
PHYSICAL REVIEW A 109, 052805 (2024)

Theoretical consideration of a twisted atom
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We investigate the twisted state of an atom and the possible effect of such a state on the properties of the
photons emitted as a result of an electron transition in that atom. We first propose a framework for describing
the twisted atomic state and then explore possible differences in the nuclear recoil effects in the twisted atom
compared to those in the plane-wave atom. We conclude that if the initial atomic state is twisted, then the photon
distribution is altered. We point out that, in a certain observation scheme, one can detect a feature of this twist in
the distribution of the emitted photons, even in zero order in m/M.
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I. INTRODUCTION

Structured light, photons with the phase vortex or twisted
photons, is a wide and well-developed field of study [1–8].
The concept of a vortex phase has been extended by the
duality principle to electrons [9–12] and neutrons [13–15] as
well as to a composite quantum system such as atoms and
molecules [16]. In the context of atomic physics, investiga-
tions have focused mainly on the interaction of twisted light
with “standard” atoms. In particular, it has already been shown
a clear difference in photoionization and scattering processes
[17–31]. In turn, it has been shown experimentally that twisted
photons can excite forbidden transitions when selection rules
for the electron transitions in the photo-ionization process
are modified [32,33]. In addition, some theoretical and ex-
perimental studies have pointed to the possibility of orbital
angular momentum (OAM) transfer from photons to atoms in
the photon absorption process [34–36].

Recently, it has been experimentally demonstrated [37]
how to create an entire atom in the vortex state. In this exper-
iment, the beam of helium atoms was passed through a fork
diffraction grating. As a result, the diffracted atoms formed
the ring intensity profile, one of the hallmarks of the nonzero
OAM quantum state. In view of this experimental progress
and considerable theoretical interest in the subject, in this
paper, we study the twisted atom and the possible effect of
the twist of the atomic state on the properties of the emitted
photons in electron transitions. We consider a twisted atom as
a twist of the center of mass and we explore the interaction
between this twist and the electron subsystem through nuclear
recoil.

In our present study, we consider the photon emission pro-
cess in a hydrogenlike atom. We study how the initial twisted
state of the center of mass of the atom affects the S matrix,
the transition probabilities, and the photon distribution. We
compute the S matrix of the single-photon emission due to
the electron transition for three different cases: when both the
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initial and final states of the center of mass are plane waves,
when both states are twisted, and when the initial state is
twisted and the final state is a plane wave. We show that, in
a common scenario where the final state of the atom is not
detected and the transverse momenta of the center of mass is
small, the reduced differential probability is somewhat similar
to the commonly known result. However, if the latter is not the
case, we show that the differential probability of the photon
emission is different and potentially can be experimentally
detected if the opening angle θ = arctan(P⊥/Pz ) of the twisted
center-of-mass state is reasonably large. On top of that, we
propose a special experiment with the coincidence scheme
detector that can also reveal the initial twisted nature of the
center of mass when the final atomic state is projected onto
a plane wave and the distribution of the emitted photons is
simultaneously measured. However, the information about the
orbital angular momentum of the atom is lost in this measure-
ment.

Throughout the paper we use relativistic units (h̄ = c = 1,
e < 0).

II. ELECTRON-NUCLEUS HAMILTONIAN

We consider the nonrelativistic Hamiltonian of the hy-
drogenlike atom interacting with the second-quantized elec-
tromagnetic radiation field in the transverse gauge. In the
Schrödinger representation it can be written as [38]

Ĥ = [p̂e − eÂ(t, re)]2

2m
+ [p̂n + eZÂ(t, rn)]2

2M

+ V (|rn − re|) + Wf , (1)

where Wf is the external field energy, V is the electron-nucleus
interaction potential, Â(t, r) is the (transverse) vector poten-
tial of the quantized electric (Ê = −∂t Â) and magnetic (Ĥ =
∇ × Â) fields. The following notation is introduced above: m
stands for electron mass, M stands for mass of the nucleus, Z
stands for charge number of the nucleus, the index e stands for
the electron momentum and coordinate, and the index n stands
for the nucleus momentum and coordinate. We note that this
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particular Hamiltonian is the nonrelativistic limit of the Breit
equation with omitted spin interactions and orbital coupling
[39].

