]:

J101(ω, p) � 16p

(p2 + 1)3

(
1 + ω

2

p2 + 7

p2 + 1

)
. (24)

Moreover, at small arguments of the Bessel functions Xq �
1, i.e., in the perturbative regime of laser intensities and pho-
ton energies with α0 � 1 a.u. and/or for scattering kinematics
with |ε · q| � 1 a.u., it is justified to use the approximate for-
mulas for the Bessel function [54], J0(Xq ) � 1 and J±1(Xq ) �
±Xq/2. Hence, for one-photon absorption (N = 1) and emis-
sion (N = −1) in the perturbative regime with Xq � 1 and
low-photon energies, by keeping the first order in laser field
intensity I only in Eq. (15), we obtain a simple formula for
the direct electronic transition amplitude at low momentum of
the residual ion, q � ke,

T (0)
N=±1,d � ±

√
I√

2π3

|ε · q|
ω2�2

1

(1 + q2)2
. (25)

For the direct atomic transition amplitude in the low-photon-
energy limit and Xq � 1, derived from Eqs. (17) and (24),
at low momentum of the residual ion q � ke, we obtain for
N = 1 a simplified analytical expression

T (1)
N=1,d �

√
8

π3

√
I

ω�2

|ε · q|
(1 + q2)3

(
1 + ω

2

q2 + 7

q2 + 1

)
, (26)

while T (1)
N=−1,d is obtained from Eq. (26) with the replacements

ω → −ω and ε → ε∗.
Similarly, for the exchange scattering we derive simplified

approximate expressions for the electronic and atomic tran-
sition amplitudes from Eqs. (20) and (22), at Xq � 1 in the
low-photon-energy limit, as

T (0)
N=±1,ex � ± 1√

2π3

√
I

ω2�2
e

|ε · q|
(1 + q2)2

, (27)

T (1)
N=±1,ex � ±

√
8

π3

√
I

ω�2
e

|ε · q|
(1 + q2)3

(
1 ± ω

2

q2 + 7

q2 + 1

)
. (28)

In the perturbative regime at Xq � 1 and in the low-photon-
energy approximation, the electronic transition amplitudes
(25) and (27) are proportional to ω−2, while the atomic tran-
sition amplitudes (26) and (28) are proportional to ω−1. Thus,
from Eqs. (25) and (26) we can estimate the ratio of the direct
atomic and electronic transition amplitudes in the limit of low
photon energies, as

T (1)
N=±1,d/T (0)

N=±1,d � 4ω

1 + q2
,

and a similar relation holds for the exchange scattering chan-
nel. These simple analytical formulas for the electronic and
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atomic transition amplitudes involving one-photon exchange
can provide more physical insight into dependence on the
laser parameters of the laser-assisted (e, 2e) process.

C. Nonlinear triple-differential cross section

Finally, once we have calculated the nonlinear transition
probabilities we can evaluate the TDCS for the laser-assisted
ionization of hydrogen by electron impact accompanied by
the exchange of N photons (N > 0 for emission and N < 0
for absorption) in the first-order Born approximation in the
scattering potential, by including both the direct and exchange
channels. For unpolarized incident projectile and hydrogen
beams and without distinguishing between the final spin states
of the outgoing electrons, the TDCS [8] is defined by the
expression

d3σ
B1
N

d�sd�edEs

= (2π )4 kske

ki

(
1

4
|TN,d + TN,ex|2 + 3

4
|TN,d − TN,ex|2

)
,

(29)

which is averaged over the initial spin states and summed over
the final spin states. The incident electrons are scattered into
solid angles �s and �s + d�s with a kinetic energy between
Es and Es + dEs and the ejected electrons are emitted within
solid angles �e and �e + d�e. The electronic and atomic
transition amplitudes in Eq. (29) are computed from Eqs. (15)
and (17) for the direct scattering channel and from Eqs. (20)
and (22) for the exchange channel. As a result, the TDCS
depends on the momentum vectors of the electrons ki, ks,
and ke; on the momentum transfers q, �, and �e; and on
the following laser parameters: intensity I , photon energy ω,
and polarization ε. Hence, the dominant contributions to the
TDCS occur in collisions involving small momentum of the
residual ion, q, small momentum transfers � and �e, and
photon energies close to resonance.

In what follows, we present an easy-to-handle TDCS for-
mula in two limiting cases of laser field parameters.

