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Fluctuation-induced forces on nanospheres in external fields
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We analyze the radiative forces between two dielectric nanospheres mediated via the quantum and thermal
fluctuations of the electromagnetic field in the presence of an external drive. We generalize the scattering
theory description of fluctuation forces to include external quantum fields, allowing them to be in an arbitrary
quantum state. The known trapping and optical binding potentials are recovered for an external coherent state.
We demonstrate that an external squeezed vacuum state creates similar potentials to a laser, despite its zero
average intensity. Moreover, Schrödinger cat states of the field can enhance or suppress the optical potential
depending on whether they are odd or even. Considering the nanospheres trapped by optical tweezers, we
examine the total interparticle potential as a function of various experimentally relevant parameters, such as
the field intensity, polarization, and phase of the trapping lasers. We demonstrate that an appropriate set of
parameters could produce mutual bound states of the two nanospheres with potential depth as large as ∼200 K.
Our results are pertinent to ongoing experiments with trapped nanospheres in the macroscopic quantum regime,
paving the way for engineering interactions among macroscopic quantum systems.
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I. INTRODUCTION

Bringing massive systems to the quantum regime is an
essential step towards understanding the quantum-to-classical
transition, a goal of foundational importance [1]. Remarkable
progress in the control of atomic, molecular, and opti-
cal (AMO) systems has made the macroscopic quantum
regime increasingly accessible to experiments [2–4]: The
Schrödinger’s cat has been realized by photons, atoms, and
mechanical resonators [5–8]; molecular clusters as massive as
∼25 000 amu have been shown to exhibit quantum interfer-
ence [9]; and millimeter-sized objects have been cooled down
to their quantum ground states [10].

Optically levitated dielectric nanospheres are among the
most promising experimental platforms for realizing large
superpositions of massive objects [11]. First pioneered by
Ashkin in 1970 [12], they bring together the advantages of op-
tical trapping and cooling methods in terms of control, while
being well isolated from the environment without mechanical
clamping, thus minimizing decoherence. Recent experiments
have brought dielectric nanospheres as massive as ∼108 amu
to their motional quantum ground states [13–18]. This finds
application in quantum sensing and metrology while also pro-
viding an avenue for investigating foundational questions such
as quantum-to-classical transition and the gravitational inter-
action of quantum systems. More recent experiments have
achieved tunable interactions between two silica nanospheres
trapped via optical tweezers to create nonconservative and
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nonreciprocal interparticle potentials [19]. The ability to pre-
cisely control and engineer the interactions between two
dielectric nanospheres paves the way for realizing correlated
macroscopic quantum systems.

When considering interactions between two nanospheres
in the near-field regime, one will inevitably encounter
fluctuation-induced forces resulting from the quantum and
thermal fluctuations of the electromagnetic (EM) field [20].
Such fluctuation-induced forces exist even when the EM field
is in the vacuum state and are typically attractive in nature,
thus imposing fundamental constraints on how close two par-
ticles can be stably trapped near each other and limiting the
realization of macroscopic quantum states of such particles
[21] as well as influencing the decoherence of such states.
It is thus critical to develop experimentally amenable ways
to control fluctuation-induced forces between nanoparticles
in the near-field regime. Furthermore, the role of fluctuations
in internal temperature sensing of levitated nanoparticles has
been investigated [22].

Previous works showed that fluctuation-induced forces can
be substantially modified in the presence of external drives
[23–27]. Such drive-induced modifications to the vacuum
forces can be significant compared to its pure fluctuation-
induced counterpart and even repulsive in character. Turning
the strong short-ranged Casimir attraction to repulsion can al-
low for levitation and trapping particles at nanoscales [24,28]
and mitigate stiction in nano and micromechanical devices
[29]. Therefore, control over external drives can open new
avenues for tailoring fluctuation forces in a system of two or
more nanospheres.

In this work, we explore fluctuation-induced forces in a
system of two dielectric nanospheres in the presence of an
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FIG. 1. Schematic representation of two nanospheres (A and B)
interacting via the quantum and thermal fluctuations of the EM field
and externally applied arbitrary quantum fields. The spheres are
located at rA and rB, separated along the x axis, with a polarizability
α(ω) each.

externally applied field in a general quantum state. We de-
scribe the radiative interactions between the nanospheres
mediated via the total field by summing over the various
scattering processes to obtain the potentials seen by each
sphere for a general quantum state of the external field to
second-order in the particle polarizabilities. Analyzing these
potentials for specific states of the external field, we show that,
in addition to the first- and second-order Casimir-Polder (CP)
potential, the following applies. (1) For a coherent state of
the external field one recovers the well-known single-particle
trapping and interparticle optical binding potentials. (2) A
squeezed vacuum state of the external field can generate an
equivalent potential to the trapping and optical binding po-
tentials, even in the absence of a coherent amplitude. (3) aA
cat state of the external field can allow one to tune the trap
and optical binding potentials via the phase between the two
superposed coherent states. We further analyze the scaling
behavior of the various contributions to the total potential for
nanospheres trapped in optical tweezers for different regimes
of interparticle separation. Our results show that combin-
ing the near-field fluctuation forces with optical binding can
create mutual bound states of the two nanospheres with a po-
tential depth as large as ∼200 K. We study such potentials as
a function of various drive parameters: intensity, polarization,
and the relative optical phase of the tweezer fields.

The paper is organized as follows. First, in Sec. II, we
present our model to describe the system up to second order
in the particle polarizability [α(ω)], which we use to derive
the interparticle potentials for general states of the external
field in Sec. III. We then study the obtained potentials in
the presence of tweezer fields in Sec. IV and analyze their
parameter dependence in the light of finding bound states of
two nanospheres, presenting a summary and outlook of our
work in Sec. VI.

II. MODEL

We consider a system of two nanospheres at positions rA

and rB, optically trapped by external fields, as shown in Fig. 1.
The Hamiltonian of the system is given by Ĥ = ĤF + Ĥint,

where

ĤF =
∑

λ=e,m

∫
d3r

∫ ∞

0
dωh̄ωf̂†

λ (r, ω) · f̂λ(r, ω), (1)

is the Hamiltonian of the quantized EM field, with f̂ (†)
λ (r, ω)

as bosonic operators for the EM field in the macro-
scopic QED formalism [30,31]. These operators obey
the canonical commutation relations [f̂λ(r, ω), f̂†

λ′ (r′, ω′)] =
δ(ω − ω′)δ(r − r′)δλλ′ . The dipole interaction Hamiltonian

Ĥint = −
∑

i=A,B

1

2
P̂(ri, t ) · Ê(ri, t ) (2)

represents the interaction between the induced dipole mo-
ments of the individual nanospheres P̂(ri, t ) and the electric
field Ê(ri, t ) in the point-particle approximation. The induced
dipole moment is defined as P = αE.

