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Dissociative recombination and resonant ion-pair formation in electron collisions with HD+
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We have developed a method for which a variety of reactive scattering processes involving the H2 reaction
complex can be studied using the same set of potential curves and couplings. The method is based on a
close-coupling approach in a strict diabatic representation. By rigorously incorporating nonadiabatic couplings
among bound states, we enable the computation of final-state distributions. Loss into the ionization continuum
is accounted for with a nonlocal complex potential matrix. The method has successfully been applied in studies
of H+ + H− mutual neutralization and H(1s) + H(ns) associative ionization. In this paper, we investigate the
applicability of this method to dissociative recombination and resonant ion-pair formation in electron collisions
with HD+. The importance of a nonlocal description of autoionization is demonstrated. Calculated cross
sections and final-state distributions are compared with results from experiments and previous theoretical studies.
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I. INTRODUCTION

Dissociative recombination (DR) is an elementary reac-
tive scattering process in which an electron is captured by a
molecular cation, resulting in dissociation into neutral frag-
ments. The process is important in low-temperature plasmas,
such as interstellar clouds, planetary atmospheres, and fusion
plasma in the diverter region [1–5]. There are two competing
mechanisms of DR. In the direct mechanism, the electron
becomes temporarily trapped in a doubly excited dissociative
metastable state which is then stabilized by dissociating into
the neutral fragments. There is also the indirect mechanism,
first proposed by Bardsley [6], in which the electron is cap-
tured in a rovibrationally excited Rydberg state which is then
followed by predissociation by coupling to a state that is
open for dissociation. Since there are multiple pathways in
the potential landscape leading to dissociation, it may also be
that the system dissociates into oppositely charged fragments,
which is a process called resonant ion-pair formation (RIP).

The simplest molecular ion for which DR may occur is
H2

+, and this system has therefore been used as a benchmark
system for comparison between experiment and theory. Early
experiments on DR for this system were performed using
single-pass merged beams [7–9]. The lack of control over the
precise distribution of vibrational and rotational excitation of
the ion beam made it hard to obtain a fair comparison between
theory and experiment. By using ion-storage rings, many DR
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experiments are carried out using HD+ ions [10–15], allowing
for radiative vibrational relaxation prior to the measurement
due to the permanent dipole moment of the ion. While the
ions in these room-temperature storage-ring experiments are
known to be vibrationally relaxed, they are not rotationally
relaxed, and including rotational effects in theoretical calcula-
tions has been found to be crucially important.

Theoretically, a variety of different methods such as
time-dependent wave-packet methods [16,17], multichan-
nel quantum defect theory (MQDT) [11,15,18–20], and
configuration-interaction theory [6,21] have been applied to
study DR of H2

+ and its isotopologues. While the MQDT
method has been proved to be successful in calculating the
total DR cross section, it has been unable to provide branching
ratios for the process. We have developed a method which
relies on a close-coupling approach using ab initio calculated
adiabatic potential curves and nonadiabatic couplings. Be-
cause of the inclusion of nonadiabatic couplings, we are able
to follow the dynamics of the scattering process from small to
large internuclear distances, allowing for the computation of
not only the total DR cross section but also branching ratios to
different products, including ionic fragments. We previously
applied this method to study H+ + H− mutual neutralization
[22] and H(1s) + H(ns) associative ionization [23]. In this
paper, we apply this method for the DR process,

HD+ + e− →
{

H(1s) + D(ns),
H(ns) + D(1s), (1)

as well as the RIP process,

HD+ + e− →
{

H+ + D−,

H− + D+,
(2)

where the ion is in its ground vibrational state. The strength
of this method is not that it is adjusted to obtain the most
accurate cross section for a specific process, but rather that
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it is a global method which is capable of treating a variety
of different reactive scattering processes at the same level of
theory. The aim of this paper is to investigate the applicability
of the method to the DR and RIP processes.

In Sec. II we outline the main parts of the theoretical treat-
ment. We discuss the potential curves, nonadiabatic couplings,
and the transformation to a strict diabatic representation. The
relevant equations governing the nuclear dynamics are also
discussed. In Sec. III we present the results, including the
total DR rate coefficient, branching ratios, and the RIP cross
section. The results are compared with previous experimental
and theoretical results.