D. Total triple-differential cross section at low photon energies

In the limit of low photon energies such that ω � |E1|, we
can take advantage of the approximation formula (24) in the
TDCS and consider the lowest order in ω in Eqs. (17) and (22).
Furthermore, at low momentum of the residual ion, q � ke,
we can also neglect the second terms in Eqs. (15) and (18) and
therefore a simplified LFA formula [23] for the laser-assisted
TDCS is obtained,

d3σ
B1
N

d�sd�edEs
� kske

ki
|JN (Xq )|2

(
1 + 4Nω

1 + q2

)2

× ∣∣ψ (0)
1s (q)

∣∣2
(

dσ

d�e

)
ee

, (30)

where the recurrence relation JN+1(Xq ) + JN−1(Xq ) =
(2N/Xq )JN (Xq) of the Bessel functions [54] was used.
The foregoing LFA expression can be readily compared
with that previously calculated for laser-assisted EMS in
the low-photon-energy approximation by Bulychev et al.,

namely, Eqs. (10) and (11) in [19]. Thus, the TDCS in
Eq. (30) is simply expressed as a product of four terms:
the squared modulus of the Bessel function of argument
Xq = √

I|ε · q|/ω2 and a dynamical LFA correction factor
[1 + 4Nω/(1 + q2)]2, both factors depending on the laser
field parameters and the momentum of the residual ion
|ψ (0)

1s (q)|2 = 8π−2(1 + q2)−4, which is the squared wave
function in the momentum space of the H atom in the ground
state [1], and(

dσ

d�e

)
ee

= 4

�4

(
1 − �2

�2
e

+ �4

�4
e

)
, (31)

which is the half-off-shell Mott scattering TDCS for fast
projectile and outgoing electrons, which includes the ex-
change terms [6,32,33] and depends on the direct and
exchange momentum transfers � and �e only. We recall that
the half-off-shell Mott scattering TDCS (31) is calculated in
the literature [6] as (2π )4 f B1

ee , in which f B1
ee is the electron-

electron collision factor calculated in the first-order Born
approximation.

From Eq. (30) the total TDCS is obtained as a sum over the
number of exchanged photons

d3σ B1

d�sd�edEs
=

+∞∑
N=Nmin

d3σ
B1
N

d�sd�edEs
, (32)

and using the summation formulas of the Bessel functions
[52,54] of the first kind

+∞∑
N=−∞

J2
N (Xq ) = 1,

+∞∑
N=−∞

N2J2
N (Xq ) = X 2

q /2 (33)

and
+∞∑

N=−∞
NJ2

N (Xq ) = 0, (34)

we obtain a simplified formula in the LFA, at ω � |E1| and
q � ke, as

d3σ B1

d�sd�edEs
� kske

ki

∣∣ψ (0)
1s (q)

∣∣2
(

dσ

d�e

)
ee

(
1 + 8I

ω2

|ε · q|2
(1 + q2)2

)
.

(35)

This TDCS expression allows us to investigate the limits of
validity of the Kroll-Watson-type sum-rule formula and could
be practical for other approximate calculations. It shows that
the total TDCS is not enhanced by the presence of the laser
field for laser parameters such that I/ω2 < 0.125, neither at
large values of the recoil momentum q nor for scattering
geometries such that ε · q � 0. Thus, the ratio of the total
TDCS by CP and LP laser fields around the minimum of q
is simply given by |εCP · q|2/|εLP · q|2.

E. Total triple-differential cross section at low
photon energies and weak laser fields

The other limiting case is the low-photon energies and
weak laser fields such that α0ω � 1 a.u., the so-called soft-
photon approximation (SFA), in which we can neglect the
laser-atom interactions T (1)

N,d and T (1)
N,ex in Eq. (29), and at low
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momentum of the residual ion q � ke we obtain a simple
expression of the laser-assisted nonlinear TDCS for N-photon
exchange,

d3σ
B1
N

d�sd�edEs
� kske

ki
|JN (Xq )|2∣∣ψ (0)

1s (q)
∣∣2

(
dσ

d�e

)
ee

, (36)

as well for the total TDCS summed over the number of ex-
changed photons,

d3σ B1

d�sd�edEs
� kske

ki

∣∣ψ (0)
1s (q)

∣∣2
(

dσ

d�e

)
ee

. (37)

In contrast to Eq. (35), the expression (37) is independent of
the laser polarization.

The foregoing formula (36) is in agreement with the TDCS
given by Kouzakov et al. in Eq. (26) in [18], in which the
atomic dressing is neglected, and obeys a Kroll-Watson-type
sum rule formula (37), similar to the laser-assisted electron-
atom scattering process [55]. Therefore, for an N-photon
process in both the LFA and SFA, the ratio of the TDCSs by
CP and LP laser fields is derived from Eq. (30) or (36) as(

d3σ
B1
N

d�sd�edEs

)
CP

(
d3σ

B1
N

d�sd�edEs

)−1

LP

� ∣∣JN
(
X CP

q

)∣∣2/∣∣JN
(
X LP

q

)∣∣2
. (38)

Additionally, in the perturbative domain with Xq � 1, by
using the approximate formula for the Bessel function at
small arguments, JN (Xq) � X N

q /2N N!, the foregoing nonlin-
ear TDCS ratio by CP and LP laser fields simply reads
(X CP

q /X LP
q )2|N | and depends on the scattering geometry.