The total electric field seen by sphere i is Ê(ri, t ) =
Êf (ri, t ) + Êex(ri, t ), where Êf (ri, t ) refers to field fluctua-
tions and Êex(ri, t ) represents an external electric field, such
as that of a laser. Since the particles act as scatterers, light
can bounce between the spheres multiple times. Each time the
field will pick up an additional factor of the polarizability α.
Consequently, we can describe both the fluctuation field and
the external field, including all their scattered components,
as an expansion in α. We express each of these fields up to
first order in the particle polarizability α(ω), including the
components scattered off the nanospheres

Êf,ex(ri, t ) = Ê(0)
f,ex(ri, t ) + Ê(1)

f,ex(ri, t ) + O(α2), (3)

where the superscripts k in Ê(k)
f,ex refer to the order of polariz-

ability α(ω). The zeroth-order field

Ê(0)
f (ri ) =

∑
λ=e,m

∫
d3r

∫ ∞

0
dωGλ(ri, r, ω) · f̂λ(r, ω) + H.c.

(4)

refers to the quantum and thermal fluctuations of the free elec-
tric field, as depicted in Fig. 2(a). The coefficients Gλ(r, r′, ω)
are proportional to the Green’s tensor G(r, r′, ω) of the EM
field, such that [30]∑

λ=e,m

∫
d3r′Gλ(r1, r′, ω) · G†λ(r2, r′, ω)

= h̄μ0

π
ω2ImG(r1, r2, ω), (5)

where λ characterizes the source of the quantum noise po-
larization (λ = e) or magnetization (λ = m). The Green’s
tensor G(r1, r2, ω) describes the propagation of a photon at
frequency ω between positions r1 and r2 and is obtained as
a solution to the inhomogeneous Helmholtz equation (see
Appendixes A and B for details) [32]. The expression

Ê(1)
f (ri ) =

∑
j=A,B

∑
λ=e,m

∫
d3r

∫ ∞

0
dωα(ω)ω2μ0

× G(ri, r j, ω) · Gλ(r j, r, ω) · f̂λ(r, ω) + H.c. (6)

stands for the electric field at the position ri of sphere i,
sourced by the dipole moment induced in sphere j by the
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FIG. 2. Electric field and induced dipole moment at rA to the
lowest orders in the particle polarizabilities α(ω) as denoted by
Ê(0,1)(rA) and P̂(1,2)(rA) at the position of sphere A.

fluctuation field, as shown in Figs. 2(c) and 2(e). The second
Green’s tensor then acts as a propagator, giving the electric
field sourced by the induced dipole [32]. We assume a real
polarizability α(ω) of the nanospheres such that there is no
internal dissipation.

Similarly the incident and scattered external fields Êex(r, t )
seen by sphere i are given by (see Eq. (3.40) in Ref. [33])

Ê(0)
ex (ri, t ) =1

2

∑
σ

∫
d3k �σ (ri, k, ω)âσ (k)e−iωt + H.c.,

(7)

Ê(1)
ex (ri, t ) = 1

2

∑
σ

∫
d3k μ0ω

2α(ω)G(ri, r j, ω)·

× �σ (r j, k, ω)âσ (k)e−iωt + H.c.. (8)

Here �σ (r, k, ω) =
√

h̄ω/2πε0(2π )3�̃σ (r, k, ω) where
�̃σ (r, k, ω) is the mode function of the field normalized to
1 at its maximum with wave vector k, angular frequency ω,

and polarization σ . The mode function 	σ (r, k, ω) allows
the external field to assume different beam shapes (e.g.,
Gaussian), as well as phases.

The fields Ê(k)
f,ex(ri, t ) at sphere i can each induce a dipole

moment in sphere i given by P̂(k+1)
f,ex (ri, t ):

P̂f,ex(ri ) = P̂(1)
f,ex(ri ) + P̂(2)

f,ex(ri ) + O(α3). (9)

The first term in the above equation represents the dipole
moment induced by the EM field fluctuations ( f ) or the in-
cident external field (ex), as shown in Fig. 2(b). The second
term refers to the dipole moment induced by the electric field
scattered off one of the spheres, as in Figs. 2(d) and 2(f).

The fluctuating dipole moment up to second order in
α(ω) is

P̂(1)
f (ri ) =

∑
λ=e,m

∫
d3r

∫ ∞

0
dωα(ω)Gλ(ri, r, ω)

· f̂λ(r, ω) + H.c., (10)

P̂(2)
f (ri ) =

∑
j=A,B

∑
λ=e,m

∫
d3r

∫ ∞

0
dωα(ω)2ω2μ0

× G(ri, r j, ω) · Gλ(r j, r, ω) · f̂λ(r, ω) + H.c.,
(11)

The dipole moment induced in sphere i by the external field
Êex(ri, t ) can be similarly obtained as

P(1)
ex (ri, t ) = 1

2

∑
σ

∫
d3k α(ω)�σ (ri, k, ω)âσ (k)e−iωt

+ H.c., (12)

P(2)
ex (ri, t ) = 1

2

∑
σ

∫
d3k α(ω)2μ0ω

2G(ri, r j, ω)·

× �σ (r j, k, ω)âσ (k)e−iωt + H.c.. (13)

We can thus combine the contributions to the second order
in polarizability α and write the interaction Hamiltonian in
Eq. (14) as

Ĥint = Ĥ (1)
int + Ĥ (2)

int + O(α3), (14)

where the first-order interaction Hamiltonian

Ĥ (1)
int ≡

∑
i=A,B

−1

2
P̂(1)(ri, t ) · Ê(0)(ri, t ), (15)

represents the interaction between the electric field at the
position of the nanospheres and the dipole moment it induces,
as shown by Figs. 2(a) and 2(b). We note that the contributing
processes only pertain to a single sphere, thus H (1)

int does not
contribute to the interparticle potential.

The second-order Hamiltonian is given by

Ĥ (2)
int ≡

∑
i=A,B

−1

2
P̂(1)(ri, t ) · Ê(1)(ri, t )

− 1

2
P̂(2)(ri, t ) · Ê(0)(ri, t ), (16)

where the first term corresponds to the interaction between
the dipole moment induced by the fluctuation or external
field in sphere i [Fig. 2(b)] and the electric field scattered
off either of the particles at position ri [Figs. 2(c) and 2(e)].
The second term corresponds to the interaction between the
dipole moment induced in particle i by the field scattered off
of one of the particles [Figs. 2(d) and 2(f)] and the fluctuation
or external fields at ri [as in Fig. 2(a)].

III. POTENTIALS FOR GENERAL STATES OF THE FIELD

We now focus on the potential that arises from the fields
and interactions described in the previous section. We denote
the total potential seen by sphere i as

Ui(ri, r j ) = U (1)
i (ri ) + U (2)

i (ri, r j ), (17)
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where U (1)
i (ri, r j ) = TrF[ρFĤ (1)

int ] and U (2)
i (ri, r j ) = TrF[ρF

Ĥ (2)
int ] represent the first- and second-order potentials in

the particle polarizability calculated in first-order perturba-
tion theory. It suffices to include first-order shifts because
the Hamiltonians Eqs. (15) and (16) include all scatter-
ing processes to second order in the particle polarizability.
We analyze these potentials below for various quantum
states of total field denoted by ρF = ρth ⊗ ρex, with ρth =
exp(−ĤF/kBT )/Z being the thermal state of the fluctuation
field, with Z as the partition function, and ρex being a general
state of the external field.