Throughout the paper, atomic units are used unless other-
wise specified.

II. THEORY

In this paper we use the model developed and described
in our previous papers [22,23], and we will here give only a
summary of the main parts. The reader is referred to those
papers for more details.

A. Potential curves and couplings

In order to properly describe the nuclear dynamics and to
calculate DR branching ratios, it is crucial to include nona-
diabatic couplings among the states involved in the process.
We previously calculated ab initio adiabatic potential curves
as well as radial and rotational nonadiabatic couplings for ex-
cited states of H2, including states up to the H(1s) + H(n = 4)
asymptotic limit, for the symmetries 1�+

g , 1�+
u , 1�g, and 1�u.

In addition, we also calculated the adiabatic potential curves
and radial nonadiabatic couplings ab initio for the three lowest
states of the 3�+

u symmetry. To describe autoionization, the
potentials and autoionization widths of the relevant electronic
resonant states also need to be computed. We previously
computed these data for the lowest-lying resonant states of
the above symmetries, including the 3�+

g symmetry, by per-
forming electron-scattering calculations on H2

+. For nuclear
geometries where the resonant state potential has crossed the
ion potential, we use an optimization procedure (based on
quasidiabatic potentials as described below). More details can
be found in [22]. In the present paper, we focus on DR for low
collision energies (<2.5 eV). In this energy region, it is well
established that the lowest resonant state of the 1�+

g symmetry
contributes the most to DR. We will therefore assume in
our calculations that this is the only symmetry contributing
to the low-energy DR cross section. It has been found (see,
e.g., Ref. [20]) that, within the MQDT framework, including
symmetries that are rotationally compatible with 1�+

g can sig-
nificantly alter the DR cross section at low collision energies.
It must be pointed out, however, that in our framework, these
symmetries are coupled via rotational nonadiabatic couplings
and that these couplings are not included in Ref. [20]. We will
investigate the effect of rotational nonadiabatic couplings on
the low-energy DR cross section by including these couplings
between states of the 1�+

g and 1�g symmetries. For the RIP
process, it is essential to include contributions from the 1�+

u
symmetry at high collision energies [24]. Therefore, we con-
sider both the 1�+

g and 1�+
u symmetries for that process.

In order to include autoionization, a quasidiabatic model
is introduced at small internuclear distances. In this model,
we include the lowest resonant state of a given symmetry
and an arbitrary number of Rydberg states. The Rydberg state
potentials are given by the formula

Vi(R) = Vion(R) − 1

2
[
ni − μd

l (R)
]2 , (3)

where μd
l (R) is the diabatic quantum defect, ni is the princi-

pal quantum number, and l is the orbital angular momentum
quantum number of the Rydberg electron. We assume in this
model that there are no couplings between the Rydberg states
but that the Rydberg states couple to the resonant state via [25]

Vri(R) =
√

�l (R)

2π

[
ni − μd

l (R)
]−3/2

, (4)

where �l (R) is the partial autoionization width. In the present
paper, we include the s and d partial autoionization widths
for the resonant states of the 1�+

g symmetry as well as the
p and f partial autoionization widths for the 1�+

u symme-
try. The total autoionization width is the sum of the partial
autoionization widths, i.e., �(R) = ∑

l �l (R). The quasidia-
batic potentials are then diagonalized. The resulting adiabatic
potentials, given as a transformation Vad = ST Vqd S, approx-
imate the Born-Oppenheimer potentials at small internuclear
distances. The transformation matrix S is also used to obtain
approximate radial nonadiabatic couplings. The approximate
adiabatic potentials and nonadiabatic couplings are then com-
bined with the ab initio calculated adiabatic potentials and
nonadiabatic couplings. Thus, for the lower electronic states,
ab initio calculated potentials and nonadiabatic couplings are
used, while for higher-lying states, potentials and nonadi-
abatic couplings extracted from the quasidiabatic potential
matrix are incorporated. This yields a set of adiabatic poten-
tials and nonadiabatic couplings that can be used to describe
both autoionization at small internuclear distances and nona-
diabatic interactions at various internuclear distances. In
Fig. 1, the adiabatic potentials in 1�+

g symmetry are dis-
played.