III. RESULTS AND DISCUSSION

In this section we numerically evaluate our semiperturba-
tive formulas to investigate the TDCSs given by Eq. (29), in
the first-order Born approximation in the scattering potential,
for electron-impact ionizing collisions in hydrogen in the
presence of a CP laser field. The numerical results obtained for
TDSCs for a CP laser field are compared with those obtained
by a LP laser field for different scattering configurations ge-
ometries. We recall that the field-free TDCS in the (e, 2e)
collisions provides valuable information about the collision
dynamics [6] and electronic structure of the target and can be
used to obtain the electron momentum density distribution,
which was first demonstrated for the hydrogen and helium
atoms [1,34]. Additionally, the theoretical results of the laser-
assisted TDCS can provide more useful insights for further
experimental observation or theoretical studies, allowing the
control and manipulation of the (e, 2e) process through the
laser parameters: photon energy, polarization, and intensity.

A. Scattering geometry

We start with some useful kinematic considerations in
order to analyze the analytical formulas derived in the
previous section. We consider the laser-assisted (e, 2e)
process in the general case of noncoplanar scattering
geometry, as plotted in Fig. 1, in which the momentum vector
of the incident electron, ki, defines the z axis with θi = 0◦

FIG. 1. Scattering geometry for the electron-impact ionization of
the hydrogen atom in a laser field. The incident electron has energy
Ei and momentum ki with θi = 0◦, while the scattered electron has
energy Es and momentum ks and is detected at fixed polar angle
θs and azimuthal angle ϕs. The ejected electron has energy Ee and
momentum ke, and the detection polar angle θe and azimuthal angle
ϕe are varied. Here � = ki − ks represents the momentum transfer
vector and q = � − ke is the recoil momentum vector.

and ϕi = 0◦. The momenta of the two outgoing electrons, ks

and ke, lie in different planes and the electrons are detected at
the polar angles θs and θe, with the corresponding azimuthal
angles ϕs and ϕe. Hence, the Cartesian components of the
momentum vector of the residual ion, q, are expressed
as (−ks sin θs cos ϕs − ke sin θe cos ϕe,−ks sin θs sin ϕs −
ke sin θe sin ϕe, ki − ks cos θs − ke cos θe). We consider fast in-
coming and outgoing electrons and investigate the asymmetric
scattering geometry in which the outgoing electrons move
asymmetrically with respect to the direction of the incident
electron with different polar and azimuthal angles and
different kinetic energies ks �= ke. The momentum transfer of
the projectile is calculated as � = (k2

i + k2
s − 2kiks cos θs)1/2,

while the amplitude of the momentum transfer vector �e is
given by �e = (k2

i + k2
e − 2kike cos θe)1/2. From the energy

conservation condition the final momentum of the projectile
depends on the number of exchanged photons and the
photon energy ks = (k2

i − k2
e + 2E1 + 2Nω)1/2. Thus, in the

asymmetric noncoplanar scattering geometry, the amplitude
of the ion recoil momentum vector q is calculated as

q = [
�2 + �2

e − k2
i + 2kske cos θs cos θe

+ 2kske sin θs sin θe cos(ϕs − ϕe)
]1/2

(39)

and depends on the polar angles θs and θe and on the
difference between the azimuthal angles ϕs − ϕe of the out-
going electrons. We may note that the symmetry relations
are satisfied by the momentum of the residual ion [Eq. (39)]
with respect to the polar angles of the scattered and ejected
electrons q(θe, θs) = q(−θe,−θs) and with respect to the
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polar and azimuthal angles of the ejected electrons q(θe, ϕe) =
q(−θe, π + ϕe). We recall that the binary encounter peak of
the TDCS occurs at the minimum value of the residual ion
momentum, i.e., when ki = ks + ke.

B. Circularly polarized laser field

We assume that the laser beam is CP in the (x, y) plane with
a polarization vector εCP = (ex + iey)/

√
2 and it propagates

along the z axis, which implies that

εCP · q = −(ks sin θse
iϕs + ke sin θeeiϕe )/

√
2, (40)

εCP · ke = ke sin θeeiϕe/
√

2. (41)

The foregoing scalar products are invariant to the simultane-
ous change of θe → −θe and ϕe → π + ϕe. In the particular
case of forward and backward polar angles θe (s) = 0◦ and
180◦, respectively, the scalar products εCP · q and εCP · ke

cancel out and do not depend on the azimuthal angles. Hence,
for a noncoplanar scattering geometry the argument of the
Bessel function, for the CP laser field, is expressed as

X CP
q = α0

[
k2

s sin2 θs + k2
e sin2 θe

+ 2kske sin θs sin θe cos(ϕs − ϕe)
]1/2

/
√

2. (42)

