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Thermophysical properties of argon gas from improved two-body interaction potential
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Ab initio interaction potential for the electronic ground state of the argon dimer has been developed.
The potential uses previously calculated accurate Born-Oppenheimer interaction energies while significantly
improving the description of relativistic effects by including the two-electron Darwin and orbit-orbit corrections.
Moreover, leading-order quantum electrodynamics corrections to the potential are calculated, and long-range
retardation of the electromagnetic interactions is taken into account. Spectroscopic properties of the argon
dimer are reported, such as the bond dissociation energy, positions of rovibrational levels, and rotational and
centrifugal-distortion constants. Our potential supports eight rotationless vibrational states, and the existence of a
ninth level can neither be confirmed nor ruled out at the current accuracy level. Finally, thermophysical properties
of the argon gas, including pressure and acoustic virial coefficients, as well as transport properties—viscosity
and thermal conductivity—are evaluated using the developed potential. For the virial coefficients, the obtained
ab initio values are somewhat less accurate than the most recent experimental results. However, the opposite is
true for the transport properties, where the theoretical results calculated in this work have significantly smaller
uncertainties than the data derived from measurements.
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I. INTRODUCTION

Knowledge of accurate thermophysical properties of no-
ble gases is critical in many areas of physics and chemistry
and has been the subject of numerous experimental and
theoretical studies. In particular, reliable values of thermo-
physical properties, such as the pressure, acoustic, dielectric,
and refractivity virial coefficients, as well as transport prop-
erties, such as the viscosity and thermal conductivity, are
needed in the field of metrology [1–7]. This is espe-
cially important for gas thermometry experiments, including
constant-volume gas thermometry [1], acoustic gas ther-
mometry [3], dielectric-constant gas thermometry [4], and
refractive-index gas thermometry [5].

Many of the thermophysical properties of noble gases
can be calculated theoretically using methods of statisti-
cal thermodynamics, provided that the potentials that take
into account interactions in the system are known [8,9]. In
fact, computations for helium and neon gases show that the
properties obtained from state-of-the-art ab initio interaction
potentials and interaction-induced polarizabilities have uncer-
tainties similar to or even smaller than the best experimental
data [10–13]. As such, they have been utilized for calibration
of high-precision experimental equipment [1,4,7]. Since argon
represents an economical alternative to helium and neon, its
thermophysical properties are of special interest. Their calcu-
lation from first principles necessitates the development of a
reliable pair interaction potential, which is a challenging prob-
lem. Whereas for the lightest noble gas dimer, He2, theoretical
potentials have become more accurate than the empirical ones
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already in the mid-1990s [14,15], the empirical potentials for
Ar2, such as the one developed by Aziz [16], have generally
been believed to be more reliable. Until recently, the most
accurate ab initio argon dimer potentials have been developed
by Jäger et al. [17] and Patkowski et al. [18], with the latter
being later refined in Ref. [19]. Other theoretical potentials
published in recent years include the 2018 potential of Myatt
et al. [20] based on recalibrated Morse/long-range model, the
2019 potential of Song and Yang [21] with modified repul-
sive part of the Tang-Toennies model, the simplified ab initio
atomic potential (SAAP) of Deiters and Sadus [22] from the
same year, and the latest 2020 potential by Sheng et al. [23],
where the conformality among two-body potentials of noble
gas atoms is assumed.

It is worthwhile to compare spectroscopic parameters re-
sulting from theoretical potentials with available experimental
determinations. The empirical potential of Aziz [16] predicts
the minimum of the potential well as −99.553 cm−1 at R =
3.757 Å, while the ab initio potentials of Jäger et al. [17]
and Patkowski and Szalewicz [19] predict −99.48 cm−1 and
−99.351 cm−1, respectively, both at R = 3.762 Å. These re-
sults agree with the spectroscopic determination of Herman
et al. [24], which is −99.2(10) cm−1 at R = 3.761(3) Å.
The most recent experimental determination of the ground-
state rotational (B0) and centrifugal-distortion (D0) constants
was performed by Mizuse et al. [25] using time-resolved
Coulomb explosion imagining. Based on spectroscopic anal-
ysis of the first 14 rotational levels, they obtained B0 =
0.057611(4) cm−1 and D0 = 1.03(2)×10−6 cm−1. This can
be compared to the theoretical results of Jäger et al. [17]
who reported B0 = 0.05760 cm−1 without uncertainty esti-
mates and did not consider D0. Theoretical values of B0 =
0.057589 cm−1 and D0 = 1.03×10−6 cm−1 resulting from
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the potential of Patkowski and Szalewicz [19] were calculated
by Mizuse et al. [25] using the energies of rotational levels
computed in Ref. [26].

Recently, the question has emerged [27] of how many
rotationless vibrational levels are supported by the electronic
ground state of the argon dimer. Sahraeian and Hadizadeh
[26] solved the momentum-space based Lippmann-Schwinger
equation to obtain the vibrational states and reported nine
bound levels for the potentials from Refs. [18,19]. This came
after the 2016 study of Tennyson et al. [28] based on the
potential of Ref. [19], where eight bound vibrational lev-
els were found using the R-matrix theory; a weakly bound
ninth state was assessed to be a numerical artifact. Eight
bounds states were also obtained for the empirical potential
of Myatt et al. [20] using LEVEL program [29] to solve the
nuclear Schrödinger equation. Somewhat later, Rivlin et al.
[27] published a study using refined R-matrix theory [30]
and also observed the ninth bound vibrational level for the
potentials of Refs. [18,19]. Nevertheless, the existence of the
ninth vibrational state and its possible energy are still un-
clear. For example, Sahraeian and Hadizadeh [26] predicted
the energy of only −0.20186×10−6 cm−1 for the potential
from Ref. [19], while Rivlin et al. [27] did not provide any
specific value and concluded that the energy may be signif-
icantly different from the value obtained by Sahraeian and
Hadizadeh.

To meet the current requirements for the accuracy of the-
oretical predictions of thermophysical properties of noble
gases, the ab initio pair potentials used in the calculations have
to account for effects beyond the nonrelativistic electronic
Schrödinger equation. In particular, the relativistic effects are
expected to bring a considerable contribution to the interaction
energy of the argon-argon dimer due to large nuclear charges
of the atoms. The first calculation of the relativistic corrections
to the two-body potential for this system were performed by
Faas et al. in 2000 [31]. They calculated the contribution
of the relativistic effects near the minimum of the poten-
tial using the zeroth-order regular approximation (ZORA)
to the Dirac equation [32–34] and the second-order Møller–
Plesset method for the treatment of correlation effects. More
recent studies included relativistic corrections using other
approaches. Jäger et al. [17] employed the Cowan-Griffin
approximation within the first-order perturbation theory [35],
while Patkowski and Szalewicz [19] used the second-order
Douglas-Kroll-Hess (DKH) relativistic Hamiltonian [36,37].
As noted in Ref. [19], a good agreement was observed be-
tween these two methods. For example, in the region near
the minimum of the potential the results differed by merely
0.012 cm−1, only about 2% of the total relativistic correction.
However, both approaches account only for the one-electron
relativistic effects, while two-electron effects are completely
neglected. These terms may have a substantial contribution to
the final results. As noted in Ref. [19], for the internuclear
distance of R = 3.75 Å, i.e., near the minimum of the poten-
tial, the two-electron terms amount to −0.071 cm−1 or 11.6%
of the one-electron terms. Moreover, as the total two-electron
relativistic correction vanishes as R−4 with the increasing
internuclear distance, i.e., more slowly than the one-electron
correction vanishing as R−6 [38], its relative importance is
likely to increase for larger distances.

In this work we refine the two-body interaction poten-
tial of argon by the inclusion of the two-electron relativistic
and leading-order quantum electrodynamics (QED) effects.
Moreover, the retardation effects are taken into account to
properly describe the dissociation limit. The rovibrational
levels supported by the potential are calculated to shed light
on the existence of the ninth bound vibrational state. Next,
fully quantum calculations of the second pressure and acous-
tic virial coefficients of argon gas are performed. Transport
properties of gaseous argon, such as viscosity and thermal
conductivity, are also rigorously evaluated within the same
framework.

Atomic units (e = me = h̄ = 4πε0 = 1, where me is the
electron mass) are used throughout the present work unless
explicitly stated otherwise. The value of the electron spin g
factor is fixed and equal to 2, and α = 1/137.035 999 084 [39]
denotes the fine-structure constant.

II. PAIR POTENTIAL FOR THE ARGON DIMER

A. Born-Oppenheimer interaction energy

The data of Patkowski et al. [18,19] are currently the most
accurate theoretical results for the nonrelativistic interaction
energy for two argon atoms. Their Born-Oppenheimer (BO)
calculations are saturated with respect to both the basis set and
electron excitation limits. Substantial improvements to this
component of the two-body potential are not feasible for the
foreseeable future with the current computational resources.
For this reason, we reused the nonrelativistic interaction en-
ergy calculated in Refs. [18,19] for 41 grid points.