A. First-order potential

We find the first-order potential seen by the sphere A as
U (1)

A (rA) = U (1)
A,f (rA) + U (1)

A,ex(rA), where

U (1)
A,f (rA) = − 1

2 TrF
[
ρFP̂(1)

f (rA, t ) · Ê(0)
f (rA, t )

]
(18)

represents the contribution from quantum and thermal fluctu-
ations of the field and

U (1)
A,ex(rA) = − 1

2 TrF
[
ρF : P̂(1)

ex (rA, t ) · Ê(0)
ex (rA, t ) :

]
(19)

is the potential induced by the external field. We note that
the cross-coupling terms between the fluctuation field and the
external field that are linear in f and f †, vanish in first-order
perturbation theory, as Tr[ρ̂F f̂ (†)

λ (r, ω)] = 0 for diagonal states
like the thermal state, but can be nonzero for other states.
Furthermore, the Hamiltonian H (1)

int is normal ordered with re-
spect to the operators âσ (k) and â†

σ (k) of the external field. In
our description fluctuation effects arise solely from Êf (ri, t ).
Nevertheless, Êex(ri, t ) is a quantum field, which exhibits
ground-state fluctuations. Consequently, normal ordering is
necessary to prevent the overcounting of ground-state effects.
Substituting the field Ê(0)

f [Eq. (4)] and dipole moment P̂(1)
f

[Eq. (10)] in Eq. (18) we obtain the first-order fluctuation-
induced potential

U (1)
A,f (rA) = − h̄μ0

2π

∫ ∞

0
dωα(ω)ω2[2n(ω) + 1]

× Tr[Im GAA(ω)], (20)

where n(ω) = 1
eh̄ω/(kBT )−1 is the average thermal photon number

and we define the shorthand notation Gii(ω) ≡ G(ri, ri, ω). If
there are no surfaces present in the system, then the Green’s
tensor is given by the bulk Green’s tensor. The imaginary part
of the free-space Green’s tensor (see Appendix B), which in
the coincidence limit is given by Im Gfree(ri, ri, ω) = 1k/6π ,
yields a constant potential given by

U (1)
A,f (rA) = − h̄μ0

4π2c

∫ ∞

0
dω α(ω)ω3[2n(ω) + 1]. (21)

However, if there is a boundary present in the system,
the Green’s tensor can be split into a free part and a scat-
tering part, G(ri, r j, ω) = Gfree(ri, r j, ω) + Gsc(ri, r j, ω). In
the coincidence limit, the scattering part depends on the dis-
tance between the nanosphere and the surface. Consequently,
the single-particle potential will only give distance-dependent
energy, or a force, if there is a boundary present in the
system, corresponding to the usual thermal Casimir-Polder
potential [31].

Similarly, we obtain the first-order potential induced by the
external field by substituting Eqs. (7) and (12) in Eq. (19)

U (1)
A,ex(rA) = −

∫
d3k

∫
d3k′α(ω),

× Re

{∑
σσ ′

�A†
σ ′ · �A

σ 〈â†
σ (k)âσ ′ (k′)〉e−i(ω−ω′ )t

}
,

(22)

where we use the abbreviations �i
σ ≡ �σ (ri, k, ω), �i

σ ′ ≡
�σ ′ (ri, k′, ω′). If the external field is a single-mode field,
the above potential is proportional to the expected number of
photons in that mode.

B. Second-order potential

The second-order potential seen by sphere A can be
obtained from Eq. (16) as U (2)

A (rA, rB) = U (2)
A,f (rA, rB) +

U (2)
A,ex(rA, rB), where

U (2)
A,f (rA, rB) = − 1

2 TrF
[
ρF

{
P̂(1)

f (ri, t ) · Ê(1)
f (ri, t )

+ P̂(2)
f (ri, t ) · Ê(0)

f (ri, t )
}]

(23)

represents the fluctuation-induced component, and

U (2)
A,ex(rA, rB) = − 1

2 TrF
[
ρF

{
: P̂(1)

ex (ri, t ) · Ê(1)
ex (ri, t ) :

+ : P̂(2)
ex (ri, t ) · Ê(0)

ex (ri, t )
}

:
]
, (24)

the component induced by the external field. Substituting
the fields [Eqs. (4) and (6)] and induced dipole moments
[Eqs. (10) and (11)] in Eq. (23), yields the fluctuation-induced
second-order potential for sphere A:

U (2)
A,f (rA, rB) = − h̄μ2

0

π

∫ ∞

0
dωα(ω)2ω4(2n(ω) + 1)

× [Tr[Im GAA(ω) · Re GAA(ω)]

+ Tr[Im GAB(ω) · Re GBA(ω)]], (25)

where the first term represents the modification to the single-
sphere potential arising from divergent self-interactions. In the
absence of external boundary conditions such as surfaces, this
term will yield a position-independent, divergent potential and
can thus be ignored. The second term represents the inter-
particle thermal CP potential to second order in the particle
polarizability [34]. As before, if we substitute the free-space
Green’s tensor, we get

U (2)
A,f (rA, rB) = − c4h̄μ2

0

16π3r6

∫ ∞

0
dω[2n(ω) + 1][sin(2kr)

× (−3 + 5(kr)2 − (kr)4)

+ cos(2kr)(−6 + 2(kr)3)], (26)

where r = |rA − rB|. Similarly, the externally induced
second-order potential can be obtained by substituting the
external fields [Eqs. (7) and (8)] and the corresponding
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induced dipole moments [Eqs. (12) and (13)] in Eq. (24):

U (2)
A,ex(rA, rB) = −

∫
d3k

∫
d3k′ μ0ω

2α(ω)α(ω′)Re

{∑
σσ ′

(
�A†

σ ′ · G†
AA(ω′) · �A

σ + �A†
σ ′ · GAA(ω) · �A

σ

)〈â†
σ (k)âσ ′ (k′)〉e−i(ω−ω′ )t

}

−
∫

d3k
∫

d3k′ μ0ω
2α(ω)α(ω′)Re

{∑
σσ ′

(
�A†

σ ′ · G†
AB(ω′) · �A

σ + �A†
σ ′ · GAB(ω) · �A

σ

)〈â†
σ (k)âσ ′ (k′)〉e−i(ω−ω′ )t

}
.

(27)

The first and second terms in Eq. (13) correspond to the mod-
ification of the single-sphere and the interparticle potentials
resulting from the external field. Both the single-particle and
interparticle potential between two dielectric spheres for a
general state of the external EM field is determined by the ex-
pectation value 〈âσ (k)†âσ ′ (k′)〉. In the following, we analyze
particular cases of external field states.

C. Coherent state

We first consider the external field to be in a single-mode
coherent state, corresponding to the case of optical tweez-
ers. To this end, we apply the displacement operator D̂ =
eβσ (k)â†

σ (k)−β∗
σ âσ (k) to the vacuum state of the total field, giving

an expectation value 〈âσ (k)†âσ ′ (k′)〉 = βσ (k)∗βσ (k′).
Since the mode function describes the spatial part of the

electric field, we can map it to the electric field, thus showing
that the coherent state potential reduces to the optical trap and
optical binding potential, as created by a tweezer field Etw(r):

Etw(rA) = 1

2

∑
σ

∫
d3k �σ (rA, k, ω)βσ (k)e−iωt . (28)

The details of this calculation are presented in Appendix C. As
a consequence, if we use a single-mode tweezer at frequency
ω0, we find that the first-order external potential in this case
reduces to the well-known trap potential created by the optical
tweezers after the application of a single-mode approximation
at frequency ω0:

U (1)
A,coh(rA) = − 1

4α(ω0)|Etw(rA)|2. (29)

Similarly, it can be seen that the second-order potential
created by the tweezers corresponds to the interparticle optical
binding potential [35–37] (see Appendix C)

U (2)
A,ex(rA, rB)

= − 1
2μ0ω

2
0α(ω0)2Re {E∗

tw(rA) · G(rA, rA, ω0) · Etw(rA)}
− 1

2μ0ω
2
0α(ω0)2Re {E∗

tw(rA) · G(rA, rB, ω0) · Etw(rB)}.
(30)

Using the free-space Green’s tensor as before and ignoring
the divergent self-interaction term, the optical binding poten-
tial yields

U (2)
A,ex(rA, rB) = c2μ0α(ω0)2

8πr3
Re

[
h(kr)E∗

tw(rA) · Etw(rB)

− f (kr)
∑

i j

E∗
tw(rA)i

rir j

r2
Etw(rB) j

]
, (31)

where h(kr) = eikr[1 − ikr − (kr)2] and f (kr) = eikr[3 −
3ikr − (kr)2].