To identify the coordinates of an atom as a whole, we
switch to the coordinates of the center of mass (see, for ex-
ample, Ref. [40]):

R = rem + rnM

m + M
,

r = re − rn. (2)

The momentum transforms as follows:

p̂ = p̂e − m

m + M
(p̂e + p̂n),

P̂ = p̂e + p̂n. (3)

Substituting Eqs. (2) and (3) into Eq. (1) and decomposing in
series assuming m/M � 1, we get in the zero order in m/M

Ĥ = Ĥ0 + Ĥi + O

[
m

M

]
. (4)

The unperturbed Hamiltonian Ĥ0 reads

Ĥ0 = p̂2

2m
+ P̂2

2M
+ V (r) + Wf , (5)

and the interaction Hamiltonian has the form

Ĥi = − e

m
p̂Â(t, R + r) − e

M
P̂Â(t, R + r) + eZ

M
P̂Â(t, R).

(6)

Above, we keep only the terms linear in Â, since we are
going to consider the single-photon process only. Inclusion of
higher orders requires inclusion of the relativistic corrections
as well. In the present study we focus on the most simple case
that already shows some difference between the plane-wave
and the twisted-wave states. We note that the inclusion of
the spin and consideration of a multielectron atom do not
affect the further analysis, so we omit common terms such
as electron-electron interaction and spin for simplicity. More-
over, we restrict ourselves to the zero order in m/M, while the
higher-order corrections can be accounted for by perturbation
theory; see, e.g., for the transition amplitude, Refs. [41–47].

We stress that the Hamiltonian (4) is limited to the zero
order in m/M only and all further analysis does not include
higher-order effects. Interestingly, if the interaction with the
electromagnetic fields is limited to the dipole approximation,
one may benefit from the Hamiltonian derived in Ref. [48] that
is valid in all orders in m/M. The analysis of the latter should
not differ in principle from the analysis of the Hamiltonian
Eq. (4) with the interaction given by Eq. (5).

As one can see from Eq. (5), the center of mass and the
relative electron variables are separated, and therefore the
full wave function is represented as the product of the wave
function of the electron subsystem, |φ〉, and the wave function
of the center of mass, |�〉, as

|�,φ〉 = |�〉|φ〉, (7)

with

P̂2

2M
|�〉 = E |�〉, (8)

FIG. 1. Feynman diagram corresponding to the lowest-order in-
teraction of the atom with the quantized electromagnetic field. The
atom emits a photon as a result of the electron transition and experi-
ences recoil.

and [
p̂2

2m
+ V (r)

]
|φ〉 = ε|φ〉 (9)

where E and ε are the center-of-mass and electron energies.
Equation (8) describes the motion of an atom as a whole and,
thus, its solution characterizes the properties of the beam. In
what follows we consider two cases: plane and twisted beams
of atoms.

III. SINGLE-PHOTON PROCESS

The S matrix of the transition of the atom from state a
to state b with the emission of the photon ( f ) with the wave
vector kp, energy ω = |kp|, and polarization vector εp is given
by the following scalar product (see Fig. 1) [39]:

S = −i
∫ ∞

−∞
dt〈 f |〈�b, φb|Ĥi|�a, φa〉|0〉, (10)

where | f 〉 and |0〉 are the photon Fock states with one photon
(with all quantum numbers notated as f ) and zero photons.
Expanding the photon field operator in terms of annihilation
(creation) operators â f ′ (â+

f ′ ) as

Â(t, r) =
∑

f ′
[â f ′A f ′ (t, r) + â+

f ′A∗
f ′ (t, r)], (11)

where A f is the photon wave function, and substituting it into
Eq. (10), one gets

S = −i
∫ ∞

−∞
dteit (εa+Ea−εb−Eb−ω)〈�b, φb|Ĥ f

i |�a, φa〉. (12)

Here Ĥ f
i is the Hamiltonian Ĥi where the second-quantized

electromagnetic radiation field Â(t, r) is replaced by the co-
ordinate part of the photon wave function A∗

f (r).
Further, with the help of the identity∫ ∞

−∞
dteit (εa+Ea−εb−Eb−ω) = 2πδ(εa + Ea − εb − Eb − ω),

(13)

we have

S = − 2π iδ(εa + Ea − εb − Eb − ω)〈�b, φb, f |Ĥ f
i |�a, φa〉.