While the estimated uncertainties of the calculated BO en-
ergies for R � 2 Å are explicitly reported in Ref. [19], this is
not the case for the data in the range 0.25 Å < R < 2 Å from
Ref. [18]. Therefore, we assumed a conservative uncertainty
estimation of 2% for the latter data set. We justify this choice
by the observation that differences between extrapolated and
not extrapolated results in Ref. [18] are always less than 1.7%
for small distances.

B. Relativistic correction

For systems with nuclear charges below Z ≈ 20, the rel-
ativistic effects can be accounted for perturbatively as the
expectation value of the Breit-Pauli Hamiltonian calculated
with the nonrelativistic wave function [40,41]. The Breit-Pauli
Hamiltonian for closed-shell systems has the following form:

ĤBP = Ĥmv + ĤD1 + ĤD2 + Ĥoo + Ĥssc, (1)

where Ĥmv is the mass-velocity operator,

Ĥmv = −α2

8

∑
i

p4
i , (2)

ĤD1 and ĤD2 are the one- and two-electron Darwin operators,

ĤD1 = α2 π

2

∑
I

∑
i

ZI δ(rIi ), (3)

ĤD2 = −α2π
∑
i< j

δ(ri j ), (4)
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Ĥoo is the orbit-orbit operator,

Ĥoo = −α2

2

∑
i< j

[
pi · p j

ri j
+ ri j · (ri j · p j ) pi

r3
i j

]
, (5)

and Ĥssc is the spin-spin contact operator,

Ĥssc = −α2 8π

3

∑
i< j

(si · s j ) δ(ri j ). (6)

In Eqs. (2)–(6) the indices i and j run over all electrons in
the system, ri is the position of the ith electron, pi = −i∇ri

is the corresponding momentum operator, and si = 1/2 σ i is
the spin operator, where σ is a vector of Pauli matrices. The
index I runs over all nuclei with charges ZI located at positions
rI , while rIi = ri − rI and ri j = r j − ri denote interparticle
vectors. Finally, δ(r) is the Dirac delta function.

Expectation values of the one-electron relativistic opera-
tors, Ĥmv and ĤD1, are usually larger in magnitude than the
expectation values of the two-electron relativistic operators,
ĤD2 and Ĥoo, but have opposite signs and cancel each other
to a large extent [42]. Therefore, it is advantageous to use
their sum: the Cowan–Griffin correction [35] defined as the
expectation value of the operator

ĤCG = Ĥmv + ĤD1. (7)

In the case of electronic closed-shell singlet states, such as
the ground states of argon dimer and argon atom, expectation
values of ĤD2 and Ĥssc are related through the formula [43]

〈Ĥssc〉 = −2〈ĤD2〉. (8)

As a result, the total relativistic correction for a closed-shell
system can be written as

Erel = 〈ĤCG〉 − 〈ĤD2〉 + 〈Ĥoo〉. (9)

The relativistic correction to the interaction energy within the
supermolecular approach is defined as

Vrel = EAr2
rel − 2 EAr

rel , (10)

where EAr2
rel and EAr

rel are the relativistic corrections to the
energy of dimer and atom, respectively. Alternatively, Vrel may
be viewed as a combination of three components calculated
separately,

Vrel = VCG − VD2 + Voo, (11)

where each of the potentials VY, Y ∈ {CG, D2, oo}, is defined
analogously as in Eq. (10), but using the expectation values of
the individual operators ĤY instead of Erel.

In the calculations of the relativistic corrections, we em-
ployed fully uncontracted singly-augmented Dunning basis
sets aug-cc-pVXZ for argon [44,45] with cardinal numbers
X in the range X = 2–5. Additionally, a set of midbond
functions (3s3p2d2 f 1g) was placed in the middle of the
argon-argon bond [19,46]. The basis sets will be denoted XZ
further in the paper. We applied the so-called counterpoise
scheme [47] to remove the basis set superposition error, i.e.,
the energies of both the dimer and the atom in Eq. (10) were
computed in the basis set of the dimer [48]. All calculations
were performed using the coupled-cluster method with sin-
gle, double, and perturbative triple excitations [CCSD(T)] as

FIG. 1. The Cowan-Griffin correction, VCG, to the interaction
energy of the argon dimer as a function of the internuclear distance R
calculated using XZ basis sets. The results are multiplied by the sixth
power of the internuclear distance to show the convergence to the
leading-order term in the large-R asymptotic expansion. The DKH
results of Ref. [19] are presented for comparison.

implemented in the Dalton program [43,49,50]. We checked
that the effects of core-core and core-valence correlation and
the effects of higher excitations are negligible compared to
estimated uncertainties of our calculations. The relativistic
corrections were calculated for 37 internuclear distances,
including 33 points with R � 2 Å on the same grid as in
Ref. [19] and four points (R = 1.2, 1.4, 1.6, 1.8 Å) added to
improve the accuracy of the potential for small distances.

In order to reduce the basis set incompleteness error in our
calculations, and to assess the uncertainty of the ab initio data,
we employed the Riemann extrapolation scheme introduced in
Ref. [51] and used in our previous study of the helium dimer
[10]. The two-point Riemann extrapolation formula reads

V ∞
Y = V X

Y + X nY
(
V X

Y − V X−1
Y

)[
ζ (nY) −

X∑
i=1

i−nY

]
, (12)

where ζ (s) = ∑∞
i=1 i−s is the Riemann zeta function, V X−1

Y
and V X

Y , Y ∈ {CG, D2}, are values of the corrections cal-
culated using basis sets with cardinal numbers X − 1 and
X , respectively, and V ∞

Y denotes the corresponding complete
basis set limit. Further in the paper, we denote the extrapo-
lated results from (X − 1)Z and XZ basis sets by the symbol
[(X − 1)X ]Z. The rate of the convergence, characterized by
the value of the exponent nY in Eq. (12), depends on the cor-
rection. We assumed that the Cowan-Griffin term converges
to the basis set limit at the same rate as the BO energy; i.e.,
we used nCG = 4. In the case of the two-electron Darwin
term we employed nD2 = 2 according to the analytic results
of Kutzelnigg [52] for the helium atom. As discussed further
here, the orbit-orbit term was not extrapolated.

In Fig. 1 we present the Cowan-Griffin contribution to the
interaction potential calculated in this work. The DKH results
of Patkowski and Szalewicz [19] are given for comparison.
The apparent divergence of the latter for large R is a numerical
artifact originating from insufficient precision of the data from
Ref. [19], where the values were provided with only one
or two significant digits. Besides this, a good agreement is
observed between the DKH method and our Cowan-Griffin
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FIG. 2. Relative percentage difference between the Cowan-
Griffin correction calculated in this work and the DKH results from
Ref. [19]. We compare the data obtained with the 5Z basis set
(red points), and results obtained from the (45)Z extrapolation (blue
points).

results calculated using basis sets with cardinal numbers
X > 2. This is clear in Fig. 2 where we show relative differ-
ences between both approaches. On average, within the 5Z
basis set this difference is about 2.7% and increases with R.
Near the minimum of the potential energy curve (R = 3.75 Å)
the difference amounts to only 0.7%. As the final values of the
Cowan-Griffin contribution we take the (45)Z extrapolated re-
sults with the uncertainty estimated as the absolute difference
between the 5Z value and the (45)Z extrapolant. For example,
at R = 3.75 Å the recommended value is −0.602(8) cm−1;
see Table I.

In the calculations from Ref. [19], the two-electron terms in
the Breit-Pauli Hamiltonian were neglected, and the missing
contribution was estimated to be no larger than 15% of the
one-electron correction. In this work, we explicitly calculated
the two-electron terms for all required internuclear distances.
Similarly as in the case of the Cowan-Griffin contribution,
we consider the extrapolated (45)Z results of the two-electron
Darwin correction as converged with the uncertainty esti-
mated as the absolute difference between the 5Z value and
the (45)Z extrapolant. For the orbit-orbit term we encoun-
tered nonmonotonic convergence of the calculated results with

TABLE I. Contributions to the pair potential of argon at the inter-
nuclear distance R = 3.75 Å, i.e., near the minimum of the potential,
and at R = 8 Å. The energies are in cm−1, and the uncertainties at
the last digits are given in parentheses.

Value

Contribution R = 3.75 Å R = 8 Å

Born-Oppenheimera −98.68(32) −1.3238(38)
Cowan-Griffin −0.602(8) −0.00221(4)
Two-electron Darwin ×(−1) 0.0087(13) −0.000064(10)
Orbit-orbit 0.049(5) 0.0030(3)
QED 0.0361(3) 0.000396(6)
Total −99.19(32) −1.3227(38)

aTaken from Ref. [19].