In the next step, a strict diabatic representation is obtained
by the transformation Vd = TT Vad T, where the orthogonal
adiabatic-to-diabatic transformation matrix T is a solution of
the equation [26] (

I
d

dR
+ τ(R)

)
T(R) = 0, (5)

where I is the identity matrix and τ is a matrix consisting of
the first derivative nonadiabatic couplings.

B. Nuclear equations

We use a close-coupling approach to study DR and
RIP. The cross section is calculated by solving the coupled
Schrödinger equation in a strict diabatic representation,

d2

dR2
�J (R) + fJ (R)�J (R) =

∫
dR′g(R, R′)�J (R′), (6)

where J is the angular momentum quantum number of the
formed molecular complex and � is the wave-function matrix.
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FIG. 1. Adiabatic potential-energy curves of H2 in 1�+
g symme-

try. The ground-state potential is not shown. The black dash-dotted
curve is the potential of H2

+. The asymptotic limits corresponding to
n = 2, 3, 4 are indicated on the right.

The elements of fJ are given by

f J
i j (R) = 2μ

[
Eδi j − J (J + 1)

2μR2
δi j − V d

i j (R)

]
, (7)

where μ is the reduced mass of the system. The right-hand
side of Eq. (6) is a nonlocal complex potential. Here, we do
not consider the real part of this potential, which represents
a level shift. The imaginary part of the complex potential
describes loss due to autoionization and can be expressed as
[25,27]

gi j (R, R′) = −iμ
∑

mnνJ ′l

(2J ′ + 1)

(
J J ′ l
� 0 −�

)2

× T T
im(R)ST

mr (R)
√

�l (R)χ J ′
ν (R)

× χ J ′
ν (R′)

√
�l (R′)Srn(R′)Tn j (R

′). (8)

The sum over m and n runs over the diabatic states included
in the model, that over ν runs over the vibrational channels of
the ion that are open at a given collision energy, that over l
runs over the angular momentum quantum number of the free
electron, and that over J ′ runs over the angular momentum of
the molecular ion. Si j (R) are elements of the quasidiabatic-to-
adiabatic transformation matrix, which is defined above. The
subscript r refers to the resonant state, and � is the projection
of the electronic orbital angular momentum quantum num-
ber on the internuclear axis. If rotational couplings are not
considered, Eq. (6) is solved separately for each symmetry
considered. When rotational couplings are included, Eq. (6) is
slightly modified (see Ref. [22]) and has to be solved simulta-
neously for the symmetries that are rotationally coupled.

A common approximation is the local approximation
[28–31], in which it is assumed that the open vibrational
channels form a complete set at any energy. This yields

d2

dR2
�J (R) + fJ (R)�J (R) = W(R)�J (R). (9)

In this expression, the matrix W(R) is a local complex poten-
tial given by

Wi j (R) = −iμ
∑
mn

T T
im(R)ST

mr (R)�(R)Srn(R)Tn j (R), (10)

where �(R) is the total autoionization width. For DR at low
collision energies, the local approximation is not expected
to be valid because it overestimates the autoionization [16].
By performing calculations with both the local and nonlocal
complex potentials, the local approximation can be tested.

The integro-differential Eq. (6) is solved, as described in
[23], by using the solution of Eq. (9) as a first guess in the
nonlocal term on the right-hand side and then iterating until
convergence. An iteration is considered to be converged when
the relative difference between two successive partial cross
sections is less than 10−5. The average number of iterations
needed to reach convergence was of the order of 10 iterations
in all calculations. The wave-function matrix is determined
by matching the numerical solution at sufficiently large inter-
nuclear distances with the appropriate boundary conditions,
which are set up such that each column in the wave-function
matrix asymptotically represents dissociation into a specific
final state.