(14)

Here capital letters (�a, �b, Ea, Eb) correspond to the state of
the center of mass and small letters (φa, φb, εa, εb) correspond
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to the state of the electron subsystem. We consider two differ-
ential amplitudes dw and dwr . The first case of dw is when
all initial and final states are detected: the state of the emitted
photon, the initial and final states of the electron subsystem,
and the initial and final states of the center of mass. In this
case, the differential probability per unit time is

dw = |S|2
T

dnbdnp, (15)

where dnb and dnp are the number of states for the center
of mass and the emitted photon in the given phase-space
volumes. Regularizing the square of the energy δ function in
a common way,

δ(εa + Ea−εb − Eb − ω)2 = T

2π
δ(εa + Ea − εb − Eb − ω),

(16)

we get to

dw = 2πδ(εa + Ea − εb − Eb − ω)

× |〈�b, φb, f |Ĥ f
i |�a, φa〉|2dnbdnp. (17)

Above we have taken into account that the density of states for
the bound electron is unity. The second case of dwr , which
is the most common in spectroscopic measurements, occurs
when the final state of the atom is not measured and, therefore,
the final state of the center of mass is not detected. The
reduced probability for the latter could be found by integrating
over Eq. (17) the final state of the center of mass:

dwr = 2πdnp

∫
dnb δ(εa + Ea − εb − Eb − ω)

× |〈�b, φb, f |Ĥ f
i |�a, φa〉|2. (18)

IV. PLANE-WAVE BASIS

First we reproduce the case when the center of mass is de-
scribed by a plane wave (see Refs. [39,49]) and the interaction
Hamiltonian is given by Eq. (6). In this case the solution of
Eq. (8) is given by

|�PW〉 = 1√
2EV

exp (iP · R), (19)

where

E = P2

2M
(20)

and V is the normalization volume. Plane-wave states are
normalized to a δ function as〈

�PW
b

∣∣�PW
a

〉 = (2π )3

2EaV
δ3(Pa − Pb). (21)

Moreover, we assume that the emitted photon is described by
the plane wave and that the coordinate part of the photon wave
function is given by

A f (r) ≡ Ak
(r) = 1√
2ωV

ε
 exp(ik · r). (22)

It is apparent that

A f (r + R) = A f (r)eikp·R = A f (R)eikp·r. (23)

Assuming further the dipole approximation (kp · r � 1), we
simplify

A f (r + R) � A f (R) (24)

and, thus, the second and third terms of Eq. (6) do not con-
tribute to the amplitude. Consequently, substituting the first
term of Eq. (6) into Eq. (14), we can write the S matrix as the
product of the electron matrix element and the center-of-mass
matrix element as follows:

S = 2π i√
2ωV

e

m
δ(εa + Ea − εb − Eb − ω)

× 〈
�PW

b

∣∣e−ikp·R∣∣�PW
a

〉〈φb|εpp̂|φa〉. (25)

The center-of-mass matrix element evaluates to

〈
�PW

b

∣∣e−ikp·R∣∣�PW
a

〉 = (2π )3

2
√

EaEbV
δ3(Pa − Pb − kp), (26)

and finally the S matrix in the case of the plane-wave initial
and final states of the center of mass and final photon state
reads

SPW = (2π )4i

2V
√

2ωEaEbV

e

m
δ(εa + Ea − εb − Eb − ω)

× δ3(Pa − Pb − kp)〈φb|εp · p̂|φa〉. (27)

We note that SPW is a product, SPW = SPW
c Se, of

SPW
c = (2π )4i

2V
√

2ωEaEbV
δ(εa + Ea − εb − Eb − ω)

× δ3(Pa − Pb − kp), (28)

which corresponds to the contribution from the integrals over
time and the center-of-mass part, and

Se = e

m
〈φb|εp · p̂|φa〉, (29)

which depends only on the initial and the final states of the
electron.