C. Linearly polarized laser field

We compare the numerical results for the CP laser field
with those obtained for a LP laser field in which the polariza-
tion vector defines the z axis, εLP = ez, and therefore

εLP · q = ki − ks cos θs − ke cos θe, (43)

εLP · ke = ke sin θe. (44)

Thus, for the LP laser field the argument Xq of the Bessel
function simplifies to X LP

q = α0|ki − ks cos θs − ke cos θe|.
Clearly, the condition ε · q = 0 is fulfilled at different polar

angles for the CP field than for the LP laser field. In the
coplanar geometry ϕs = ϕe, the ratio of the argument of the
Bessel function for CP and LP laser fields simply reads

X CP
q

X LP
q

= 1√
2

|ks sin θs + ke sin θe|
|ki − ks cos θs − ke cos θe| . (45)

D. Numerical examples

We present in Fig. 2 a qualitative comparison with the
experimental results published by Höhr et al. [21] for laser-
assisted electron-impact ionization of the He atoms by a
Nd:YAG laser of intensity I = 4 TW cm−2 and ω = 1.17 eV,
for fast incident electrons with energy Ei = 1 keV. An impor-
tant disagreement with the theoretical model for He was found
[20,21] by comparing the differences of the TDCSs with and
without a laser field, namely, the magnitude of the binary
peaks is reasonable described by the theoretical model but
differences between the laser-assisted (LA) and field-free (FF)
TDCSs show opposite behavior to the experimental results.
The authors suggested that this deviation may be related to
the dressing effects of the initial atomic state, which were
not included in the theoretical model [20]. Because we have
not included the Coulomb correction in the ejected electron
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FIG. 2. (a) and (c) Comparison of TDCSs for ionization of the
H atom by electron impact in the presence of a laser field (solid
lines) and the field-free results (dashed lines) as a function of the
polar angle of the ejected electron, for ten-photon exchange. (b) and
(d) Difference between the laser-assisted (LA) and the field-free
(FF) TDCSs plotted in (a) and (c), respectively. The laser field is
LP along the z axis with intensity I = 4 TW cm−2 and the photon
energy is ω = 1.17 eV. The incident electron has energy Ei = 1
keV and θi = 12◦, while the ejected electron is emitted with energy
Ee = 18 eV and θs = 8◦ in (a) and (b) and Ee = 15 eV and θs = 5◦

in (c) and (d), respectively. The corresponding magnitudes of the
momentum transfer � = ki − ks are (a) and (b) 0.6 a.u. and (c) and
(d) 1 a.u.

wave function, we have considered in comparison electrons
emitted with the energies and polar angles Ee = 18 eV and
θs = 8◦ in Figs. 2(a) and 2(b) and Ee = 15 eV and θs = 5◦
in Figs. 2(c) and 2(d), and the corresponding magnitudes of
the momentum transfer � = ki − ks (i.e., q in [21]) are 0.6
and 1 a.u., respectively. Our chosen parameters correspond
to Figs. 4(dI), 4(dII), 4(fI), and 4(fII) in the experimental
paper [21]. The solid lines in Figs. 2(a) and 2(c) represent
the TDCSs, Eq. (29) summed up to N = 10 photon exchange
(absorption and emission), while the dashed lines are the
field-free TDCSs. The angular shape of TDCSs for the H atom
looks similar to the one for He in Figs. 4(dI) and 4(fI) of [21],
but obviously with different magnitudes, showing that the
kinematical dependence is essential in the (e, 2e) process. Our
numerical results for the H atom in Figs. 2(b) and 2(d) show
a similar behavior to the experimental results for He, namely,
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there is an enhancement of the TDCS by the laser field and
the LA and FF differences of TDCSs show an oscillatory be-
havior with θe, in qualitative agreement with the experimental
results presented in Figs. 4(dII) and 4(fII) of [21]. Since the
laser intensity is relatively high corresponding to a quiver
motion amplitude α0 = 5.77 a.u. at ω = 1.17 eV, the TDCS
enhancement in Figs. 2(b) and 2(d) is strongly related to the
interaction of the ejected electron with both the laser field
and target potential as well the laser-target interaction before
and after collision, as it was suggested in [21]. However, if
we look at Fig. 4 of [21] to see the relative enhancement
normalized to the FF TDCS, the laser dressing effect is much
larger for He than for the H atom, which suggests other
corrections should be included in the theoretical description.
As we have mentioned, in the present numerical calculations
we consider high kinetic energies of the projectile and ejected
electrons Ei = 2 keV and Ee = 0.2 keV, photon energies be-
low the ionization threshold of the H atom ω < |E1|, and a
moderate laser intensity I = 1 TW cm−2, which corresponds
to an electric-field strength of 2.7 × 107 V cm−1.