D. Squeezed vacuum state

We now consider the case where the external field is in
a squeezed vacuum state for a single mode. The effect of
squeezed light in a single-particle system was investigated in
Ref. [38]. The external field state is obtained by applying the
single-mode squeezing operator Ŝ = e

1
2 (ξσ (k)âσ (k)2−ξσ (k)âσ (k)†2 )

to the ground state, with ξσ (k) = rσ (k)ei	σ (k) as the squeez-
ing parameter, where ξσ (k) is defined such that it is nonzero
only for a single mode k0. Together with the expectation
value 〈âσ (k)†âσ ′ (k′)〉 = δ(k − k0)δ(k′ − k0)δσσ ′sinh2rσ (k),
this leads to the first- and second-order potentials for sphere
A as

U (1)
A,sq(rA) = −α(ω)�A†

σ · �A
σ sinh2rσ (k0), (32)

U (2)
A,sq(rA, rB) = −μ0ω

2α(ω)22sinh2rσ (k0),

× (
Re

{
�A†

σ · GAA(ω) · �A
σ

}
+ Re

{
�A†

σ · GAB(ω) · �B
σ

})
. (33)

As a striking result, we observe in this case that the squeezed
vacuum state creates (1) a single-particle potential similar to
that created by a tweezer field [Eq. (C5)] and (2) an interparti-
cle potential similar to the optical binding potential [Eq. (C6)].
To quantitatively compare the two, e.g., to see how much
squeezing of the vacuum is necessary to produce an interac-
tion of the same strength as the tweezer or the coherent optical
binding potentials, we consider the ratio of the potentials
U (1)

A,sq

U (1)
A,coh

= U (2)
A,sq

U (2)
A,coh

. As mentioned above, we assume the tweezer

field to be single-mode and have a flat intensity profile such
that only the ω0 mode of the vacuum is squeezed and only the
ω0 mode is displaced, with no spatial dependence. Because
the spatially dependent part under these approximations is the
same for both potentials, we define the following ratio of the

two potentials: USq

UOB
= 2sinh2r|	sq|2

|β(k)|2|	coh|2 = sinh2rh̄ω0c
(2π )4I , where I is the

intensity of the tweezer and we use that 	̃sq = eik0·r. Using
I = 10−2 W/µm2 and λ0 = 1064 nm, the squeezing parameter
would need to be r ≈ 27, which amounts to a squeezing of
≈240 dB for the squeezed state potential to be comparable to
the coherent state potential.

E. Cat state

Another example we present is the case where the external
field is in a Schrödinger cat state. Cat states are defined as
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superpositions of coherent states given by |C〉 = N (|β〉 +
eiθ | − β〉), where |β〉 is a coherent state with coher-
ent amplitude β and N = [2 + 2exp(−2β2)cosθ ]

1
2 is the

normalization factor. We consider a single-mode cat
state, meaning that one mode ω0 is in a cat state
and all other modes remain in the ground state. Us-
ing the single-mode cat state |C〉 as defined above,
we find 〈C|âσ (k)†âσ ′ (k′)|C〉 = N (k)N (k′)β∗(k)β(k′)(2 −
eiθ (k) − e−iθ (k′ ) )δ(k − k0)δ(k′ − k0). Substituting these ex-
pectation values into Eqs. (22) and (24) and evaluating both
integrals yields

U (1)
A,ex(rA) = −α(ω0)Re {�A† · �AN2(k0)

× |β(k0)|22(1 − cosθ )} (34)

and

U (2)
A,ex(rA, rB) = −4μ0ω

2
0α(ω0)2, Re {�A† · (G†

AA(ω0)

+ G†
AB(ω0)) · �AN2(k0)|β(k0)|2(1 − cosθ )}.

(35)

If we compare this with the coherent state potentials for
a single mode, we see that the cat-state potential differs by
a factor of N2(k0)(1 − cosθ ). Since 1 − cosθ takes values
between 0 and 2, it is possible to turn off the interaction
potential as well as the trap potential by choosing a suitable
θ . This means that for an even cat state (θ = 2nπ ) there will
be no potential in spite of the presence of an external laser
field. While for an odd cat state [θ = (2n + 1)π ] the potential
is enhanced by a factor of 2 compared to a coherent state with
the same average photon number.

Furthermore, the potential created by a general statisti-
cal mixture ρ̂ = p1|β〉〈β| + p2| − β〉〈−β| of coherent states
with p1 + p2 = 1 is equivalent to the potential created by a
coherent state |β〉. This means that the potential of a single-
mode cat state differs from that of a simple statistical mixture.
The fact that both the first-order and second-order potentials
are enhanced or suppressed for cat states can thus be solely
attributed to the quantum coherence between the superposed
states.

IV. ENGINEERING SPHERE-SPHERE POTENTIAL

In this section, we will focus on engineering the interpar-
ticle potential for the case where two silica nanospheres are
trapped via optical tweezers. We examine the optical potential
by tuning various parameters: polarization, relative optical
phase, and intensity of the tweezers. We also assume that the
mode function �σ takes on the shape of a box function in the
x-y plane and a plane wave along the z axis. This assumption,
we will refer to as the flat tweezer approximation.

A. Scaling regimes

Before we consider the total potential in more detail, it is
instructive to look at the scaling of the thermal Casimir-Polder
and the optical binding potentials across various regimes of
the sphere-sphere separation. A summary of the different scal-
ing regimes is presented in Fig. 3.

FIG. 3. Comparison of all regimes for the optical binding and
thermal Casimir-Polder potentials of two nanospheres. The optical
binding potential (OB) scales as ∝ cos(k0r ± �φ)/r3 in the near-
field (r � λ0) and as ∝ cos(k0r ± �φ)/r in the far-field (r  λ0).
The Casimir-Polder potential (CP) scales as ∝ 1/r6 in the near-field
(r < λt2 ), as ∝ 1/r7 in the intermediate regime (λt2 < r < λT ) and
as ∝ 1/r6 in the far-field (r > λT ).The lengthscales λ0, λt2 , and λT

are defined in Sec. IV A.