In the case of the plane-wave final states, the numbers of
the states are given by

dnb = V d3Pb

(2π )3
,

dnp = V d3kp

(2π )3
. (30)

Substituting the above equations into Eq. (17), and utilizing
the regularization

[δ3(Pa − Pb − kp)]2 = V

(2π )3
δ3(Pa − Pb − kp) (31)

and densities for the final plane-wave states (30), we get the
following for the differential probability:

dw = |Se|2
(2π )2

1

2Ea
δ(εa + Ea − εb − Eb − ω)

× δ3(Pa − Pb − kp)
d3kp

2ω

d3Pb

2Eb
. (32)
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In the case when the final state of the center of mass is not
detected, we integrate over the final state of the center-of-mass
equation (18) and arrive at the reduced probability

dwr = |Se|2
(2π )2

1

2Ea
δ

(
εa − εb − ω + Pa · kp

M
− k2

p

2M

)

×
(

P2
a

2M
− Pa · kp

M
+ k2

p

2M

)−1
d3kp

4ω
. (33)

Without loss of generality one may choose the z axis along Pa,
such that Pz,a = |Pa|. In this case, Eq. (33) takes the form

dwr = |Se|2
(2π )2

1

8Ea
δ

(
εa − εb − ω + Pz,a ω cos θp

M
− ω2

2M

)

×
(

P2
z,a

2M
− Pz,aω cos θp

M
+ ω2

2M

)−1

ωdωd�p, (34)

where �p is the solid angle of the photon emitted during the
process considered. The obtained equations, Eqs. (32)–(34),
for differential probabilities coincide with known results.

V. TWISTED-WAVE BASIS

We now consider the case of the twisted state of the center
of mass in both the initial and final states for the solution
of Eq. (8). The twisted-wave function is proportional to the
Bessel function of the first kind and is given by [8,21,50,51].

|�TW〉 =
√

π

RLz

√
κ

4πE
Jm(κρ)eimφ+iPzz, (35)

where κ and Pz are the transverse and longitudinal momenta,
m is the projection of the total angular momentum, and E is
the energy, E = (κ2 + P2

z )/(2M ). The wave function given by
Eq. (35) is defined in such a way that in a large but finite
cylindrical volume πR2Lz there is a state of one particle. The
twisted-wave functions are normalized as follows:

〈
�TW

b

∣∣�TW
a

〉 = π

RLz

1

2Ea
δ(Pz,a − Pz,b)

× δ(κa − κb)δmamb . (36)

It is convenient to represent a Bessel state as a coherent
superposition of plane waves as

|�TW〉 =
√

π

RLz

√
κ

2E

1

(2π )3/2

∫ 2π

0
i−meimφeiP·Rdφ. (37)

Hence, the center of mass matrix element equals to the double
integral over the two polar angles multiplied by a phase factor.

〈
�TW

b

∣∣e−ikp·R∣∣�TW
a

〉 = π

RLz

√
κaκb

2
√

EaEb
imb−ma

×
∫∫

δ3(Pa − kp − Pb)ei(maφa−mbφb)dφadφb, (38)

where we assume that the photon is described by the plane-
wave state and only the first term of interaction Hamiltonian
(6) contributes. Taking representation of the δ function in the
cylindrical coordinates,

δ3(a − b) = δ(|a⊥| − |b⊥|)
|a⊥| δ(az − bz )δ(φa − φb), (39)

and evaluating one angular integral, we get〈
�TW

b

∣∣e−ikp·R∣∣�TW
a

〉 = πδ(Pz,a − Pz,b − kz,p)

2RLz
√

EaEb
imb−ma

×
∫ √

κb

κa
δ(κa − x)ei(maφx−mbφb)dφb, (40)

where the following notations are introduced:

Pb = Pz,b + κb, Pa = Pz,a + κa,

kp = kz,p + κp,

κb = |κb|, κa = |κa|, κp = |κp|,
x = κp + κb, (41)

x =
√

κ2
b + κ2

p + 2κbκp cos(φp − φb),

φx = φp ± arccos
κ2

a + κ2
p − κ2

b

2κaκp
,

φb = φp ± arccos
x2 − κ2

b − κ2
p

2κbκp
.

The last integral in Eq. (40) is evaluated with the help of the
following identity:

δ(κa − x) =
[
δ(φb − φp − δb)

| ∂x
∂φb

| + δ(φb − φp + δb)∣∣ ∂x
∂φb

∣∣
]
. (42)

To shorten the formula, we introduce the following notations
for the phases,

δb = arccos
κ2

a − κ2
b − κ2

p

2κbκp
,

δx = arccos
κ2

a + κ2
p − κ2

b

2κaκp
, (43)

and the area of the triangle with the sides κa, κb, and κp:

� = 1

4

√
4κ2

b κ2
p − (

κ2
a − κ2

b − κ2
p

)2
. (44)

The resulting integral Eq. (40) combined with Eq. (42) gives
the following:

〈
�TW

b

∣∣e−ikp·R∣∣�TW
a

〉 = imb−ma cos[maδx − mbδb]ei(ma−mb)φp

√
κaκb

�

πδ(Pz,a − Pz,b − kz,p)

2RLz
√

EaEb
. (45)
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Therefore, the S-matrix element equals

STW = 2π iSeδ(εa + Ea − εb − Eb − ω)imb−ma cos[maδx − mbδb]ei(ma−mb)φp

√
κaκb

�

πδ(Pz,a − Pz,b − kz,p)

2RLz
√

EaEb

1√
2ωV

, (46)

where Se is the electron matrix element given by Eq. (29). The differential probability with Eq. (46) according to Eq. (17)
becomes

dw = |Se|2
(2π )3

1

2Ea
δ(εa + Ea − εb − Eb − ω)δ(Pz,a − Pz,b − kz,p)[1 + cos(2maδx − 2mbδb)]

κb

4�

d3kp

2ω

dκb�mbdPz,b

2Ebπ
, (47)

where the final number of state for the twisted center-of-mass
state is taken to be [50]

dnb = Rdκb�mb

π

LzdPz,b

2π
, (48)

and we utilize the following regularization of 1/�2 [51]:

1

�2
= 1

�

1

2π

∫ 2π

0

δ(κa − xα )

κa
dα = 1

�

R

πκa
. (49)

To proceed with the reduced probability and to perform the
summation on the final center-of-mass state �b, it is con-
venient to represent the matrix element equation (38) in a
different form. We use the following identity for the exponent:

e−ikp·R = e−iκpρ cos(φ−φp)e−ikz,pz

= e−ikz,pz
∑
mp

impJmp (κpρ)eimp(φp−φ+π ), (50)

and we compute the matrix center-of-mass matrix element as

〈
�TW

b

∣∣e−ikp·R∣∣�TW
a

〉 = π

RLz

√
κaκb

4EaEb

× δ(Pz,a − Pz,b − kz,p)ei(ma−mb)φp (−i)ma−mb

×
∫ ∞

0
Jmb (κbρ)Jma (κaρ)Jma−mb (κpρ)ρdρ. (51)

The reduced probability can be found following Eq. (18) and
reads

dwr = |Se|2
(2π )3

d3kp

2ω

1

4Ea

κa

R

I0

2
. (52)

Above we introduced the following notation:

I0 =
∞∑

mb=−∞

∫ ∞

0
κbdκb

δ(εa + Ea − εb − Eb − ω)

Eb

×
∣∣∣∣
∫ ∞

0
Jmb (κbρ)Jma (κaρ)Jma−mb (κpρ)ρdρ

∣∣∣∣
2

. (53)

We apply the regularization of the sum [51]

∞∑
mb=−∞

∣∣∣∣
∫ ∞

0
Jmb (κbρ)Jma (κaρ)Jma−mb (κpρ)ρdρ

∣∣∣∣
2

= R

2π2κa

1

�

(54)

and arrive at

dwr = |Se|2
(2π )4

1

8Ea

I1

2π
ωdωd�p. (55)

Above � is the area of the triangle with sides κa, κb, and κp

and given by Eq. (44). The result is valid only if (κa, κb, κp)
obeys the triangle inequality. Otherwise, the sum in Eq. (54)
is zero. Therefore, the final expression is nonzero only in the
case of |κa − κp| � κb � κa + κp. The master integral I1 is
given by

I1 =
∫ κa+κp

|κa−κp|

4δ(εa + Ea − εb − Eb − ω)κbdκb

Eb

√
4κ2

b κ2
p − (

κ2
a − κ2

b − κ2
p

)2
. (56)

To check the consistency of the obtained result with the plane-
wave case, we can consider the limiting case of κa → 0. In this
case we can use a substitution:

1

2π�

∣∣∣∣
κa→0

= δ(κb − κp)

κb
, (57)

and the master integral (56) reads

I1|κa→0 = 2πδ

(
εa − εb − ω + Pz,aω cos θp

M
− ω2

2M

)

×
(

P2
z,a

2M
− Pz,aω cos θp

M
+ ω2

2M

)−1

. (58)

Substituting Eq. (58) into Eq. (55), we find an exact agreement
with the plane-wave result (34) up to a factor of (2π )2. The
factor (2π )2 is due to a different normalization of an initial
state of the center of mass in the case of plane waves and
twisted waves.