FIG. 3. Comparison of the two-electron Darwin, VD2, and orbit-
orbit, Voo, corrections to the interaction energy of the argon dimer
and the total two-electron relativistic contribution, −VD2 + Voo.

respect to the cardinal number X , which makes the reli-
ability of any extrapolation questionable. Fortunately, this
two-electron correction depends weakly on the basis set size
(for X > 2) and the differences between the results obtained
with the 4Z and 5Z basis sets are negligibly small for all con-
sidered internuclear distances. Therefore, we take the values
obtained using the 5Z basis set as the recommended results
for the orbit-orbit correction, and the absolute differences
between the 4Z and 5Z results are used as the uncertainty
estimates. In Fig. 3 we show the final values of the two-
electron Darwin and orbit-orbit corrections to the interaction
energy as functions of the internuclear distance. Our value of
the total two-electron relativistic correction for the distance
R = 3.75 Å is 0.058(5) cm−1 (see Table I), slightly lower than
the value of Patkowski and Szalewicz [19].

For distances up to R = 5 Å, the total two-electron rela-
tivistic correction amounts to between 5% and 12% of the
Cowan-Griffin contribution. However, with increasing inter-
nuclear distance, the effect of slower asymptotic decay of
the orbit-orbit term [38] starts to be visible; see Table I. At
R = 5.3 Å, the two-electron terms correspond to about 23%
of the Cowan-Griffin contribution and finally become larger
in magnitude than the latter for R > 7 Å.

The calculated components of the relativistic correction,
together with their estimated uncertainties, can be found in
Supplemental Material [53]. The combined uncertainty of the
total relativistic correction was obtained as a square root of
the sum of squares of the uncertainties of the components.
This quantity is also provided in Supplemental Material [53].

C. QED correction

Another important contribution to the interaction potential
originates from the QED effects of the order of α3. In general,
the α3 QED correction to the energy of closed-shell atomic
and molecular systems is given by the expression [54–56]

EQED(α3 ) = 8α

3π

(
19

30
− 2 ln α − ln k0

)
〈ĤD1〉

− α

π

(
164

15
+ 14

3
ln α

)
〈ĤD2〉 + 〈ĤAS〉, (13)
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where 〈ĤD1〉 and 〈ĤD2〉 are the expectation values of the
relativistic one- and two-electron Darwin operators defined
in Eqs. (3) and (4), respectively, 〈ĤAS〉 is the Araki-Sucher
correction [57,58], and ln k0 is the so-called Bethe logarithm
[40,59]. In principle, ln k0 for the dimer should be computed
for each internuclear distance separately. However, due to
the high computational cost of such calculations, we use a
constant value of ln k0 corresponding to the isolated atoms
limit (R → ∞) and equal to ln k0 for a single atom (the Bethe
logarithm is an intense quantity). This is expected to be an
excellent approximation since ln k0 depends very weakly on
the internuclear distance. For example, calculations for the
hydrogen molecule in the electronic ground state have shown
that ln k0 changes by less than 1% when R varies from 1.5 a.u.
to infinity [60]. In this work, we employed the atomic value of
the Bethe logarithm for argon,

ln k0 = 8.761, (14)

taken from Ref. [61].
The remaining QED effects (of the order of α4 and higher)

are usually dominated [62,63] by a simple one-loop radiative
correction known from the hydrogenic Lamb shift. For atoms
and homonuclear dimers it is given by the expression [64]

EQED(α4,one-loop) = 2α2Z

(
427

96
− 2 ln 2

)
〈ĤD1〉, (15)

where Z is the nuclear charge of an atom. We expect that this
correction provides a good estimate of the total α4 QED effect,
at least for small and intermediate internuclear distances.

In our treatment of the QED correction to the interaction
potential, we included only the effects that are proportional
to the relativistic one-electron Darwin correction. Combining
appropriate terms from Eqs. (13) and (15), together with the
value of ln k0 from Eq. (14), one arrives at the formula

VQED = 0.0165VD1, (16)

where the potential VD1 is constructed from the expectation
values of the ĤD1 operator using an expression similar to
Eq. (10). Note that due to a large nuclear charge of the ar-
gon atom, the contributions to VQED arising from Eqs. (13)
and (15) are of similar magnitude, namely, 0.0106VD1 and
0.0059VD1, respectively, even though they are of a different
order in α. The term in Eq. (13) proportional to 〈ĤD2〉 can be
safely neglected due to small scaling factor, equal to 0.0279,
which makes this term several times smaller than the esti-
mated uncertainty of VD2; see Table I. The last term appearing
in Eq. (13), the Araki-Sucher correction, is especially diffi-
cult to calculate rigorously [10,65–67]. Its contribution to the
interaction potential for the argon dimer has been evaluated
previously only for the minimum of the potential, where it
is of the order of −0.02 cm−1 [65]. Therefore, it is safe to
assume that for small and intermediate internuclear distances
the Araki-Sucher correction is at least an order of magnitude
smaller than the dominant source of the uncertainty in the
potential (the BO contribution) and is negligible within the
accuracy requirements of this work. It is known, however,
that the Araki-Sucher correction to the potential asymptoti-
cally decays as R−3 [68,69] and must become important at
larger distances. This contribution is taken care of by the

Casimir-Polder theory and is included in the retardation cor-
rection considered by us in Sec. III D.

To obtain VQED we reused data from the calculations of
the relativistic corrections described in Sec. II B. The values
computed using the 5Z basis set are treated as the recom-
mended results for the QED correction with the uncertainty
estimated as the absolute difference between the 4Z and 5Z
values. The QED correction amounts to 5%–20% of the rel-
ativistic Cowan-Griffin correction, with the ratio increasing
with R, and is larger than the estimated uncertainty of the
latter; see Table I. The calculated values of VQED can be found
in Supplemental Material [53].

III. FIT OF THE POTENTIAL

A. Born-Oppenheimer potential

As Patkowski and Szalewicz [19] fitted only the sum of the
BO interaction energy and the DKH correction, we refitted
the BO pair potential alone in order to combine it with the
data for the post-BO corrections calculated by us. The analytic
function used in the fitting has the following form:

VBO(R) =
2∑

j=1

2∑
i=−1

ai jR
i e−α j R −

8∑
k=3

CBO
2k f2k+1(ηR)

R2k
, (17)

where ai j , αi, and η are adjustable parameters, fn(x) are the
Tang-Toennies damping functions [70]

fn(x) = 1 − e−x
n∑

i=0

xi

i!
, (18)

and CBO
n are the asymptotic constants. Using CBO

6 , CBO
8 , and

CBO
10 from Ref. [71], the values of higher asymptotic constants,

CBO
12 , CBO

14 , and CBO
16 , were computed employing the extrapo-

lation formula of Thakkar [72]. The values of CBO
n , n � 10,

obtained in this way were then fixed in Eq. (17), while CBO
6

and CBO
8 were treated as two additional parameters to be fitted.

In the fitting of VBO(R), the values of adjustable parameters
were constrained by imposing the condition

VBO(R) = 182

R
+ (

EKr
BO − 2EAr

BO

) + O(R2), (19)

which ensures the correct short-range asymptotics of the
potential. The difference between the ground-state energies
of krypton (the united-atom limit) and two argon atoms,
i.e., (EKr

BO − 2EAr
BO) = −1698.4211 a.u., was calculated at the

coupled-cluster singles, doubles, and triples (CCSDT) level of
theory [73] with the aug-cc-pV5Z basis set using the CFOUR
program [74,75]. Note that the CBO

n coefficients would appear
in the three fitting constraints resulting from Eq. (19) if the
long-range terms R−n in Eq. (17) were damped using the
Tang-Toennies functions fn as it is usually the case. Since our
CBO

6 and CBO
8 are not fixed, this would severely complicate

the fitting procedure. To circumvent this problem, we used a
stronger damping of the long-range contributions in Eq. (17),
i.e., the R−n terms are multiplied by the functions fn+1 instead
of fn.

The fitting procedure was performed using the nonlinear
weighted least squares dogbox algorithm [76] with weights
equal to the squared inverse of the estimated uncertainties
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FIG. 4. Absolute differences between the BO pair potential pre-
dicted from the fit, VBO(fit), and obtained from ab initio calculations,
VBO(calc), vs estimated theoretical uncertainties σBO. The dotted
lines and percentage in the legend correspond to relative errors with
respect to the estimated uncertainty (1σBO = 100%).

σBO. In Fig. 4 we show the comparison of absolute errors
of the fit with σBO. The mean absolute error of the fit is
0.49 σBO, i.e., it is about two times smaller than the inherent
uncertainty of the ab initio data points. The values of the
adjusted and fixed parameters of the VBO(R) potential are
collected in Table II. Our final value of the CBO

6 coefficient,
CBO

6 = 64.2295 a.u., is similar to the result of Patkowski
and Szalewicz, CBO

6 = 64.2890 a.u. [19], and the estimate of
Kumar and Meath, CBO

6 = 64.30 a.u. [77]. Only a slightly
worse agreement is obtained for the CBO

8 coefficient, CBO
8 =

1503.453 a.u., in comparison with CBO
8 = 1514.86 a.u. from

Ref. [19] and CBO
8 = 1621.5 a.u. from Ref. [71].