1. Thermal Casimir-Polder potential

The thermal Casimir-Polder potential exhibits three differ-
ent scaling regimes, given by the characteristic lengthscales
λt2 and λT , where λt2 = 11.3 nm is the dominant transition
wavelength of silica, which appears in the Drude-Lorentz
permittivity [23,39,40]

ε(ω) = 1 + ω2
p1

ω2
t1 − ω2 − iγ1ω

+ ω2
p2

ω2
t2 − ω2 − iγ2ω

(36)

in the form of a transition frequency ωt2 . The other parame-
ters are the plasma frequencies ωp1 = 1.75 × 1014 Hz, ωp2 =
2.96 × 1016 Hz, the transition frequencies ωt1 = 1.32 ×
1014 Hz, ωt2 = 2.72 × 1016 Hz and the damping coefficients
γ1 = 4.28 × 1013 Hz, γ2 = 8.09 × 1015 Hz [41]. λT = h̄c

kBT is
the thermal lengthscale. The permittivity enters the polar-
izability α(ω) via the Clausius-Mossotti relation α(ω) =
4πε0R3 ε(ω)−1

ε(ω)+2 , with R being the radius of the nanospheres.
Introducing the dimensionless polarizability α̃(ω) =

ε(ω)−1
ε(ω)+2 , we can write the thermal Casimir-Polder potential
approximated in the near-field (r � λt2 ) as [39]

U ts
CP(rA, rB) ≈ −4kBT

(
R

r

)6

ÑT − h̄ωt2

π

(
R

r

)6

Ñ0, (37)

where the dimensionless quantities ÑT and Ñ0 are ÑT =∑
j α̃(iξ̃ j )2 and Ñ0 = ∫ ∞

0 dω̃α̃(ω̃)2, with the sum being eval-
uated over the dimensionless Matsubara frequencies ξ̃ j =
2π j kBT

h̄ωt2
. The first term corresponds to the thermal contribu-

tion with the thermal energy scale kBT , whereas the second
term corresponds to the ground-state contribution with energy
scale h̄ωt2 .

In the intermediate regime (λt2 < r < λT ) the thermal
Casimir-Polder potential can be approximated as [39]

U ts
CP(rA, rB) ≈ −23

4

h̄c

rπ

(
R

r

)6

α̃(0)2, (38)
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with the characteristic energy scale as h̄c
r and in the far-field

regime (r  λT ) as

U ts
CP(rA, rB) ≈ −6kBT

(
R

r

)6

α̃(0)2, (39)

with the thermal energy scale kBT .
In the limit of T → 0, the thermal lengthscale λT goes to

infinity. The intermediate regimes will thus extend to infinity,
revealing the two scaling regimes of the ground-state Casimir-
Polder potential between two dielectric spheres [39].

2. Optical binding potential

Under the assumption that the drive is comprised of a
single mode, we can use the single-mode expression for
the optical binding potential in Eq. (30). The characteristic
lengthscale of the optical binding potential is determined by
the tweezer wavelength λ0. If we also assume a flat tweezer
profile, then the potential in the near-field regime (r � λ0) is

U A/B
OB (rA, rB) ≈ 4π

√
IAIB

c
R3

(
R

r

)3

α̃(ω0)2cos(�φ), (40)

where IA/B is the intensity of the tweezers A and B, �φ is the
relative optical phase between the two tweezers and ω0 is the
drive frequency.

In the far field (r  λ0) we get

U A/B
OB (rA, rB) ≈ −4π

√
IAIB

c
R3(k0R)2

×
(

R

r

)
α̃(ω0)2cos(k0r ± �φ), (41)

which scales with the square root of the radiation pressure
∼√

I/c on either sphere. It is worth pointing out that, in
the radiative regime when r ≈ λ0, the potential scales as
∼sin(k0r ± �φ)/r2, meaning that it exhibits a phase shift of
π/2 compared to the near-field and far-field regimes.

The two spheres, A and B, can see different optical bind-
ing potentials for �φ �= 0 or π , resulting in nonconservative
forces between the trapped nanospheres. As illustrated in the
next section, the difference between potentials is the largest
for �φ = π/2 and vanishes for �φ = 0 or π . Such noncon-
servative optical binding forces were experimentally observed
by Rieser et al. in Ref. [19].

Utilizing the different scaling behavior of the interparticle
potentials along with the fact that the optical binding and
trapping potentials can be readily tuned via the tweezer field
one can realize various sphere-sphere potential landscapes. In
the next section, we will investigate how this can be used to
produce a bound-state potential of the two nanospheres.

B. Bound state of nanospheres

The interplay between the different radiative potentials
gives rise to a tunable potential landscape. While the analog
of Earnshaw’s theorem for fluctuation-induced forces funda-
mentally constrains the possibility of creating stable equilibria
for objects interacting purely via quantum fluctuations [21],
driven systems can overcome this limitation. The drive thus
allows one to create repulsive and tunable optical binding
potentials, which can be modified by changing the optical

FIG. 4. (a) Total potential for �φ = 0 (green) and �φ = π

(blue) at intensity I = 10−2 W/µm2, T = 300 K, and with both
lasers polarized along the y axis. The spheres have a radius of R =
100 nm. For these relative optical phases, the system is conservative.
The potential thus represents the joint potential of both spheres. The
inset shows the deepest potential well around r = λ0. The plateau of
the potential at large distances is formed by the flat tweezer potential.
(b) Total potential seen by sphere A (maroon) and sphere B (black) at
�φ = π/2. Since they now exhibit nonconservative forces, there is
no joint potential, but sphere A will see an optical binding potential
with �φ = π/2 and sphere B with �φ = −π/2. The lengthscales
λ0, λt2 , and λT are defined in Sec. IV A.

tweezer intensity I , relative optical phase �φ, and polariza-
tions.

Figure 4 shows the interparticle potential at T = 300 K for
a drive intensity I = 10−2 W/µm2, with both tweezer fields
polarized along the y axis for four different relative optical
phases. Figure 4(a) shows the potentials for �φ = 0 (green)
and �φ = π (blue). For these two relative optical phases, the
forces are purely conservative and a joint potential of both
spheres can be written down. It can be seen from the inset in
Fig. 4(a) that, for �φ = 0, there is a ≈200 K deep well around
x = λ0. In the flat tweezer approximation, this potential well
(and other wells at a greater distance) are created by the
oscillatory nature of the optical binding potential. Their depth
therefore increases linearly with the tweezer intensity, which
is a readily tunable parameter in the experiment. Figure 4(b)
shows the potential seen by either sphere at �φ = π/2. In
that case, the system is no longer conservative and each sphere
sees a different potential. Consequently, for the values of the
sphere-sphere separation x where sphere A sees a potential
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FIG. 5. The total potential for different polarizations of the
tweezer: (a) yy polarization, (b) xy polarization and (c) xx polariza-
tion, in the z = 0 plane. The dashed blue line indicates the potential
plotted in Fig. 4(a). Regarding interactions along the x axis, as
shown in Fig 4, it can be seen that going from yy polarization to
xx polarization enables one to turn off the optical binding interaction
between the spheres. This is due to the radiation pattern of a dipole,
which radiates perpendicular to the induced polarization. We assume
the intensity to be I = 10−2 W/µm2 and �φ = 0. In the intermediate
arrangement, at xy polarization, there is weak interaction along both
the x and the y axis, due to the interference of the two dipole fields.

minimum, sphere B sees a maximum. Such a scenario will
lead to an unstable configuration of the two spheres, wherein
they would eventually attract each other in the near field and
stick together.