The integral (56) can be evaluated explicitly; however, the
closed analytic solution is bulky. Note that κb can be included
in the differential. The argument of the δ function must vanish
on the interval κ2

b ∈ [(κa − κp)2, (κa + κp)2], otherwise the
integral is zero. So we get

I1 = 4M

Ẽb

√
4κ̃b

2κ2
p − (

κ2
a − κ̃b

2 − κ2
p

)2
, (59)

where

Ẽb = κ̃b
2

2M
+ (Pz,a − ω cos θp)2

2M
(60)

and

κ̃2
b = 2M(εa − εb − ω) + P2

a − (Pz,a − ω cos θp)2. (61)

Equation (60) has two discontinuities at the points θp =
θPW

p ± θa, where θPW
p is the angle of maximum intensity of

the emitted photons in the plane-wave case.
In order to get a quantitative understanding and to compare

Eqs. (60) and (56) with the plane-wave case, Eq. (34), we
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FIG. 2. Differential photon density distributions dwr/dω/d�

normalized to the corresponding maximum value for the two cases:
the solid blue line is the plane-wave case given by Eq. (34) with the
δ function replaced according to the Eq. (62); the dot-dashed light
red line is the twisted-wave case, Eq. (55), with the I1, Eq. (56),
calculated numerically with the substitution Eq. (62); and the red
dashed line is the twisted-wave case, Eq. (55), with the I1 calculated
exactly and given by Eq. (59). To produce the plots we have used
synthetic parameters Pa = 1, kp = 0.1, M = 1, εa − εb − ω = 10−3,
θa = π/6, and σe = 5 × 10−4.

first note that the electron matrix element |Se|2 is the same
and we can drop it in the comparison. Next, we restrict our
comparison to the structure of the distribution only, so we
eliminate the exact normalization factors and normalize all
subsequent results to their maximum values.

We regularize the energy δ function by replacing it with a
narrow Gaussian distribution with an effective σE that is small
but finite:

δ(E ) → 1√
2πσE

exp

(
− E2

2σ 2
E

)
. (62)

This allows us to evaluate all expressions numerically.
In Fig. 2 we plot dwr

dωd�
given by Eq. (34) and normalized

to its maximum value and compare it with the same quantity
derived from Eq. (55). We show two different cases: first, the
numerical evaluation of the integral (56) with the replacement
(62), and second, exact analytical formular for the master
integral Eq. (60).

We observe that for reasonably large opening angles of the
center-of-mass state θa the photon distribution is modified and
split into two peaks which are symmetrical with respect to the
intensity peak of the plane-wave case θPW

p . We note that
the angular shift is exactly ±θa with respect to θPW

p and can
be observed whenever the opening angle θa is not small.

We conclude that the distribution of the emitted photons of
the atomic system with the twisted center-of-mass state differs
from the common plane-wave case. Such a difference may be
observed in the experiment.

VI. TWISTED TO PLANE WAVE

Now we consider the case when the initial state of an atom
is a twisted wave and the final state is given by a plane wave.
This scenario corresponds to the detection of the atom in the
final state with the help of a common detector that allows

one to measure the intensity of the atomic flux under a fixed
angle with respect to the propagation axis of the initial twisted
atomic beam. Therefore, the initial state of the center of mass
in this configuration is a twisted wave given by Eq. (35) and
the final state is a plane wave (19). In the lowest order in m/M
with the interaction Hamiltonian given by Eq. (6), the S matrix
is then

SPWTW = 2π i√
2ωV

Seδ(εa + Ea − εb − Eb − ω)

× 〈
�PW

b

∣∣e−ikp·R∣∣�TW
a

〉
. (63)

The center-of-mass matrix element is evaluated using the
representation of Eq. (37) for the twisted wave and can be
expressed as

〈
�PW

b

∣∣e−ikp·R∣∣�TW
a

〉 = (2π )3/2

√
κa

4EaEb

√
π

RLzV

×
∫

δ3(Pa − kp − Pb)i−ma eimaφa dφa. (64)

Representing the δ function in cylindrical coordinates, we
compute the integral and get

〈
�PW

b

∣∣e−ikp·R∣∣�TW
a

〉 = (2π )3/2

√
1

4EaEbκa

√
π

RLzV

× i−ma eimaφx δ(Pz,a − Pz,b − kz,p)δ(κa − x0). (65)