We now turn to the coplanar case in order to show the cor-
relation in the TDCS between the polar angles of the outgoing
electrons. Thus, in Figs. 3(a)–3(c) we present the TDCSs for a
CP laser field and one-photon exchange, N = 1, as a function
of the polar angles of the scattered and ejected electrons θs

and θe, respectively, at the azimuthal angles ϕs = ϕe = 0◦

and at the following photon energies: 1.55 eV in Fig. 3(a),
4.65 eV in Fig. 3(b), and 9.3 eV in Fig. 3(c). For comparison,
in Figs. 3(d)–3(f) we show similar results of the laser-assisted
TDCSs as in Figs. 3(a)–3(c), but for a LP field.

Due to Coulomb repulsion, the electrons are predominantly
emitted and scattered with a high probability in different half
planes, corresponding to polar angles θs and θe of opposite
signs with respect to the incoming electron beam. The TDCSs
values in Fig. 3 are concentrated in a narrow angular range
of 60◦ � θe � 90◦ and −19◦ � θs � −14◦ and are invariant
with respect to the simultaneous transformations θe → −θe

and θs → −θs. The maximum values of TDCSs occur at
specific combinations of polar angles θe and θs, which are
determined by the minimum value of recoil momentum q
given by Eq. (39). It is worth pointing out that these binary
peaks of TDCSs are split differently in the presence of the CP
and LP laser fields, due to the zeros of the argument of the
Bessel functions, i.e., whenever εCP · q = 0 and εLP · q = 0,
respectively. For example, at a photon energy of ω = 1.55 eV
the TDCSs take the maximal value at the scattering and emit-
ted angles of θs ∼ 15.5◦ and θe ∼ −73◦ (or θs ∼ −15.5◦ and
θe ∼ 73◦) for the CP laser field and θs ∼ 16.5◦ and θe ∼ −64◦

(or θs ∼ −16.5◦ and θe ∼ 64◦) for the LP laser field.
For a different view of the density plots shown in Figs. 3(a)

and 3(d) at a photon energy of 1.55 eV, we illustrate in Fig. 4
their corresponding three-dimensional graphs of TDCSs as
a function of the polar angles θe and θs of the ejected and
scattered electrons, for a CP field in Fig. 4(a) and a LP in
Fig. 4(b), together with the field-free TDCS in Fig. 4(c).

In order to emphasize the importance of the atomic
dressing as the photon energy increases, we display in
Figs. 5(a)–5(f) results similar to those in Figs. 3(a)–3(f) but
the direct and exchange atomic transition amplitudes T (1)

N,d and

FIG. 3. TDCSs for the ionization of hydrogen by electron im-
pact in the presence of a laser field, computed from Eq. (29), as a
function of the ejected and scattered electron polar angles θe and θs,
respectively, for one-photon absorption N = 1. The kinetic energies
of the incident and ejected electrons are Ei = 2 keV and Ee = 0.2
keV, respectively, and the azimuthal angles are ϕe = ϕs = 0◦. The
laser intensity is I = 1 TW cm−2 and the photon energies are (a) and
(d) ω = 1.55 eV, (b) and (e) 4.65 eV, and (c) and (f) 9.3 eV. (a)–
(c) Density plots of TDCSs calculated for the CP field with the
polarization vector εCP = (ex + iey )/

√
2. (d)–(f) Numerical results

for the LP field with the polarization vector εLP = ez.

T (1)
N,ex are ignored in the TDCS (29). We can glimpse the in-

fluence of the photon energy by looking first at the amplitude
of the quiver motion α0. A laser intensity of 1 TW cm−2 and
a photon energy of 1.55 eV (Ti:sapphire laser) result in a
quiver motion amplitude α0 ∼ 1.64 a.u. and an argument of
the Bessel function Xq � 1.64|ε · q|, while for a larger photon
energy of 4.65 eV (third harmonic of the Ti:sapphire laser)
the corresponding amplitude α0 and argument Xq are about
nine times smaller. Hence, the magnitude of the TDCS peaks
is about one order of magnitude smaller at a photon energy
of 4.65 eV in Figs. 3(b) and 3(e) compared to Figs. 3(a) and
3(d) at 1.55 eV, while the electronic contribution in Figs. 5(b)
and 5(e) is about two orders of magnitude smaller than that in
Figs. 5(a) and 5(d). Moreover, at ω = 1.55 eV, by comparing
Figs. 3(a) and 3(d) with Figs. 5(a) and 5(d), we notice that the
atomic dressing effects are small, since T (1)

N=1,d(ex)/T (0)
N=1,d(ex) �

4ω/(1 + q2) as we have estimated in the LFA in Sec. II B,
and therefore the electronic transition amplitudes give the
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FIG. 4. Three-dimensional plots of the TDCSs presented in
Figs. 3(a) and 3(d) at the photon energy ω = 1.55 eV, as a function
of the polar angles of the ejected and scattered electrons θe and θs,
respectively, for (a) circular polarization and (b) linear polarization.
(c) TDCS in the absence of the laser field.