TABLE II. Parameters of analytic fits to the VY(R) potentials,
Y ∈ {BO, rel, QED}, defined in Eqs. (17), (20), and (22). The symbol
A(p) means A×10p.

Y = BO Y = rel Y = QED

α1 6.92639712 1.66833595 1.64936036
α2 2.34781022 3.07137482 2.29848003
η 3.65946625 1.05249333 3.91638946
a−11 2.19578828(4) – –
a01 6.77672149(4) −3.55673715 −1.2621862(−1)
a11 8.52129476(4) 7.59367220(−1) 1.176436(−2)
a21 9.53252754(4) −4.19874548(−2) –
a−12 −2.16338828(4) – –
a02 3.18311293(4) −2.83560129(1) –
a12 −8.18603449(3) 1.64892143(1) –
a22 8.37564742(2) 7.19542232 6.921721(−2)

CY
4 – −9.43594504(−4) –

CY
6 6.42295222(1) 1.76276088(−1) −1.949525(−2)

CY
8 1.50345262(3) 3.99787449(−1) −4.8877359(−1)

CY
10 4.9033(4) – –

CY
12 1.828012(6) – –

CY
14 8.1913453(7) – –

CY
16 4.294913366(9) – –

FIG. 5. Absolute differences between the corrections to the in-
teraction potential VY, Y ∈ {rel, QED}, predicted from the fit, VY(fit),
and obtained from ab initio calculations, VY(calc), vs estimated theo-
retical uncertainties σY. The dotted lines and percentage in the legend
correspond to relative errors with respect to the estimated uncertainty
(1σY = 100%).

B. Relativistic potential

The relativistic correction to the interaction energy was
fitted using the analytic formula

Vrel(R) =
2∑

j=1

2∑
i=0

ai jR
i e−α j R −

4∑
k=2

Crel
2k f2k (ηR)

R2k
, (20)

where ai j , αi, and η are adjustable parameters. As no values of
the relativistic asymptotic constants for the argon dimer have
been published to date, the Crel

n coefficients were also treated
as fitting parameters. We restricted the asymptotic expansion
to only three leading terms, with coefficients Crel

4 , Crel
6 , and

Crel
8 , to reduce the possibility of overfitting.

In the fitting of Vrel(R), we imposed only one constraint on
the values of adjustable parameters,

Vrel(0) = (
EKr

rel − 2EAr
rel

)
, (21)

which arises from the united-atom limit. The value of (EKr
rel −

2EAr
rel ) = −31.91275 a.u. was calculated at the CCSDT level

of theory with the fully uncontracted aug-cc-pV5Z basis set
using the CFOUR program. This value does not include the
orbit-orbit correction, which is not available in the CFOUR
code. The fitting procedure was performed as described is
Sec. III A. The mean absolute error of our final fit is 0.05 σrel;
see Fig. 5. The determined parameters of the Vrel(R) potential
are reported in Table II.

To allow for a direct comparison of our results with the
previous work of Patkowski and Szalewicz [19], we addition-
ally constructed an analytic fit of the Cowan-Griffin correction
alone, VCG(R). The functional form of VCG(R) is similar to
that in Eq. (20) but the R−4 term is absent as it arises from
the orbit-orbit interaction that is missing in the Cowan-Griffin
theory.
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C. QED potential

The QED correction to the interaction energy was fitted
using a model function

VQED(R) = (a01 + a11R)e−α1R + a22R2e−α2R

−
4∑

k=3

CQED
2k f2k (ηR)

R2k
, (22)

where a01, a11, a22, α1, α2, η, CQED
6 , and CQED

8 are all
adjustable parameters. No constraints on their values were
imposed during the fitting procedure. The mean absolute error
of the final fit is 0.18 σQED; see Fig. 5. The determined param-
eters of the VQED(R) potential are shown in Table II.

D. Long-range retardation of the potential

In the region where the internuclear distances become very
large, the retardation of the electromagnetic radiation has to
be taken into account. According to the theory of Casimir and
Polder [78], the retarded pair potential for the argon dimer for
large R is given by

VCP(R) = − 1

πR6

∫ ∞

0
[α1(iω)]2e−2αωRP(αωR) dω, (23)

where α1(iω) is the dynamic dipole polarizability of the argon
atom at an imaginary frequency iω and P(x) = x4 + 2x3 +
5x2 + 6x + 3. Performing the expansion of VCP(R) for a fixed
R in powers of α through the α3 terms one obtains [68,69]

VCP(R) = −C6

R6
− C4

R4
− C3

R3
+ O(α4), (24)

where the consecutive terms on the right-hand side of Eq. (24)
represent the leading terms in the asymptotic expansion (in
R−1) of the BO potential, the orbit-orbit contribution to the α2

relativistic correction, and the Araki–Sucher contribution to
the α3 QED correction, respectively. The appropriate powers
of α are included in the definitions of the asymptotic constants
C6, C4, and C3, which can be found in Refs. [68,69]. In partic-
ular, the formula for the C3 constant for the argon dimer reads

C3 = 7α3

6π
182, (25)

where the factor 182 comes from the nuclear charge. At large
R, the Casimir-Polder potential VCP(R) behaves as [68,78]

VCP(R) = −K7

R7
+ O(R−9), (26)

where

K7 = 23

4πα
[α1(0)]2. (27)

As a result, the dominant effect of the retardation is to switch
the usual London’s R−6 long-range decay of the interaction
energy to the R−7 form.

Following the approach developed in the study of the
helium dimer and presented in Refs. [79–81], we introduce
the effects of retardation to the potential through an additive
correction δVret (R). Our total interaction potential of the argon

dimer, V (R), is thus defined as a sum

V (R) = VBO(R) + Vrel(R) + VQED(R) + δVret (R), (28)

where

δVret (R) = VCP(R) + C6

R6
+ C4

R4
. (29)

This particular form of the retardation correction is a con-
sequence of the fact that we explicitly include both the BO
interaction energy and the orbit-orbit correction in our ab
initio data, and the leading terms in the asymptotic expansion
of these interactions are present in VBO(R) and Vrel(R), respec-
tively. Therefore, −C6/R6 − C4/R4 must be subtracted from
VCP(R) to prevent double counting; see Eq. (24). Moreover,
although our VQED(R) potential does not include the Araki-
Sucher correction, its leading asymptotic term, −C3/R3, is
taken into account for small and intermediate internuclear
distances when the retardation correction is applied. It must
be pointed out that the addition of δVret (R) does not entirely
eliminate all unphysical long-range terms from our potential.
The very small R−6 terms in Vrel(R) and VQED(R) can be
eliminated at large R using the relativistic extension of the
Casimir-Polder theory proposed by Pachucki [69]. However,
this is not expected to impact the potential V (R) in the physi-
cally relevant range of distances and was not attempted.

The Casimir-Polder potential can be conveniently repre-
sented through the retardation factor g(R) defined as [79,80]

VCP(R) = −g(R)
C6

R6
. (30)

We calculated the values of g(R) according to Eq. (23) for
100 internuclear distances within the interval 0 � R � 250
a.u. using dipole polarizabilities α1(iω) from Ref. [71] and
C6 = 64.30 a.u. derived from the same data. The retardation
factor was then fitted using a rational function of the form

g(R) = 1 + ∑5
i=1 AiRi

1 + ∑6
i=1 BiRi

, (31)

where Bi are the only adjustable parameters. The parameters
Ai are constrained in order to ensure the correct behavior
of VCP(R) at both R → 0 and R → ∞ limits, defined by
Eqs. (24) and (26), respectively. The resulting constraints
have the following form:

A1 = B1, (32)

A2 = B2 + C4

C6
, (33)

A3 = B3 + B1
C4

C6
+ C3

C6
, (34)

A4 = B5
K7

C6
, (35)

A5 = B6
K7

C6
. (36)

In the calculations, summarized in Table III, we used the exact
value of C3 defined in Eq. (25) and the value of K7, Eq. (27),
computed using the static polarizability of the argon atom,
α1(0) = 11.08 a.u., from Ref. [71]. The constants C6 and C4

were approximated by the coefficients CBO
6 and Crel

4 obtained
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TABLE III. Parameters of the rational fit to the retardation factor
g(R) defined in Eq. (31). The symbol A(p) means A×10p.

i Ai Bi

1 3.064827731712776(−1) 3.064827731712776(−1)
2 4.843969950480238(−3) 4.858660928580025(−3)
3 7.793815409352866(−6) 1.156839432134599(−5)
4 1.031221966985517(−14) 1.670845939899731(−8)
5 4.204140311858030(−12) 2.151070686307512(−17)
6 – 8.769598859882065(−15)

from fitting of the potentials VBO(R) and Vrel(R), respectively,
described in the previous sections. Exactly the same values of
C6 and C4 must then be used in Eqs. (29) and (30) to construct
the retardation correction, δVret (R), which is added to the sum
of unretarded potentials according to Eq. (28).