We remark that the point-dipole description of the
nanospheres as well as the truncation of scattering processes at
second order becomes inaccurate at sphere-sphere separations
comparable to the radius R. To capture the behavior of the
system in the near field more accurately, it would be pertinent
to extend the point particle description to a bulk medium
approach including finite-size effects and to extend the model
to multiple scattering processes between the nanospheres.
Furthermore, we assume the nanosphere to have no internal
dissipation and the scattering contribution to the interparticle
force vanishes [42]. Under this assumption of lossless par-
ticles, the optical binding force (including all higher-order
scattering processes) would be linearly proportional to the
field intensity.1 However, in the presence of dissipative mech-
anisms, wherein the nanospheres are able to exert radiation
pressure on each other, at higher field intensities, the second-
order approximation would no longer be valid. Finally, we

1This can be seen from the fact that P(1) is linearly proportional
to the field, and each higher-order scattering process adds a factor
of G(r, r′, ω) to the scattered field. Thus, all the terms in Eqs. (3)
and (9) are linear in the electric field, implying that the interaction
Hamiltonian is linearly proportional to the intensity.

point out that the point-dipole approximation is valid as long
as the electric field does not vary appreciably over the size
of the nanosphere. This would no longer be accurate when
either the relevant field wavelengths (λ0) or the interparticle
separation become comparable to the radius of the spheres.
We therefore require that both R/λ0 and R/r � 1.

Figure 5 shows the total potential for three different polar-
ization configurations of the two tweezer fields applied at rA

and rB (yy, xy, and xx) with I = 10−2 W/µm2 and T = 300 K.
It can be seen that the potential reflects the interference of the
dipole radiation pattern from the two nanospheres, thus per-
mitting one to turn off the optical binding interaction between
the spheres.

To study the existence of stable minima in more detail
(taking into account the nonconservative nature of the in-
teraction) one must consider the potential of either sphere
and its dependence on �φ. Figures 6(a) and 6(b) present
the potentials seen by either sphere as a function of rela-
tive optical phase �φ. In the single-mode approximation of
the tweezer, the optical binding potential of spheres A and
B satisfy U A

OB(�φ) = U B
OB(−�φ), such that the potentials

are equivalent, but reflected around �φ = π . The system is
stable if both spheres experience a potential minimum at a
distance x. To search for such positions, we numerically find
the minima of both potentials in Figs. 6(a) and 6(b); the results
are shown in Fig. 6(c). The dotted lines in teal and orange
represent the minima of the potential of sphere A and sphere
B, respectively. Since stability is only possible whenever the
two dotted lines cross (indicating that both spheres are at a
potential minimum) it can be seen that bound states only exist
at �φ = 0 and �φ = π , i.e., when no nonconservative forces
are acting on the spheres.

V. SUMMARY

In this work we presented a description of the radiative
forces between two dielectric nanospheres interacting via the
quantum and thermal fluctuations of the EM field, as well
as an external drive in a general quantum state. We analyze
the interaction between the total field, comprising the field
fluctuations and externally applied fields, and the dipole mo-
ments induced in the nanospheres by summing over the light
scattering processes up to second order in the particle polariz-
abilities. Considering the two nanospheres to be trapped by a
laser, we demonstrate that the tweezer intensity, polarizations,
and the relative optical phase between the tweezers allow
control of the interparticle potential.

VI. DISCUSSION AND OUTLOOK

Analyzing the interaction potential between the spheres
to second order in the particle polarizabilities, we recover
the known expressions for the trapping, optical binding, and
thermal Casimir-Polder potentials when the external field is
in a coherent state and the fluctuation field in a thermal state
(Sec. III C). For a coherent state of the external field, the
two spheres see a mutually bound trap potential as deep as
≈200 K at a separation of x ≈ 1 µm for a tweezer intensity
of I = 10−2 W/µm2 and phase �φ = 0 (Fig. 4). The rela-
tive optical phase between the tweezers permits the creation
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FIG. 6. The total potential as a function of relative optical phase �φ at intensity I = 10−2 W/µm2, T = 300 K, and with both lasers
polarized along the y axis by sphere (a) A and (b) B. The spheres have a radius of R = 100 nm. The dashed colored lines coincide with the
potentials plotted in Fig. 4. (c) Stability analysis along the x axis of the two nanospheres. The dotted lines show the minima of the potential of
sphere A (teal) and sphere B (orange) as presented in Fig. 6. The dashed lines correspond to the potentials in Fig. 4. Due to the nonconservative
nature of the optical binding interaction, stable bound states along the x axis can only be found at �φ = 0 and �φ = π since only then both
spheres can be at a potential minimum simultaneously.

of nonconservative and nonreciprocal forces. Utilizing the
tweezer polarizations, we can selectively turn off the optical
binding interaction between the spheres.

Tailoring quantum statistics of light can have exciting ap-
plications in many optical phenomena [38,43,44]. We show
that an external field in a single-mode squeezed vacuum state
creates a potential similar to the optical trapping and optical
binding potentials, remarkably in the absence of any coher-
ent field amplitude (Sec. III D). The squeezing required for
creating a strong-enough potential to trap a nanosphere of
radius ∼100 nm, however, is substantially large (∼240 dB).
For the external field in a cat state, the resulting potential
differs from the coherent state by a factor of ∼ (1 − cos θ ),
where θ refers to the phase between the superposed coherent
states (Sec. III E).

Understanding and controlling the radiative interactions
between optically trapped nanospheres is crucial for future
experimental studies of macroscopic quantum systems. Such
levitated particles in the quantum regime provide an ideal
testbed for exploring gravitational interactions between quan-
tum systems, paving the way for exploring the potential role
of gravity in engendering decoherence and bringing about
the quantum-to-classical transition. In such systems, it be-
comes imperative to control the electromagnetic interactions
that are fundamentally far stronger than gravity2 to delineate
gravitational effects. It will be pertinent to extend the present
work to include finite-size effects such that one can prepare
bound states of the nanospheres at shorter distances or larger
nanospheres and analyze gravitational interactions between
the particles in such a regime.

Having a full description of the radiative interactions will
allow one to engineer the interparticle potential in more detail,
including other interactions such as Coulomb or magnetic in-
teractions. As we illustrated, one can realize mutually trapped

2For reference, the ratio of electric to gravitational forces between
two electrons is e2/(4πε0Gm2

e ) ∼ 1042, where me is the electron
mass.

bound states of nanospheres, with the potential depths com-
parable to ≈200 K. Such trap depths can be readily increased
by increasing the tweezer intensity, enabling one to realize
such bound states of nanoparticles at room temperatures. Such
systems can be excellent sensors of external electromagnetic
fields and forces and have been used in developing probes for
the detection of new physics beyond the standard model.