largest contribution to the TDCS. In contrast, as the photon
energy increases the atomic dressing effects increase and their
contribution to the TDCS cannot be neglected. Here we may
note that at forward scattering angles θe = 0◦ and θs = 0◦, we
have εCP · q = 0 for the CP field and nonzero values for the
LP field εLP · q = ki − ks − ke. In addition, a strong atomic
dressing effect is seen in the vicinity of the 1s − 2p resonance
at a photon energy of 9.3 eV in Figs. 3(c) and 3(f), where
the outgoing electrons are focused within narrow solid angles.
Due to the vicinity of 1s − 2p excitation, the atomic transi-
tion amplitudes [Eqs. (18) and (23)] give a large contribution
compared to the electronic transition amplitudes, as is shown
in Figs. 5(c) and 5(f).

Now, since we are interested in the direction in which the
maximum of the TDCS can be observed, we examine the
TDCS at the scattered electron polar angle θs = 15◦, which
is close to the peaks of the TDCSs in Fig. 3, and vary the

FIG. 5. Similar to Fig. 3, but only the electronic transition am-
plitudes TN,d and TN,ex are included in the calculation of the TDCS
[Eq. (29)], while the atomic contributions are ignored.

polar and azimuthal angles of the ejected electron, θe and ϕe.
For simplicity, the azimuthal angle of the scattered electron is
fixed at ϕs = 0◦. Thus, in Fig. 6 we illustrate TDCSs for the
ionization of hydrogen by electron impact in the presence of
a laser field as a function of the polar and azimuthal angles of
the ejected electron at a photon energy ω = 4.65 eV for one-
photon absorption (N = 1) in Figs. 6(a) and 6(d), one-photon
emission (N = −1) in Figs. 6(b) and 6(e), and no photon
exchange (N = 0) in Figs. 6(c) and 6(f). In Figs. 6(a)–6(c)
we show the density plots of TDCSs calculated for a CP
laser field, while in Figs. 6(d)–6(f) we present the results for
the LP case. In Fig. 7 we illustrate results similar to those
in Fig. 6, but for a smaller scattering angle θs = 5◦. The
maximum values of TDCSs occur in the coplanar geometry
around ϕe = 180◦, at the minimum values of q [Eq. (39)]. By
comparing the TDCSs for LP laser fields in Figs. 6(a) and
6(d) with those in Figs. 6(d) and 6(e) for CP laser fields, there
are noticeable differences between the numerical results, for
both N = 1 and N = −1. As mentioned before, the condition
ε · q � 0 is fulfilled at different polar angles for LP and CP
laser fields. More specifically, a splitting of the TDCS peak
is clearly noticeable for the LP field in Figs. 6(a) and 6(e),
in the vicinity of θe � 74.5◦, where the condition εLP · q � 0
is satisfied. In contrast, the splitting of the TDCS peak is
barely visible for the CP field at θe � 51◦, in Figs. 6(a) and
6(b). Moreover, the maximum values of the TDCS occur at
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FIG. 6. TDCSs for the ionization of hydrogen by electron im-
pact in the presence of a laser field, as a function of the polar and
azimuthal angles of the ejected electron θe and ϕe, respectively, at
photon energy ω = 4.65 eV for (a) and (d) one-photon absorption
(N = 1), (b) and (e) one-photon emission (N = −1), and (c) and
(f) no photon exchange (N = 0). The polar and azimuthal angles
of the scattered electron are θs = 15◦ and ϕs = 0◦, respectively. (a)–
(c) Density plots of TDCSs evaluated for a CP field. (d)–(f) Results
for a LP field. The rest of the parameters regarding the scattering
geometry, incident and outgoing electron kinetic energies, and laser
intensity are the same as in Fig. 3.

different values of the polar angle θe for CP compared to LP
laser fields. However, the magnitude of TDCSs peaks by the
CP laser field is comparable to that by the LP laser field.

The angular distributions of the TDCS for one-photon
absorption compared to one-photon emission show similar
features, but the one-photon absorption dominates the one-
photon emission process as a result of the constructive (N =
1) and destructive (N = −1) interferences between the elec-
tronic and atomic contributions in the TDCS (29). We find that
the ejected electron is observed with a high probability into
a narrow cone in Fig. 6, while in Fig. 7 the ejected electron
is emitted in a larger solid angle and the TDCS is almost
one order of magnitude smaller. Specifically, in Fig. 6 at the
scattering angle θs = 15◦ the laser-assisted (e, 2e) signal is
focused in a narrow range of polar angles 60◦ < θe < 80◦ for
the CP field and 50◦ < θe < 70◦ for the LP field, with the
azimuthal angles 160◦ < ϕe < 200◦. In contrast, the TDCSs
in Fig. 7 at the scattering angle θs = 5◦ are focused in a wider