In practical implementation, it is advantageous to incorpo-
rate the effect of adding δVret (R) directly into the functional
form of the remaining components of V (R), rather than cal-
culating δVret (R) separately. In this way, a possible loss of
numerical accuracy for large internuclear distances is pre-
vented when two contributions of a similar magnitude but of
opposite signs cancel out to a large extent. This cancellation
occurs between the unretarded potential and the retardation
correction, which both vanish as R−4, but their sum forming
the retarded potential V (R) vanishes at a significantly faster
rate with R. To this end, we first introduce a complementary
damping function f̃n(x) defined as

f̃n(x) = fn(x) − 1 = −e−x
n∑

i=0

xi

i!
, (37)

which vanishes when x goes to infinity. The potentials are then
modified as follows:

(i) The term − f7(ηR)CBO
6 /R6 in VBO(R) from Eq. (17) is

replaced by −[g(R) + f̃7(ηR)]CBO
6 /R6,

(ii) The term − f4(ηR)Crel
4 /R4 in Vrel(R) from Eq. (20) is

replaced by − f̃4(ηR)Crel
4 /R4.

Note that these modifications necessitate no changes to the
fitting parameters in the potentials VBO(R) and Vrel(R).

E. Fit of the local uncertainties

In order to estimate the uncertainties of physical properties
of the argon gas calculated using our potential, we gener-
ated fits for functions σY(R), Y ∈ {BO, rel}, representing the
uncertainties of the potentials VY(R) due to the uncertain-
ties of the ab initio calculations. The estimated uncertainties
of the QED correction can be safely neglected as they are
much smaller than the uncertainties of both the BO interac-
tion energy and the relativistic correction. The exact value
of the potential VY(R) is expected to be contained within the
range VY(R) ± σY(R) with probability corresponding to k = 2
coverage. Note that the functions σY(R) are not intended to
precisely fit the estimated ab initio uncertainties but rather
to follow general trends in their behavior as functions of the
internuclear distance, additionally providing upper bounds for
the calculated data. The uncertainty function σ (R) of the total
interaction potential V (R) is obtained by summing squares

TABLE IV. Parameters of the uncertainty functions σY(R), Y ∈
{BO, rel}, defined in Eq. (38). The symbol A(p) means A×10p.

Y = BO Y = rel

α0 1.9 1.05
α1 6.81313900(−1) 1.16451516(−2)
α2 5.76343421(−3) 2.58221232(−1)
α3 2.56907367(−2) 2.00658289(−3)
s0 6.29130076(−1) 6.76919448(−5)
s1 9.85423065(−1) 1.95220703(−8)
s2 2.56799977(−8) 1.89517999(−3)
s3 2.93856722(−6) 6.75730842(−10)

of the uncertainties σBO(R) and σrel(R) and taking the square
root.

The analytic form of the functions σY(R) used in the fitting
reads

σY(R) = s0 e−α0R +
3∑

i=1

si e−αiR2
, (38)

where s0, si, and αi are adjustable parameters, and α0 is fixed
[α0 = 1.9 for σBO(R) and α0 = 1.05 for σrel(R)] to provide a
baseline for the long-range decay of the uncertainty. The fit-
ting procedure was performed using the standard least-squares
method applied to a reduced set of data points obtained by
discarding points where the value of the calculated uncertainty
was significantly smaller than for two closest neighboring
points. The average ratio of the uncertainty predicted from
σY(R) to the actual uncertainty of the ab initio data is 1.08
for σBO(R) and 1.17 for σrel(R). The median of this ratio is
1.16 for both fits. The determined parameters of the σY(R)
functions are shown in Table IV.

A numerical implementation of all functions discussed in
this section, namely, VY(R), Y ∈ {BO, rel, QED}, and σY(R),
Y ∈ {BO, rel}, can be found in Supplemental Material [53] as
a FORTRAN 2008 program.

IV. COMPUTATIONAL METHODS

A. Nuclear dynamics calculations

To calculate the spectroscopic and thermophysical proper-
ties of the argon dimer, one has to solve the radial nuclear
Schrödinger equation[

d2

dR2
− l (l + 1)

R2
+ 2μa

h̄2 (E − U (R))

]
χl (R) = 0, (39)

where l is the rotational quantum number, U (R) is the elec-
tronic interaction potential, and μa is the reduced mass of
the system calculated using atomic masses. In the case of
the 40Ar2 molecule, the latter quantity is equal to μa =
36 423.5 me [82,83]. For E < 0, the solutions χl (R) that fulfill
appropriate boundary conditions are the radial wave func-
tions of bound rovibrational states of the molecule and the
corresponding values of E are the binding energies denoted
Ev,l , where v is the vibrational quantum number. The binding
energies may be found, for example, through the bisection of
the energy variable. For arbitrary E > 0, the function χl (R)
represents the scattering state and E is the relative collision

052803-8



THERMOPHYSICAL PROPERTIES OF ARGON GAS FROM … PHYSICAL REVIEW A 109, 052803 (2024)

energy of the system. The wave function of any scattering
state asymptotically approaches the free-particle solution [84]

χl (R) ≈ R[ jl (κR) − yl (κR) tan δl (E )], (40)

where κ = √
2μaE/h̄, jl (x) and yl (x) are the spherical Bessel

functions of the first and second kind, respectively, and δl (E )
is the phase shift.

Several numerical approaches are available to solve
second-order differential equations such as Eq. (39). One
of the most common techniques is the Numerov integration
method [85–87], in particular its renormalized form [88]
which is employed in this work. The wave function obtained
by the traditional Numerov method can grow exponentially in
the classically forbidden regions, which is numerically prob-
lematic. However, in the renormalized Numerov method one
propagates the ratio of the values of the wave function at two
consecutive grid points. This ratio is, in practice, bounded, and
hence the problem of the exponential growth is eliminated.
However, this comes at a price of losing the correct normaliza-
tion of the wave function, which must be restored afterwards.
Another advantage of the renormalized Numerov method is
the direct access to the quantity χ ′

l (R)/χl (R) required in the
calculation of phase shifts discussed in Sec. IV D.

B. Second pressure and acoustic virial coefficients

The second virial coefficient B(T ) can be expressed as a
sum of three distinct parts [8,89]

B(T ) = Bideal(T ) + Bbound(T ) + Bthermal(T ), (41)

where Bideal(T ) is the ideal gas contribution, Bbound(T ) is the
contribution from the bound rovibrational states of the dimer,
and Bthermal(T ) is the atom-atom scattering contribution. For
the gas of bosonic 40Ar atoms with zero nuclear spin, these
contributions are defined as

Bideal(T ) = −�(T )3

16
, (42)

Bbound(T ) = −�(T )3
l even∑
v,l

(2l + 1)(e−Ev,l /kBT − 1), (43)

Bthermal(T ) = −�(T )3

πkBT

∫ ∞

0
e−E/kBT S(E ) dE , (44)

where

�(T ) = h√
2πμakBT

(45)

and

S(E ) =
l even∑

l

(2l + 1) δl (E ). (46)

The second acoustic virial coefficient β(T ) is defined using
B(T ) and its first and second derivatives with respect to the
temperature [8]

β(T ) = 2B(T ) + 2(γ0 − 1)T B′(T ) + (γ0 − 1)2

γ0
T 2B′′(T ),

(47)
where γ0 is the heat capacity ratio (γ0 = 5/3 for a monatomic
gas).

C. Transport properties

The transport coefficients can be obtained using the
Chapman-Enskog method applied to the Boltzmann equa-
tion [90,91] with the help of the Sonine polynomial expan-
sions as described in detail in Refs. [92–94]. In this work,
we consider two transport coefficients, namely, the thermal
conductivity, λ(T ), and the viscosity, η(T ). In the framework
of Chapman and Enskog, the formula for the thermal conduc-
tivity is given by

λ(T ) = 75

64

kBh

2μa�(T )

f (m)
λ

�(2,2)(T )
, (48)

and for the viscosity by

η(T ) = 5

16

h

�(T )

f (m)
η

�(2,2)(T )
, (49)

where �(T ) is defined in Eq. (45) and �(2,2)(T ) is the col-
lision integral of the order (2,2). In general, the integrals
�(n,s)(T ) are defined as

�(n,s)(T )= (n + 1)

n(s + 1)!(kBT )s+2

∫ ∞

0
Q(n)(E ) e−E/kBT Es+1 dE ,

(50)

and depend on the quantum collision cross sections

Q(n)(E ) = 8π

κ2

l even∑
l

�(n−1)/2�∑
j=0

C(n)
l j sin2[δl (E ) − δl+n−2 j (E )],

(51)
where �x� denotes the floor function and the coefficients
C(n)

l j can be found in Refs. [95,96]. f (m)
λ and f (m)

η appearing
in Eqs. (48) and (49) are correction factors represent-
ing mth-order approximations of the kinetic theory [8]. In
the first-order approximation we have f (1)

λ = f (1)
η = 1, and

higher-order approximations are close to this value. In gen-
eral, f (m)

λ and f (m)
η depend on the collision integrals �(n,s)(T );

explicit expressions can be found in Ref. [97]. We employ the
fifth-order approximation in this work.