C. Cross section

From the nuclear wave-function matrix, �J (R), the cross
section for electron capture of the molecular ion in an initial
rovibrational state (ν, J ′) and dissociating into a final state i is
obtained from the expression [32]

σ
(
E , EJ ′

ν

) = g
4π3

k2
i

∑
Jl

(2J + 1)

(
J J ′ l
� 0 −�

)2

×
∣∣∣∣∣
∑
mn

〈
χ J ′

ν

∣∣Tmn(R)Srm(R)

√
�l (R)

2π

∣∣ψJ
ni

〉∣∣∣∣∣
2

. (11)

The total DR cross section is obtained by summing over
all final states i, while the branching ratios are obtained by
summing over the final states associated with a specific limit
and then dividing by the total DR cross section. The RIP
cross section is obtained by choosing the ion-pair states of
the 1�+

g or 1�+
u symmetry as the final state. The factor g is

the statistical weight, and it is given by the multiplicity of the
final state divided by the multiplicity of the initial state.

While the initial vibrational state of radiative active
molecular ions such as HD+ can be controlled in the room-
temperature storage-ring experiments, the initial rotational
state cannot, and the rotational distribution in such ex-
periments is, in general, not well characterized. We will
assume that the rotational population can be approximated
by a Boltzmann distribution at a temperature of 300 K,
which should be valid for comparison with the measure-
ment of DR of HD+ using The Heavy Ion Test Storage
Ring [15]. Furthermore, in order to compare the theoreti-
cal cross section to experimental cross sections, the cross
section needs to be convoluted with the experimental elec-
tron velocity distribution f (�ve). The rate coefficient is thus
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given by

α(vd ) =
∫

σ (v)v f (�ve)d3ve, (12)

where vd is the detuning velocity and v =√
v2

e⊥ + (vd + ve‖ )2 . Using an anisotropic Maxwellian
distribution for f (�ve), the rate coefficient can be expressed as
[33]

α(E ) =
∫

dε
σ (ε)

kTe⊥λ

√
ε

2me
exp

(
−ε − E

λ2

kTe⊥

)

×
[

erf

(
λ2√ε − √

E

λ
√

kTe‖

)
+ erf

(
λ2√ε + √

E

λ
√

kTe‖

)]
,

(13)

where λ =
√

1 − Te‖
Te⊥

. Here, Te⊥ and Te‖ are the experimental
transverse and longitudinal electron temperatures, respec-
tively.

III. RESULTS AND DISCUSSION

A. Convergence

With the quasidiabatic model it is possible to include an
arbitrary number of Rydberg states. These states are added ex-
plicitly to the potential matrix used when solving the coupled
Schrödinger equation, thus increasing the number of coupled
equations that need to be solved iteratively. Convergence of
the cross section (or rate coefficient) with respect to the num-
ber of states included therefore needs to be checked. To do
this, we performed calculations of the total DR cross section,
in which we successively add more Rydberg states to the
calculation. These calculations were performed in the 1�+

g
symmetry using the local approximation, which should be
sufficient to check the convergence of the cross section with
respect to the number of states included. In Fig. 2, we show the
results, which are labeled according to the principal quantum
number n representing the asymptotic limit H(1s) + D(n). All
cross sections were averaged over the rotational states J ′ =
0–7 using a Boltzmann distribution at 300 K. The resonances
seen in the cross sections are due to temporary capture into
bound rovibrational Rydberg states of the collision complex,
i.e., states that are closed for dissociation at a given energy.
Resonances originating from calculations with different J ′
are superimposed when the Boltzmann average is performed.
The calculation including states up to the n = 4 asymptotic
limit includes only the ab initio calculated potentials and it
has fewer resonant structures because fewer closed states are
included. As more states are added to the calculation, the num-
ber of resonances increases, and the cross section converges.
The n = 10 calculation includes 21 states in total. When the
number of states is increased to 29 (n = 14), only minor
differences can be seen in the cross section. We therefore
consider the DR cross section to be converged for n = 10,
and hence, the remaining results in this study were therefore
calculated including states up to the n = 10 asymptotic limit.

FIG. 2. Convergence of the DR cross section with respect to
the number of states included. The calculations are labeled by
the principal quantum number n, representing the asymptotic limit
H(1s) + D(n). Calculations including states up to the n = 4–7 limits
are shown in the top panel, while calculations with n = 8–14 are
shown in the bottom panel.