Here along with notations given in Eq. (41) we introduce

φx0 = φb + ∠(x0, κb),

x0 = κp + κb,

x0 = |x0| =
√

κ2
b + κ2

p + 2κbκp cos(φp − φb). (66)

With Eqs. (63) and (65), the expression for the S matrix reads

SPWTW = (2π )5/2i√
2ωV

√
1

4EaEbκa

√
π

RLzV
Se

× δ(εa + Ea − εb − Eb − ω)

× i−ma eimaφx δ(Pz,a − Pz,b − kz,p)δ(κa − x0). (67)

With the help of the following regularization,

[δ(Pz,a − Pz,b − kz,p)]2 = Lz

2π
δ(Pz,a − Pz,b − kz,p),

[δ(κa − x0)]2 = R

π
δ(κa − x0), (68)

we finally get the following for the differential probability:

dw = |Se|2
(2π )3

1

2Ea
δ(εa + Ea − εb − Eb − ω)

× δ(Pz,a − Pz,b − kz,p)
δ(κa − x0)

κa

d3Pb

2Eb

d3kp

2ω
. (69)

When using a coincidence circuit to detect both the final state
of the atom and the emitted photon, the radial δ function limits
the photon emission angles in the plane perpendicular to the
initial axis of atom propagation (see Fig. 3 for details). For
an atom detector of small angular size, intercepting atoms
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decay 
region

ion 
detector

photon 
detector

incoming
twisted ion

FIG. 3. Sketch of the coincidence experiment for the simultane-
ous detection of the final state of the atom and the photon distribution
in momentum space. Once the transverse momentum of the atom κb

is fixed, the transverse momentum of the photon is restricted to the
circle with the radius κa and displacement from the origin −κb as
dictated by Eq. (72). In the sketch, we have assumed that the time of
flight τ from the decay point to the observation plane is known and
that the characteristic decay time is significantly less than the time of
flight.

with the final transverse momentum �κb when the condition
�κb/κb � 1 is satisfied, the reduced probability (an integral
over d3Pb) is

dwr ≈ |Se|2
(2π )2

d3kp

2ω
δ(εa + Ea − εb − Eb − ω)

× 1

2Ea

Lz

2π

R

π

δ(κa − x0)

κa

2πκb�κb

2Eb
. (70)

For the cases κb > κa and κb ∼ κa in the coincidence circuit
detector, the probability is nonzero only if the argument of the
radial δ function vanishes. This corresponds to the following
connection between the transverse components of the momen-
tum:

κ2
b + κ2

p + 2κbκp cos φp − κ2
a = 0, (71)

where, without loss of generality, we set φb = 0.
For fixed values of κa and κb, the Eq. (71) is an equation of

the displaced circle in the transverse plane of the momentum
space for the transverse part of the photon wave vector κp,

(κx + κb)2 + κ2
y = κ2

a , (72)

where κp = κxex + κyey.
We immediately observe that, if atoms are detected in a

small region of the momentum space, then the corresponding
photons resemble a ring in the transverse momentum plane
with the center at the point κx = −κb and the radius κa. We
note that, despite the fact that the photon distribution resem-
bles a ring, no conclusions can be drawn about the phase of
the photons and their OAM. Thus, the proposed experimental
setup only reveals the twisted nature of the initial atomic state.

VII. CONCLUSION

We have introduced a model of a twisted atom based on the
quantum field description and the S-matrix formalism. Within
the formalism, we introduced the center-of-mass and the rela-
tive (electron) coordinates, which allows us to reduce the full
Hamiltonian to a Schrödinger Hamiltonian for the free center
of mass and a Coulomb Hamiltonian for the bound electron.
By finding the solution of the free Schrödinger equation for
the center of mass in cylindrical coordinates, we have arrived
at a vortex atomic state. Furthermore, we have studied the in-
fluence of the center-of-mass quantum state on the properties
of the photons emitted during the electron transitions. We have
studied the influence of the initially twisted center-of-mass
state in the lowest order of the electron-nucleus mass ratio.
We have shown that, in a common scenario where the final
state of the atom is not detected, the angular distribution of the
emitted photons is altered. The latter follows from Eq. (55),
which together with Eq. (70) are the main results of the
present investigation. Finally, we conclude that, in a specially
arranged coincidence scheme, the initial twist of the center of
mass can be confirmed by measuring the intensity distribution
of the emitted photons.
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