FIG. 7. Similar to Fig. 6, but the polar angle of the scattered
electron is θs = 5◦.

range of both polar and azimuthal angles, namely, 40◦ < θe <

100◦ for the CP field and 10◦ < θe < 70◦ for the LP field,
with 120◦ < ϕe < 240◦. Both TDCSs for CP and LP light at
ϕs = 0◦ are symmetric with respect to reflection in the (x, z)
plane, being invariant to the change ϕe = π − ξ → π + ξ ,
with ξ an arbitrary angle. For no photon exchange (N = 0)
in Figs. 6(c) and 6(f) and Figs. 7(c) and 7(f), the magnitude of
the TDCS peak is about two orders of magnitude larger than
those of the one-photon absorption or emission (N = ±1).
The density plots of the laser-assisted TDCS by CP and LP
laser fields at N = 0 are similar to the field-free case (not
shown here) because at small Xq the laser field gives a neg-
ligible contribution to the ionization process.

In what follows let us consider in more detail the TDCS
density plots for one-photon absorption (N = 1) presented in
Figs. 6(a) and 7(a) for a CP laser field and in Figs. 6(d) and
7(d) for a LP laser field. Thus, in Fig. 8 we plot the numerical
results for TDCSs, in logarithmic scale, for ω = 4.65 eV and
one-photon absorption at two scattering angles θs = 15◦ in
Fig. 8(a) and θs = 5◦ in Fig. 8(b), with ϕs = 180◦ and ϕe = 0◦.
The solid lines shows the TDCSs calculated for a CP laser
field, the dashed lines presents the results for a LP laser field,
and the dotted lines present the TDCSs in the absence of
the laser field. In Fig. 8(a) the ejected electron is observed
with a high probability in a narrow region, which is centered
around the angles θe ∼ 73◦ (CP field) and θe ∼ 63◦ (LP field).
We recall that the maximum values of the TDCS occur at
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FIG. 8. Comparison of the TDCSs for ionization of hydrogen by
electron impact in the presence of CP (solid lines) and LP (dashed
lines) laser fields, in logarithmic scale, as a function of the polar
angle of the ejected electron θe, for one-photon absorption (N = 1) at
photon energy ω = 4.65 eV and two different values of the scattered
electron polar angle: (a) θs = 15◦ and (b) θs = 5◦. The dotted lines
present the field-free TDCS. The azimuthal angles of the outgoing
electrons are ϕs = 180◦ and ϕe = 0◦ and the rest of the parameters
regarding the scattering geometry, incident and ejected electron ki-
netic energies, and laser intensity are the same as in Fig. 3.

specific combinations of polar and azimuthal angles θe (s) and
ϕe (s) which are determined by the minimum value of recoil
momentum and are altered by the zeros of the argument of
the Bessel functions Xq. The well-known effect of the laser is
to decrease the magnitude of the TDCS peak which occurs at
the minimum value of the residual ion momentum. Another
effect of the laser field is the splitting of the TDCS peak
by the kinematical minima whenever the scalar product ε · q
becomes zero. Thus, the main peak of the TDCS is split by
the CP laser field at θe ∼ 51◦ in Fig. 8(a), being symmetrically
located with respect to the direction of the incident electron.
For the LP case, the main peak is split by the laser field at
θe ∼ 74.5◦, which is quite close to the minimum of the recoil
momentum, and hence it will result in the specific angular
distribution of the TDCS in Fig. 6(d).

In contrast, at θs = 5◦ in Fig. 8(b) the electron is emitted
into a larger solid angle and the main peak amplitude of
the TDCSs is smaller than at θs = 15◦, hence resulting in
the specific angular distribution of TDCSs in Figs. 7(a) and

FIG. 9. TDCS for ionization of hydrogen by electron impact in
the presence of a CP laser field as a function of the ejected electron
azimuthal angle ϕe at photon energy ω = 4.65 eV for one-photon
absorption (N = 1) at four different values of the ejected electron
polar angle θe: (a) 0◦, (b) 30◦, (c) 70◦, and (d) 135◦. The polar and
azimuthal angles of the scattered electron are θs = 15◦ and ϕs = 0◦,
respectively, for the solid lines and ϕs = 180◦ for the dashed lines.
The rest of the parameters concerning the scattering geometry, inci-
dent and ejected electron kinetic energies, and laser intensity are the
same as in Fig. 3.