In addition, it would be interesting to extend the present
results to consider the spheres in a delocalized superposition
of their center-of-mass positions, or with their centers of mass
being prepared in entangled states. In such a scenario one can
ask how quantum fluctuations provide a fundamental limit
to decoherence of macroscopic quantum systems. However,
it would be relevant to consider the effect of the various
quantum states of the center of mass of two nanospheres on
their individual and mutual quantum fluctuation effects, such
as fluctuation forces and decoherence.
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APPENDIX A: GREEN’S TENSOR AND DIPOLE
RADIATION

Here we we define the Green’s tensor of the electric field
and show how it can be used to describe the electric in field
in the presence of sources. The inhomogeneous Helmholtz
equation is given by [32][

∇ × 1

μ(r, ω)
∇ × −ω2

c2
ε(r, ω)

]
E(r, ω) = j(r, ω), (A1)
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where j(r, ω) is the current which acts as a source of the
electric field and μ(r, ω), ε(r, ω) are the spatially dependent
relative permeability and relative permittivity, respectively,
that include the presence of any media. The sourced part of
the solution to this equation is

E(r, ω) = iμ0ω

∫
d3r G(r, r′, ω) · j(r′, ω). (A2)

Here G(r, r′, ω) is the Green’s tensor, which is the solution to
the following equation [32]:[

∇ × 1

μ(r, ω)
∇ × −ω2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r − r′).

(A3)

In the absence of free currents, the current is given by
j(r, ω) = −iωP(r, ω) + ∇ × M(r, ω), where P(r, ω) and
M(r, ω) are the polarization and magnetization of all the
media that are not encompassed by μ(r, ω) and ε(r, ω). The
polarization as well as the magnetization can contain both
noise contributions and induced contributions.

APPENDIX B: FLUCTUATION FIELD

The electric field sourced by a quantized noise current
density ĵ(r, ω)N for the given boundary conditions is given
by

Êf (r, ω) = iμ0ω

∫
d3r G(r, r′, ω) · ĵN (r′, ω). (B1)

The noise current density can be related to the noise polar-
ization and magnetization as ĵN = −iωP̂N + ∇ × M̂N , which
describe the source of the fluctuation field [30,31]. Thus, the
electric field is

Êf (r, ω) = iμ0ω

∫
d3r G(r, r′, ω) · (−iωP̂N + ∇ × M̂N ).

(B2)

Defining the bosonic operators f̂λ(r, ω) associated with the
noise polarization (λ = e) and magnetization (λ = m) as

P̂N (r, ω) = i

√
h̄ε0

π
Im ε(r, ω)f̂e(r, ω), (B3)

M̂N (r, ω) =
√

h̄

πμ0

Im μ(r, ω)

|μ(r, ω)| f̂m(r, ω), (B4)

and substituting into Eq. (B2) permits us to define modified
Green’s tensors

Ge(r, r′, ω) = i
ω2

c2

√
h̄ε0

π
Im ε(r, ω)G(r, r′, ω), (B5)

Gm(r, r′, ω) = i
ω

c

√
h̄

πμ0

Im μ(r, ω)

|μ(r, ω)| [∇′ × G(r′, r, ω]T .

(B6)

This, in turn, we can use to write the fluctuation field as we
have done in Eq. (4) as

Êf (ri ) =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω Gλ(ri, r, ω) · f̂λ(r, ω) + H.c..

(B7)

In the presence of a polarizable point particle, the polarization
induced by Êf will be

P̂f (ri )

=
∑

λ=e,m

∫
d3r

∫ ∞

0
dωα(ω)Gλ(ri, r, ω) · f̂λ(r, ω) + H.c.,

(B8)

with α(ω) being the polarizability of the particle. As described
in Appendix A, this polarization will act as a source of an
electric field given by

Ê(1)
f (ri ) =

∑
λ=e,m

∫
d3r

∫ ∞

0
dωα(ω)ω2μ0

G(ri, ri, ω) · Gλ(ri, r, ω) · f̂λ(r, ω) + H.c., (B9)

which is the single-sphere version of Eq. (6).

APPENDIX C: RADIATIVE FORCES
IN OPTICAL TWEEZERS

In Sec. III C we calculated the potential seen by two
nanospheres when the external field is in a coherent state. Here
we elaborate on those results and show how they connect to
more commonly known aspects of optical trapping and optical
binding of nanospheres. To make this comparison we will first
map the external field in a coherent state onto the tweezer
field and the scattered tweezer field as follows. We define the
complex fields as

Etw(rA) = 〈β|Ê(0)
ex (rA)|β〉

= 1

2

∑
σ

∫
d3k �σ (rA, k, ω)βσ (k)e−iωt , (C1)

and similarly the dipole moment induced by the tweezer field
as

Ptw(rA) = 〈β|P̂(1)
ex (rA)|β〉

= 1

2

∑
σ

∫
d3k α(ω)�σ (rA, k, ω)βσ (k)e−iωt . (C2)

The scattered field, namely, the fields scattered scattered
off sphere A or sphere B and seen by sphere A, we can thus
write as

EA/B
sc (rA) = 〈β|Ê(1)

ex (rA)|β〉

= 1

2

∑
σ

∫
d3k G(rA, rA/B, ω)�σ (rA/B, k, ω)

× βσ (k)e−iωt , (C3)

where the superscript in EA/B
sc (rA) denotes whether the

tweezer field is scattered off sphere A or sphere B. Once again,
this implies that the dipole moment induced by the scattered
tweezer field is

PA/B
sc (rA) = 〈β|P̂(2)

ex (rA)|β〉 = 1

2

∑
σ

∫
d3k α(ω),

× G(rA, rA/B, ω)�σ (rA/B, k, ω)βσ (k)e−iωt .

(C4)
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Using these definitions allows us to write the coherent state potentials

U (1)
A,coh(rA) = −

∑
σσ ′

∫
d3k

∫
d3k′ α(ω), Re

{
�A†

σ ′ · �A
σβ∗

σ ′ (k′)βσ (k)e−i(ω−ω′ )t}, (C5)

and

U (2)
A,ex(rA, rB) = −

∫
d3k

∫
d3k′ μ0ω

2α(ω)α(ω′)Re

{∑
σσ ′

(
�A†

σ ′ · G†
AA(ω′) · �A

σ + �A†
σ ′ · GAA(ω) · �A

σ

)
βσ (k)∗βσ (k′)e−i(ω−ω′ )t

}

−
∫

d3k
∫

d3k′ μ0ω
2α(ω)α(ω′)Re

{∑
σσ ′

(
�A†

σ ′ · G†
AB(ω′) · �A

σ + �A†
σ ′ · GAB(ω) · �A

σ

)
βσ (k)∗βσ (k′)e−i(ω−ω′ )t

}
,

(C6)

as

U (1)
A,coh(rA) = − 1

4 P∗
tw(rA) · Etw(rA), (C7)

and

U (2)
A,ex(rA, rB) = −1

2

∑
i=A,B

Re
{
Pi

sc(rA) · Etw(rA)
}

− 1

2

∑
i=A,B

Re
{
Ei

sc(rA) · Ptw(rA)
}
. (C8)

If we assume that the tweezer comprises only one single mode
ω0 then we can write these potentials in a more familiar form,
showing that we correctly recover the tweezer and the optical
binding potential [35,36]

U (1)
A,coh(rA) = − 1

4α(ω0)|Etw(rA)|2, (C9)

and

U (2)
A,ex(rA, rB)

= − 1
2μ0ω

2
0α(ω0)2Re {E∗

tw(rA) · G(rA, rA, ω0) · Etw(rA)}
− 1

2μ0ω
2
0α(ω0)2Re {E∗

tw(rA) · G(rA, rB, ω0) · Etw(rB)},
(C10)

where Eq. (C9) is the trapping potential created by the
tweezer and Eq. (C10) is the optical binding potential seen by
sphere A.