D. Phase shifts calculations

Calculations of the thermophysical properties require the
knowledge of two quantities: S(E ) defined in Eq. (46) and
Q(n)(E ) defined in Eq. (51). Both are expressed in terms
of phase shifts δl (E ) which are calculated according to the
procedure described in this section.

Using the asymptotic form of the scattering wave function,
Eq. (40), phase shifts can be obtained as a limit [84]

δl (E ) = lim
R→∞

δl (E , R), (52)

where

tan δl (E , R) = κ j′l (κR) − γl (R) jl (κR)

κy′
l (κR) − γl (R)yl (κR)

, (53)

and γl (R) is calculated from the solution to Eq. (39) as

γl (R) = χ ′
l (R)

χl (R)
− 1

R
. (54)

Due to the periodic nature of the tangent function, from
Eq. (53) we have direct access only to principal values of the
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phase shifts that are always within the interval [−π/2, π/2].
This is sufficient for the calculation of Q(n)(E ), but absolute
phase shifts are needed to construct S(E ). The absolute values
may, however, differ from the principal values by an inte-
ger multiple of the period length kπ , where k is unknown.
In order to find the appropriate value of k, we assume that
δl (E , R) is a continuous function of R with the initial value
δl (E , 0) = 0, i.e., we assume that k = 0 for R = 0. Starting
from this condition, tan δl (E , R) is calculated increasing the
internuclear distance in small steps, �R. When tan δl (E , R)
experiences a jump from positive to negative values at two
consecutive R, indicating that the period boundary has been
crossed, the current value of k is increased by one. The op-
posite procedure is applied, i.e., k is decreased by one, when
tan δl (E , R) jumps from negative to positive values. Alterna-
tive approaches to calculating the absolute phase shifts have
been given in Refs. [98–100].

Initially, we performed calculations using the integration
step equal to �R = 0.5 E−1/3×10−6 a.u. This step size is
sufficient in the case of s-wave phase shifts for small energies
E < 10−8 a.u. However, it becomes too large to identify in
a reliable way all sign changes of δl (E , R) for states with
l > 0. In this case the integration step should be at least two
orders of magnitude smaller than for l = 0. This makes the
approach described above impractical for routine calculations.
For this reason, the actual calculations were carried through
the method described in Ref. [98] with the step size given
above. For energies E > 10−3 a.u. the step size was increased
by an order of magnitude to speed up the calculations, as in
this energy regime the results are much less sensitive to the
value of this parameter.

The calculations of S(E ) were carried out for 250 values
of energy distributed logarithmically within the range from
10−11 to 1 a.u. For each energy, the absolute phase shifts
were calculated until the relative contribution of a particular
l in Eq. (46) was smaller than 10−8. If contributions from
l > 16 000 were still significant, the Born approximation

tan δl (E ) ≈ 24πμ3
aC6E2

(2l − 3)(2l − 1)(2l + 1)(2l + 3)(2l + 5)
(55)

was used to calculate the remaining terms necessary to reach
the threshold. The quantity C6 in Eq. (55) denotes the to-
tal asymptotic coefficient of the interaction potential, i.e.,
including the BO, relativistic, and QED contributions. The
Born approximation was required for energies E > 10−3 a.u.,
where S(E ) is negative. For lower energies, angular momenta
up to about l = 8 000 were sufficient.

The original grid of 250 energies was not fine enough
to properly describe the collision cross sections Q(n)(E ) as
their behavior is less regular than that of S(E ). Therefore,
we created an additional set of 12 000 energies distributed
nonuniformly according to

Em/ K = 2 (1.0005m − 1), m ∈ {1, . . . , 12 000}. (56)

For each energy, the summation in Eq. (51) was truncated
when the relative contribution from a given l was smaller than
10−12. The contributions to Q(n)(E ) decay much faster with
increasing l than in the case of S(E ), so l ≈ 700, on average,
was sufficient to reach this threshold with the exception of
higher energies for which l ≈ 1700 was necessary.

Calculated values of S(E ) and Q(n)(E ), n = 2, 4, 6, can be
found in Supplemental Material [53].

E. Uncertainty estimation

The final values of the pressure and acoustic virial coeffi-
cients were calculated using binding energies and the S(E )
function obtained by solving Eq. (39) with U (R) = V (R),
where V (R) is the total potential defined in Eq. (28). The
uncertainties of B(T ) and β(T ) were estimated as half of
the absolute difference between the results calculated with
U (R) = V (R) ± σ (R), where σ (R) is the potential uncertainty
function discussed in Sec. III E. This method of estimating the
uncertainties will be further referred to as the “±σ” approach.

Calculation of the transport properties consists of two ma-
jor steps. In the first step, the collision cross sections Q(n)(E )
are obtained from the solutions to Eq. (39). Next, the �(n,s)(T )
integrals are generated from Q(n)(E ) and transport proper-
ties are calculated using these integrals. The final values of
transport properties were calculated using �(n,s)(T ) gener-
ated from the collision cross sections Q(n)

0 (E ) obtained using
U (R) = V (R) in Eq. (39). In the spirit of the “±σ” ap-
proach, the uncertainties of the transport properties may be
estimated from the results of two separate calculations. In the
first calculations, �(n,s)(T ) are generated from the collision
cross sections Q(n)

+ (E ) obtained with U (R) = V (R) + σ (R).
In the second, the procedure starts with the collision cross
sections Q(n)

− (E ) obtained with U (R) = V (R) − σ (R). It is
known, however, that this approach leads to artificial underes-
timation of the uncertainties [101]. In this work, we propose
an alternative approach to avoid the underestimation of uncer-
tainties in calculation of transport properties.

We found that the problem originates from the interplay be-
tween the behavior of the collision cross sections as functions
of the energy on the one side, and their dependence on the
form of the potential U (R) used in Eq. (39) on the other side.
In some energy regions the collision cross sections Q(n)

0 (E )
are slightly smaller than Q(n)

+ (E ) but lie above Q(n)
− (E ). This

ordering is switched in other regions; see Fig. 6 for a repre-
sentative example. The �(n,s)(T ) integrals defined in Eq. (50)
are essentially weighted integrals of Q(n)(E ) with the weight
function e−xxs+1 dx, where x = E/kBT . For any given tem-
perature, this weight function is non-negligible on a large
energy interval that includes several regions where Q(n)

+ (E )
and Q(n)

− (E ) switch roles, i.e., the bound Q(n)
− (E ) < Q(n)

0 (E ) <

Q(n)
+ (E ) transforms into Q(n)

+ (E ) < Q(n)
0 (E ) < Q(n)

− (E ) or the
other way around. When Q(n)

+ (E ), Q(n)
0 (E ), and Q(n)

− (E ) are
integrated to give the corresponding estimates of �(n,s)(T ),
these oscillations between Q(n)

+ (E ) and Q(n)
− (E ) artificially

cancel out. This leads to unreasonably small differences be-
tween the values of �(n,s)(T ) obtained with Q(n)

+ (E ), Q(n)
0 (E ),

and Q(n)
− (E ), making the “±σ” approach unsuitable to esti-

mate the uncertainty of �(n,s)(T ) and, finally, the transport
properties.

To ameliorate this problem, one has to change the def-
inition of the uncertainties of Q(n)(E ) in the evaluation of
�(n,s)(T ). We propose the following strategy comprising three
steps:
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FIG. 6. Comparison of the quantum collision cross sec-
tion Q(2)

0 (E ) of the argon dimer calculated using the V (R) potential
and the collision cross sections Q(2)

± (E ) calculated using the per-
turbed potentials V (R) ± σ (R).

(i) Use Q(n)
max(E ) = max(Q(n)

0 (E ), Q(n)
+ (E ), Q(n)

− (E )) in
evaluation of Eq. (50) to obtain the upper bound of �(n,s)(T ),

(ii) Use Q(n)
min(E ) = min(Q(n)

0 (E ), Q(n)
+ (E ), Q(n)

− (E )) in
evaluation of Eq. (50) to obtain the lower bound of �(n,s)(T ),

(iii) The uncertainties of the transport properties are esti-
mated as half of the difference between the results obtained
with the upper and lower bounds of �(n,s)(T ).