B. Total DR rate coefficient

The total DR rate coefficient for collisions between elec-
trons and HD+ ions in the ground vibrational state was
calculated in the 1�+

g symmetry for initial ionic rotational
quantum numbers of J ′ = 0–7 using a nonlocal complex
potential. The rate coefficients for the different initial rota-
tional quantum numbers were been summed over a Boltzmann
distribution at T = 300 K. The result, which was convo-
luted using function (13) with kTe⊥ = 0.6 meV and kTe‖ =
0.025 meV, is shown in Fig. 3 in comparison with previ-
ous experiment [15] and theory [19,20,34]. Resonances from
the cross sections corresponding to different initial rotational
states of the ion are superimposed when performing the Boltz-
mann average and are then smoothed when the cross section is
convoluted. This is the origin of the structure seen in the rate
coefficient. The present calculation reproduces the magnitude

FIG. 3. The total DR rate coefficient in comparison with previous
experiment [15] and theory [19,20,34].
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FIG. 4. Total DR rate coefficient multiplied by the square root
of the energy, compared with previous experiment [15] and theory
[19,20,34].

of the measured rate coefficient, but several of the structures
do not coincide. At very low energies (< 1 meV), the present
result is significantly lower than previous theoretical studies.
In the present model, we do not include the indirect capture di-
rectly in the Rydberg states through nonadiabatic interactions.
Since the potential of the lowest electronic resonant state of
the 1�+

g symmetry, which is important for low-energy DR,
crosses the ion potential close to the outer turning point of the
ground rovibrational state of the ion, the indirect capture could
be significant at very low energies. The present model does
not include nonadiabatic coupling among the quasidiabatic
Rydberg states or the nonadiabatic couplings between the
Rydberg states and the ionization continuum. We believe this
explains the lack of dense resonances observed in the MQDT
calculations [15,20], in which these interactions are taken into
account through the R dependence of the quantum defects. As
the collision energy increases, the direct mechanism is likely
to dominate, and the present calculation should therefore be-
come more accurate as the energy increases. In the present
model, it is possible to include the nonadiabatic couplings
corresponding to indirect capture, which could be a subject
for future development. A more detailed comparison between
theory and experiment is shown in Fig. 4, where we show the
total DR rate coefficient for collision energies below 0.1 eV
multiplied by the square root of the collision energy to better
resolve the structures.

In Fig. 5, we compare the DR rate coefficient calculated
using a nonlocal complex potential to the rate coefficient
calculated using the local approximation. At low collision
energies, the calculation with the local approximation is about
an order of magnitude smaller than the calculation using a
nonlocal complex potential. Moreover, more structure can be
seen in the nonlocal calculation, which better represents the
structure seen in the measured cross section. As expected,
the local approximation cannot accurately represent the loss
in the ionization continuum at low collision energies since
only one or a few vibrational channels are open. As the energy
increases and more vibrational states become energetically

FIG. 5. Comparison of the total DR rate coefficient calculated
with and without the local approximation.

open, the nonlocal complex potential converges to the local
complex potential. As a result, the two calculations converge
at higher collision energies, which is indicated in Fig. 5.

We also performed a calculation of the total DR rate coef-
ficient including ab initio calculated rotational nonadiabatic
couplings between bound states of the 1�+

g and 1�g sym-
metries. The rotational nonadiabatic couplings are found to
have a negligible effect on the total DR rate coefficient at
low energies. This can be explained by the fact that at low
collision energies, the direct contribution from capture in the
lowest 1�g resonant state is orders of magnitude smaller than
the contribution from capture in the lowest 1�+

g resonant state.

C. Branching ratios

In addition to the total DR cross section, we also calcu-
lated the cross sections to specific final states. The branching
ratios for final states of n = 2, n = 3, and n = 4 are shown in
Fig. 6 in comparison with the experimental branching ratios
of Ref. [35]. The present results are in reasonable agreement
with experiment, especially for the n = 2 branching ratio. For
energies above 1.8 eV, where the n = 4 channels open up
for dissociation, we obtain a branching ratio to n = 4 that is
slightly lower than the experiment. As a result, we obtain a
slightly larger n = 3 branching ratio. It should be noted, as
mentioned in our earlier work [22,23], that we were not able
to obtain accurate adiabatic potential curves for all the n = 4
states of the 1�+

g symmetry. The fact that we lack some of the
n = 4 states in our calculation could explain why we obtain a
branching ratio to n = 4 that is smaller than the experimental
one. By summing the n = 3 and n = 4 branching ratios and
comparing to the equivalent experimental data, the present
calculation agrees with the measured data also for the high
collision energies.