APPENDIX D: FREE SPACE GREEN’S TENSOR
AND APPROXIMATE POTENTIALS

The free space Green’s tensor between points r1 and r2 is
given by

Gfree(r1, r2, ω) = eikr

4πk2r3
{ f (kr)1 − h(kr)er ⊗ er} (D1)

where f (x) ≡ 1 − ix − x2, h(x) ≡ 3 − 3ix − x2, r = |r1 −
r2|, and er = r/r is the unit vector connecting the positions
of the two spheres.

1. Thermal CP-potential

Utilizing this form of the Green’s tensor, we will now
briefly outline the derivations of the approximations in

Sec. IV A. We begin by writing the thermal CP potential as

U (rA, rB) = − h̄c

16π3ε2
0 r7

∫ ∞

0
dxα(xc/r)2

× Im {e−2ix[3 + 6ix + 5(ix)2 + 2(ix)3 + (ix)4]}

× coth

(
h̄cx

2kBTr

)
, (D2)

where we use that ω/k = c, k = k̃kt2 and subsequently set
k̃kt2 r = x. Here kt2 = 2π/λt2 is the wave number correspond-
ing to the dominant transition wavelength λt2 of silica as
defined in Sec. IV A 1. In the regime where (r  λt2 ) the
polarizability is well approximated by the static polarizability
α(0). Utilizing this approximation, we can see that within this
regime there is now another regime defined by the thermal
lengthscale λT ≡ h̄c

kBT . We thus distinguish between the two
cases λT  r (far-field regime) and λT � r (intermediate
regime). We discuss these two cases below.

(1) For λT  r, we can set coth( λT x
2r ) ≈ 1, which allows

us to Wick rotate the integral in Eq. (D2) and evaluate it to get

U ts
CP(rA, rB) ≈ − h̄c

16π3ε2
0 r7

α(0)2 23

4
, (D3)

exhibiting a r−7 scaling. Using the dimensionless quantities
defined in Sec. IV A 1, we recover Eq. (38) in the main text.

(2) For λT � r, we extend the integral down to −∞ by
splitting up the imaginary part and using the fact that coth(x)
is an odd function. We note that the distance between the
poles of the integrand in Eq. (D2), which are given by the
Matsubara frequencies ωn = 2πkBT

h̄ n, is bigger than c/r, which
is the decay length of the exponential in the integrand. This
means that because of the decaying exponential, only the first
residue at the origin will contribute to the sum. This gives

U ts
CP(rA, rB) ≈ − − 2kBT

16π3ε2
0 r6

α(0)23π, (D4)

which, after substitution of the dimensionless quantities,
yields Eq. (39). Thus the potential returns to a r−6

scaling [31].
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In the near-field (r � λt2 ) regime we can approximate the
potential as

U (rA, rB) ≈ − 3h̄

16π3ε2
0 r6i

∫ ∞

−∞
dωα(ω)2coth

(
h̄ω

2kBT

)
,

(D5)

where we again extended the integral by breaking up the imag-
inary part before neglecting the last higher-order terms. The
integral can be simplified by writing coth( h̄ω

2kBT ) = 2n(ω) + 1
and using the same residues as before and a semi-circle con-
tour around the upper half plane. We therefore get

U ts
CP(rA, rB)

≈ − h̄

16π3ε2
0 r6

⎧⎨
⎩2π

2kBT

h̄

∑
j

α(iξ j )
2 +

∫ ∞

0
dωα(ω)2

⎫⎬
⎭.

(D6)

The first term represents the near-field approximation to the
thermal part of the potential whereas the second term repre-
sents the approximation to the ground-state potential. Once
again using the dimensionless quantities in Sec. IV A we end
up with Eq. (37).

2. Optical binding potential

Next we outline the derivation of the approximation to the
optical binding potential as given in Sec. IV A 2. We work un-
der two assumptions. First, that the two spheres are confined
to move along the x axis and second, that the external field is y
polarized. The coordinate system is defined as in Fig. 1. Under
these assumptions, we can write the OB potential as given in
Eq. (31) as

U A/B
OB (rA, rB) = 4πR6

√
IAIBα̃(ω)2

cr3
{cos(kr − �φ)

+ sin(kr − �φ)kr − cos(kr − �)(kr)2},
(D7)

where the dimensionless polarizability α̃ is defined in
Sec. IV A 1. In the near-field regime (r � λ0) only the lowest-
order term in kr contributes, which means that the potential is

U A/B
OB (rA, rB) ≈ 4π

√
IAIB

c
R3

(
R

r

)3

α̃(ω0)2cos(�φ), (D8)

as in Eq. (40). Contrastingly, in the far-field regime (r  λ0)
only the highest-order term in kr contributes, giving us the
approximate potential in Eq. (41).
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able light-induced dipole-dipole interaction between optically
levitated nanoparticles, Science 377, 987 (2022).

[20] P. W. Milonni, The Quantum Vacuum: An Introduction to Quan-
tum Electrodynamics (Elsevier Science, Amsterdam, 1994).

052807-12

https://doi.org/10.1063/1.881293
https://doi.org/10.1103/RevModPhys.73.565
https://doi.org/10.1103/RevModPhys.84.1765
https://doi.org/10.1038/nphys2863
https://doi.org/10.1038/nature07288
https://doi.org/10.1126/science.272.5265.1131
https://doi.org/10.1126/science.1243289
https://doi.org/10.1126/science.adf7553
https://doi.org/10.1038/s41567-019-0663-9
https://doi.org/10.1038/s41586-018-0643-8
https://doi.org/10.1126/science.abg3027
https://doi.org/10.1103/PhysRevLett.24.156
https://doi.org/10.1126/science.aba3993
https://doi.org/10.1103/PhysRevResearch.4.033051
https://doi.org/10.1038/s41567-023-01956-1
https://doi.org/10.1038/s41586-021-03602-3
https://doi.org/10.1038/s41586-021-03617-w
https://doi.org/10.1364/OE.462921
https://doi.org/10.1126/science.abp9941


FLUCTUATION-INDUCED FORCES ON NANOSPHERES IN … PHYSICAL REVIEW A 109, 052807 (2024)

[21] S. J. Rahi, M. Kardar, and T. Emig, Constraints on stable
equilibria with fluctuation-induced (Casimir) forces, Phys. Rev.
Lett. 105, 070404 (2010).

[22] T. Agrenius, C. Gonzalez-Ballestero, P. Maurer, and O.
Romero-Isart, Interaction between an optically levitated
nanoparticle and its thermal image: Internal thermometry via
displacement sensing, Phys. Rev. Lett. 130, 093601 (2023).

[23] P. W. Milonni and A. Smith, van der waals dispersion forces in
electromagnetic fields, Phys. Rev. A 53, 3484 (1996).

[24] D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, Trapping
atoms using nanoscale quantum vacuum forces, Nat. Commun.
5, 4343 (2014).

[25] S. Fuchs, R. Bennett, and S. Y. Buhmann, Casimir-polder po-
tential of a driven atom, Phys. Rev. A 98, 022514 (2018).

[26] S. Fuchs, R. Bennett, R. V. Krems, and S. Y. Buhmann, Nonad-
ditivity of optical and casimir-polder potentials, Phys. Rev. Lett.
121, 083603 (2018).
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