This strategy, further referred to as the “max/min Q” ap-
proach, leads to much more conservative estimates of the
uncertainty and removes the problem of artificially small un-
certainties for some temperatures. In Sec. V C we compare the
uncertainties of the transport properties obtained with “±σ”
and “max/min Q” approaches.

V. RESULTS AND DISCUSSION

A. Spectroscopic parameters

In Table V we collect spectroscopic parameters of the
argon dimer calculated using our potential. The results were
obtained at three levels of theory, differing in the treatment of
the post-BO effects:

(i) Using only the Cowan-Griffin one-electron relativistic
correction,

(ii) Using the complete Breit-Pauli Hamiltonian including
the two-electron terms,

(iii) Same as the above with addition of the QED correc-
tion.

The retardation effects were included at the last two lev-
els and the uncertainties of the calculated quantities were
obtained in all three cases using the uncertainty function
σ (R) discussed in Sec. III E. For comparison, we also pro-
vide corresponding results for two potentials taken from the
literature—the ab initio potential of Patkowski and Szalewicz
[19] and the empirical potential of Song and Yang [21]. The
experimental results [24,25] are also given. The energies of

TABLE V. Comparison of spectroscopic parameters and binding energies of l = 0 vibrational states of the argon dimer supported by
various theoretical potentials and determined from experiment. The position of the minimum Re is in angstrom and the depth of the potential
well De, the rotational constant B0, the centrifugal-distortion constant D0, and the energy levels are in cm−1. The values in parentheses are
uncertainties of the rightmost digits.

This work, form of the potential U (R) in Eq. (39)

Ref. [19] Ref. [21] VBO + VCG VBO + Vrel + δVret V in Eq. (28) Expt.

Re 3.762a 3.761 3.7634(14) 3.7639(14) 3.7640(14) 3.761(3)b

De −99.351a −99.60 −99.28(37) −99.24(37) −99.20(37) −99.2(10)b

B0
c 0.057589d 0.057580 0.057560(45) 0.057546(45) 0.057543(46) 0.057611(4)d

106×D0
c 1.03d 0.99 1.04(1) 1.04(1) 1.04(1) 1.03(2)d

v = 0 −84.53458e −84.40 −84.50(34) −84.46(34) −84.43(34) −84.47(1)b

v = 1 −58.85674e −58.25 −58.86(29) −58.83(29) −58.80(29) −58.78(1)b

v = 2 −38.36106e −37.61 −38.38(24) −38.35(24) −38.33(24) −38.20(2)b

v = 3 −22.85141e −22.18 −22.86(19) −22.84(19) −22.82(19) −22.62(2)b

v = 4 −11.97942e −11.51 −11.98(13) −11.96(13) −11.95(13) −11.71(3)b

v = 5 −5.17193e −4.91 −5.17(8) −5.15(8) −5.15(8) −4.87(7)b

v = 6 −1.59539e −1.48 −1.60(4) −1.59(4) −1.58(4) –
v = 7 −0.22722e −0.20 −0.23(1) −0.22(1) −0.22(1) –
v = 8 −0.20186×10−6 e,f – [−2×10−6]g [−6×10−6]g [−6×10−6]g –

aTaken from Ref. [19].
bTaken from Ref. [24].
cRotational and centrifugal-distortion constants were obtained from fitting of the lowest v = 0 rotational states up to l = 14.
dTaken from Ref. [25].
eTaken from Ref. [26].
fFrom our calculations the energy is −3.9×10−6 cm−1.
gThe potential U (R) does not support the ninth vibrational state. The value in square brackets was obtained using U (R) − σ (R), where σ (R)
is the uncertainty function.
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TABLE VI. The results (in cm3 mol−1) obtained in this work from quantum-mechanical calculations of the second pressure virial
coefficient Bqm(T ) and the second acoustic virial coefficient βqm(T ). The values in parentheses represent uncertainties of the rightmost digits.
Also shown are relative deviations of the semiclassical results taken from Refs. [102] and [3], and of the semiclassical results obtained using
the potential from Ref. [22] and the potential developed in this work, from the quantum-mechanical values [�Bscl = (Bscl − Bqm )/Bqm × 100%
and �βscl = (βscl − βqm )/βqm × 100%].

�Bscl (T ) �βscl (T )

T [K] Bqm(T ) Ref. [102] Ref. [3] Ref. [22] This work βqm(T ) Ref. [102] Ref. [3] Ref. [22] This work

90 −220.9(16) 0.35% 0.18% 0.53% 0.01% −228.3(20) 0.45% 0.18% 0.67% <0.01%
110 −152.6(11) 0.36% 0.18% 0.55% <0.01% −144.3(13) 0.46% 0.20% 0.72% <0.01%
200 −47.68(43) 0.46% 0.23% 0.76% <0.01% −23.69(53) 1.07% 0.49% 1.78% −0.01%
280 −19.39(29) 0.73% 0.35% 1.24% −0.01% 7.41(36) −2.16% −0.91% −3.60% <0.01%
340 −8.15(24) 1.36% 0.64% 2.34% −0.01% 19.49(30) −0.63% −0.24% −1.04% <0.01%
500 7.08(16) −0.98% −0.40% −1.66% 0.01% 35.31(21) −0.21% −0.05% −0.31% <0.01%

all rovibrational states supported by our total potential can be
found in Supplemental Material [53].

The theoretical potentials considered in Table V agree on
the location of the minimum of the potential well at around
R = 3.76 Å and on its depth in the range between −99.6 and
−99.2 cm−1. All results are within error bounds of the exper-
imental determination from Ref. [24]. By contrast, theoretical
rotational constants are outside very narrow error bounds of
the experimental value from Ref. [25], but the relative differ-
ences do not exceed 0.12%. Experimental error bars of the
centrifugal-distortion constant are much wider, and only the
empirical potential of Song and Yang [21] fails to reproduce
the experimental value. The energies of rotationless vibra-
tional levels supported by each potential are close to available
experimental data. Comparing the results obtained at different
levels of accounting for the post-BO effects, it is seen that
inclusion of the two-electron relativistic terms and retardation
effects improves the agreement with the experiment. When
the QED correction is added, the energies predicted using
our potential are the closest to the experimental values for
v = 1–3.

We obtained at least eight bound vibrational states with
each potential, while the ninth bound state was observed only
with the potential of Patkowski and Szalewicz [19]. Neverthe-
less, based on the estimated uncertainty of our data, we cannot
rule out the possibility that the ninth bound state exists. It
appears when our potential is modified by subtracting the un-
certainty function σ (R), i.e., when the estimated lower bound
of our potential is used. Moreover, for the ninth state to appear,
it is sufficient to subtract 0.3–0.4σ (R) when the description of
the post-BO effects is restricted to the Cowan-Griffin correc-
tion alone, or 0.7–0.8σ (R) when the total potential is used.
These observations suggest that in order to conclusively an-
swer the question of how many rotationless vibrational levels
are supported by the electronic ground state of the argon
dimer, it is necessary to reduce the uncertainty of the ab initio
data by a factor of at least two. However, the knowledge of
the existence and precise position of the ninth vibrational
state becomes important in the calculations of thermophysical
properties of the argon gas only for temperatures well below
1 K, and is therefore irrelevant to the results discussed in the
following sections.

B. Second pressure and acoustic virial coefficients

In this work we report fully quantum-mechanical calcu-
lations of the second virial coefficients of argon gas with
rigorous error estimates. The results for a selected set of
temperatures are presented in Table VI. The relative uncer-
tainties of the calculated second virial coefficients are below
1.3% for all considered temperatures, except for the regions
where the sign change occurs: at about 408 K for the second
pressure virial coefficient and 255 K for the second acoustic
virial coefficient. The full set of calculated second pressure
and acoustic virial coefficients can be found in Supplemental
Material [53].

In Table VI and Fig. 7 we compare the results of
our quantum-mechanical calculations with the values ob-
tained using semiclassical approaches, including the results of
Vogel et al. [102] calculated using the potential of Jäger
et al. [17], the results of Moldover et al. [3] based on the
potential of Patkowski and Szalewicz [19], and semiclassical
results calculated using the quadratic Feynman-Hibbs method
[103] with the potential of Deiters and Sadus [22] and the
potential developed in this work. In Fig. 7 we also compare
our data with selected experimental values. Recently, Myatt
et al. [20] have consolidated and reevaluated available ex-
perimental results for several thermophysical properties of
argon gas [104–152]. As older experiments exhibit large un-
certainties, we omit them in Fig. 7 and focus on the most
recent experimental determinations with more narrow error
bars [134–137,141,145,151,153–160].