7(d). Both TDCSs for CP and LP laser fields are symmetric
with respect to reflection and rotation in the (y, z) and (x, z)
planes, namely, to the changes θe → −θe and ϕe → π + ϕe,
respectively. In Fig. 9 we illustrate the azimuthal distributions
of the TDCS for ionization of hydrogen by electron impact in
the presence of a CP laser field as a function of the ejected
electron azimuthal angle ϕe at photon energy ω = 4.65 eV
for one-photon absorption, N = 1, at four different values
of the ejected electron polar angle: θe = 0◦ in Fig. 9(a), 30◦
in Fig. 9(b), 70◦ in Fig. 9(c), and 135◦ in Fig. 9(d). The
polar angle of the scattered electron is θs = 15◦, while the
azimuthal angle is ϕs = 0◦ for the solid lines and ϕs = 180◦
for the dashed lines. In Fig. 10 we show results similar to

FIG. 10. Similar to Fig. 9, but the polar angle of the scattered
electron is θs = 5◦.
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FIG. 11. Similar to Fig. 9, where the solid lines represent the
results for a CP laser field and the dashed lines represent TDCSs
for a LP laser field, at ϕs = 0◦.

those in Fig. 9, but the polar angle of the scattered electron
is θs = 5◦. For comparison, in Fig. 11 we show results of the
laser-assisted TDCSs similar to those in Fig. 9 at θs = 15◦, for
both CP (solid lines) and LP (dashed lines) fields. The TDCS
is symmetric with respect to reflection in the (x, z) plane, and
at forward and backward polar angles θe = 0◦ and 180◦, re-
spectively, the TDCS is independent of the azimuthal angle ϕe.
At polar angles of the ejected electron close to the minimum
of the recoil momentum, i.e., around θe � 70◦, the TDCS
curves in Figs. 9(c) and 10(c) are quite deformed along the
x axis (at ϕe = 0◦ and 180◦), which explains the density plot
distributions of TDCSs in Figs. 6(a) and 7(a). For azimuthal
angles ϕs �= 0 the TDCS is invariant to the change ϕe = π +
ϕs − ξ → π + ϕs + ξ , which implies a rotation with angle ϕs

of the TDCSs in Fig. 9, as well a translation with ϕs of the
TDCSs along the vertical axis in Figs. 6 and 7. The CP laser
field can give larger TDCSs than in the LP case at the polar
angles of the ejected electron situated in the vicinity of the
kinematical minimum.

IV. CONCLUSION

To summarize, we have investigated the laser-assisted
(e, 2e) process (1) for fast electrons at moderate laser field
intensities and we have analyzed the influence of the laser
polarization in several numerical examples by comparing the
TDCSs by CP and LP laser fields. An asymmetric noncopla-
nar scattering kinematics was considered in which the polar
and azimuthal angles of the scattered electron are fixed, while
those corresponding to the ejected electron are varied. We
employed a semiperturbative method to derive the TDCS in
the laser-assisted (e, 2e) process in the first-order Born ap-

proximation in the scattering potential. For the interaction of
the fast incoming and outgoing electrons with the laser field
we used the nonperturbative Gordon-Volkov wave functions,
while for the interaction of the H atom with the laser field we
used the first-order TDPT [31]. The exchange terms between
the outgoing electrons were included in the calculation of the
TDCS. We also derived a simplified expression of the total
TDCS at low values of the photon energy and low momentum
of the residual ion. The TDCS was modified by the presence
of the laser field and displayed a strong dependence on the
directions of the ejected and scattered electrons.

Due to the Coulomb repulsion, the outgoing electrons were
emitted and scattered in different half planes corresponding to
polar angles with opposite signs. We showed that significant
changes in the angular distributions of the TDCS could be
predicted when using a CP laser field instead of a LP one. We
established that by changing the laser polarization we could
change the angular distributions of the ejected electron, and
the peak magnitudes of TDCSs for circular polarization were
lower when compared to those for linear polarization laser
fields. The addition of the laser field changed the profile of
the field-free TDCS, namely, the binary peaks were reduced
in magnitude and split by the presence of the laser due to the
kinematical minima which occur when ε · q = 0, at different
polar angles for CP and LP fields. We showed that at low
photon energies the atomic dressing effects on the TDCS were
small and the electronic transition amplitudes contributed the
most, but the dressing effects increased in importance as the
photon energy increased. We compared our numerical results
with those published by Höhr et al. [21] for the He atom
and we found reasonable qualitative agreement. In conclusion,
our analytical formalism allows us to understand the physics
of the laser-assisted (e, 2e) process in a complementary way
compared to the pure numerical calculations and provides
supplementary information for theoretical and experimental
investigations. The use of laser fields with circular polariza-
tion for the (e, 2e) process can give larger TDCSs than in
the LP case at the polar angles of the ejected electron in the
vicinity of the kinematical minimum, when εLP · q = 0. Our
findings demonstrate the strong influence of the laser polar-
ization on the dynamics of laser-assisted (e, 2e) process, and
we hope that the theoretical results of this paper will provide
valuable insights for experimental observation to predict more
efficiently the optimal observation direction of the ejected
electron.
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