D. RIP cross section

We calculated the RIP cross section in collisions of
electrons with HD+, and the result is shown in Fig. 7 in com-
parison to the measurement in Ref. [36]. In the experiment,
the H+ + D− cross section was measured. It has since been
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FIG. 6. Calculated DR branching ratios (solid curves) in compar-
ison to the measured branching ratios of Ref. [35] (black squares).

established that the D+ + H− RIP cross section has the same
shape and magnitude as those of H+ + D− [37]. With the
present model, these two channels cannot be distinguished. As
a result we can calculate only the total RIP cross section, and
this cross section is divided by a factor of 2 for comparison
with the experimental data.

The RIP cross section displays many oscillations. It was
suggested by Ref. [36] and later confirmed by Refs. [17,24]
that these oscillations arise due to quantum interference
between different competing pathways leading to ion-pair for-
mation. The present model includes nonadiabatic couplings
between various bound states of the collision complex, rang-
ing from small to large internuclear distances, and as such,
it should be able to reproduce the oscillations in the cross

FIG. 7. Calculated RIP cross sections in comparison with the
measured cross section of Ref. [36].

FIG. 8. The total RIP cross section (solid curve) in comparison
with the contributions from states with 1�+

g (dashed curve) and 1�+
u

(dash-dotted curve) symmetries.

section. Except for an extra peak at the threshold, the present
calculation reproduces not only the number of peaks but also
the period of the oscillations. This demonstrates the accuracy
of the nonadiabatic couplings included in the calculation. The
present calculation is about a factor of 2 smaller than the
measured cross section at 2.3 eV, and the difference decreases
as the collision energy increases. Also shown in Fig. 7 is the
cross section calculated using the local approximation. The
result suggests that a nonlocal description of autoionization is
important to describe the loss in the ionization continuum for
the RIP process, even at high collision energies. This was not
considered in previous theoretical studies [17,24].

At collision energies of about 4.5 eV, the measured RIP
cross section drops in magnitude and increases slightly again
around 6 eV. This behavior is also seen in the present calcula-
tion. The increase of the cross section after 6 eV corresponds
to the energies where the states of the 1�+

u symmetry become
important, as shown in Fig. 8. At high collision energies,
therefore, it is essential to include the contribution from the
1�+

u symmetry. While the oscillations seen in the experi-
mental cross section are well reproduced by the calculation
below 6 eV, they are less so at higher energies where the 1�+

u
symmetry is dominant. At these energies, it is possible that
higher-lying resonant states of the 1�+

u symmetry could start
to contribute, which could also influence the oscillations in the
cross section.

IV. SUMMARY

We developed a model of the H2 reaction complex that
can be used to compute cross sections of a variety of reactive
scattering processes, such as mutual neutralization, associa-
tive ionization, double charge transfer, DR, and RIP, using the
same set of potential curves and couplings. Here, we applied
this model in calculations of the total DR rate coefficient and
branching ratios as well as the RIP cross section for electron
collisions with HD+. It was shown that a nonlocal description
of autoionization is important for low-energy DR, as well as
for the RIP process. While the magnitude of the total DR rate
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coefficient is in agreement with experiment, the present cal-
culation failed to reproduce the low-energy detailed structures
of the measured rate coefficient. A possible explanation is that
the present model does not include the indirect capture, which
could be important at low collision energies. Furthermore, we
have not considered the real part of the nonlocal complex
potential in the present model. If this term is important, it
could explain some of the discrepancy between the calculated
and measured rate coefficients. Investigating the importance
of this term for the DR process is beyond the scope of this pa-
per but could be a subject for future development. Calculated
DR branching ratios, as well as the cross section for ion-pair

formation, are in satisfactory agreement with the measured
ones. The model accurately captures the quantum interference
between competing pathways leading to dissociation into the
ion-pair since both the magnitude and period of the structures
in the RIP cross section agree well with the measurement.
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