The experimental results are within estimated uncertainties
of our quantum-mechanical calculations. It is worth noting
that the experimental error bars are generally narrower than
our uncertainty estimates—by a factor of 2–3 for the second
pressure virial coefficient and by almost an order of magnitude
in the case of the second acoustic virial coefficient. The main
source of uncertainty in our calculations is the BO contribu-
tion to the pair potential taken from Refs. [18,19], as other
sources of error, resulting from the treatment of relativistic
and QED effects used in this work, are negligible compared
to the estimated theoretical uncertainties of BO energies.

Interestingly, the second acoustic virial coefficients ob-
tained by Vogel et al. [102] from the potential of Jäger et al.
[17] are almost identical to the experimental values. This is
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FIG. 7. Comparison of the quantum-mechanical values of the second pressure virial coefficient Bqm(T ) (upper panel) and the second acous-
tic virial coefficient βqm(T ) (lower panel) obtained in this work with selected theoretical and experimental results. Dash-dotted lines correspond
to the semiclassical results taken from Refs. [102] and [3] and the semiclassical values obtained using the potential from Ref. [22] and the
potential developed in this work. Points with error bars correspond to the experimental results taken from Refs. [134–137,141,145,151,153–
160]. Red area represents the estimated uncertainty of our data.

somewhat surprising as Jäger et al. [17] performed their ab
initio calculations at the same level of theory as Patkowski
and Szalewicz [19] but employed smaller basis sets. Not sur-
prisingly, the results of Moldover et al. are closer to ours as
we share the same BO interaction energies from Ref. [19].
While Patkowski et al. [18,19] provided uncertainty estimates

for their ab initio energies at a discrete set of internuclear
distances, no systematic uncertainty estimation of the ana-
lytic potential developed in Ref. [19] was given. Therefore,
it is unknown how Moldover et al. [3] obtained their esti-
mations of uncertainty, but their uncertainties generally agree
with ours obtained using the “±σ” approach. The results
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calculated from the simplified potential of Deiters and Sadus
[22] that does not include any quantum contributions differ
the most from our full quantum-mechanical values. Over-
all, all analyzed theoretical potentials lead to results that are
within 2%–3% of the experimental data within the temper-
ature range where the second virial or acoustic coefficient
change sign. For the remaining temperatures, the differences
are well within 1%. Therefore, all theoretical potentials can
be seen as quantitatively comparable. Nevertheless, only the
potential developed in this work properly includes all relevant
physical effects, some of which have been neglected in previ-
ous studies. We also provide an analytical fit of the uncertainty
of the interaction potential which has not been reported in
other theoretical works.

The semiclassical results obtained using our potential are
almost equal to the quantum-mechanical ones. This suggests
that the semiclassical calculations are sufficient for the accu-
rate determination of the second pressure and acoustic virial
coefficients of argon. Indeed, the relative deviations between
the semiclassical and quantum-mechanical calculations are
� 0.02% within the studied temperature range (30–4000 K).
The deviations increase slightly for smaller temperatures but
even at 30 K, i.e., far below the freezing point of argon
(83.95 K), the deviation is ≈0.02%. We expect the same
behavior for heavier noble gases such as krypton and xenon
as their freezing points are much higher.

Using the semiclassical approach we also calculated the
second virial coefficients of argon using other recent theo-
retical potentials from the literature [20,21,23] not shown in
Table VI and Fig. 7. The values calculated using the potential
of Myatt et al. [20] exhibit small deviations from our results
and are well within estimated uncertainties of this work for
most of the studied temperatures. By contrast, the values ob-
tained using the potentials of Song and Yang [21] and Sheng
et al. [23] deviate from our results by as much as 6%–10%
and 4%–10%, respectively; i.e., they are well outside both
our estimated uncertainties and the error bars of the newest
experimental determinations. Therefore, although the latter
potentials are able to accurately predict vibrational excitation
energies of the argon dimer [23], they are not adequate for
the calculations of the second pressure and acoustic virial
coefficients.

C. Transport properties

As discussed in Sec. IV E, a rigorous and reliable esti-
mation of the uncertainty of theoretical transport properties
is a challenging task. In Fig. 8 we present the uncertain-
ties of the viscosity calculated with our potential using three
different methods: the simple “±σ” approach, the modu-
lated “±σ” approach proposed by Hellmann and co-workers
[13,161,162], and the “max/min Q” approach suggested in
this work. The uncertainties calculated using the “±σ” ap-
proach become close to zero for temperatures around 450 K,
which is an artifact. Analogous behavior is also observed
in the theoretical results of Moldover et al. [3] at a similar
temperature. The modulated “±σ” approach partially fixes
this problem, but the uncertainties are still underestimated
in the vicinity of the artificial minimum of the curve. By
contrast, in the “max/min Q” approach only a very shallow

FIG. 8. Relative uncertainties of the viscosity estimated using
various approaches.

minimum is present. Moreover, while for high temperatures
the “max/min Q” method provides almost identical results
as both the simple and modulated “±σ” methods, the uncer-
tainties for low temperatures are about 1.6 times larger. This
suggests that the latter methods may also underestimate the
uncertainties for low temperatures.

The full set of calculated thermal conductivities and vis-
cosities, together with their estimated uncertainties, can be
found in Supplemental Material [53]. In Fig. 9 we compare
the results of our quantum-mechanical calculations with the
existing theoretical and experimental determinations. The the-
oretical values include the results from classical calculations
of Vogel et al. [102] and Moldover et al. [3], and quantum-
mechanical calculations of Sharipov and Benites [163] based
on the potential of Patkowski and Szalewicz [19]. Sharipov
and Benites [163] also provided estimations of the uncertainty,
but only as a difference between the values obtained with the
potentials from Refs. [17] and [19]. Somewhat surprisingly,
their estimated uncertainties for temperatures below 300 K are
smaller than the differences between the values of Vogel et al.
[102] and Moldover et al. [3] that were calculated using the
same potentials from Refs. [17] and [19], respectively. The
results from the classical calculations deviate significantly
from ours, and for temperatures >150 K they are outside our
uncertainty estimates. By contrast, the results of Sharipov and
Benites [163] for the thermal conductivity are similar to our
results for temperatures below 400 K, but differ by about
0.07% for higher temperatures. In the case of the viscosity, the
deviations are slightly larger but mostly within the estimated
uncertainties of our calculations.

A large number of experimental work on the viscosity
and thermal conductivity has been conducted on argon gas
[104,106–130,133,142–144,146–150,152,164,165]. In gen-
eral, the experimental values of argon transport properties
come from relative measurements, where argon is measured
relative to helium for which highly accurate ab initio val-
ues are known. The argon/helium viscosity ratio is typically
measured directly. Thermal conductivity, on the other hand,
is usually obtained from viscosity using ab initio calcula-
tions of the Prandtl number since measurements of vapor
thermal conductivity have larger uncertainties. Similarly as
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FIG. 9. Comparison of the quantum-mechanical values of the thermal conductivity λqm(T ) (upper panel) and the viscosity ηqm(T ) (lower
panel) obtained in this work with selected theoretical and experimental results. Dotted lines correspond to the classical results taken from
Refs. [102] and [3] and solid line with stars represents quantum-mechanical calculations from Ref. [163]. Points with error bars correspond to
the experimental results taken from Refs. [146–150,152,164,165]. Red area represents the estimated uncertainty of our data.

in the case of virial coefficients, in Fig. 9 we show only the
experimental data that have been reported recently and have
small uncertainties [146–150,152,164,165]. In contrast to the
second virial coefficients, the experimental uncertainties for
the transport properties exceed the theoretical uncertainties
reported in this work. Nevertheless, the results are consistent
within combined error bounds.

VI. CONCLUSIONS

In this work, we have developed an ab initio interaction
potential for the electronic ground state of the argon dimer.
The Born-Oppenheimer component of the potential has been
taken from Refs. [18,19]. However, we have refined the poten-
tial by including all sizable post-Born-Oppenheimer effects.
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First, the relativistic corrections have been calculated using
the full Breit-Pauli Hamiltonian, taking into account both
the one- and two-electron effects. Second, the leading-order
quantum electrodynamics correction has been calculated and
the retardation of the electromagnetic interactions has been
included in the long-range part of the potential. Finally, we
provide an analytical fit of the uncertainties of the calculated
contributions to the interaction potential, which is not avail-
able in other theoretical studies.

Spectroscopic properties of the argon dimer such as
rovibrational energy levels, bond-dissociation energy, and
rotational and centrifugal-distortion constants have been re-
ported. We have shown that at the current accuracy level
it is not possible to determine whether the weakly bound
ninth rotationless vibrational level exists or not. Thermophys-
ical properties of the argon gas—pressure and acoustic virial
coefficients—as well as transport properties—viscosity and
thermal conductivity—have been determined using the devel-
oped potential. In the case of the thermophysical properties,
the theoretical values reported here are somewhat less ac-
curate than the most recent experimental data. However, the

opposite is true for the transport properties: theoretical results
calculated in this work have considerably smaller uncertain-
ties than the data derived from measurements.
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