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Multiphoton quantum interference in precision spectroscopic experiments
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Modern resonance spectroscopic experiments on the measurement of transition frequencies in atoms have
reached a level where a meticulous description of all aspects of the studied processes has become obligatory. The
precision achieved has led to the fact that the determination of the transition frequency on the basis of measured
data is substantially refined by theoretical treatment of the observed spectral line profile. Thus, a large impact
of effects arising beyond the resonance approximation, in particular due to the effect of quantum interference,
is found experimentally. We show that the picture becomes even more complicated when the observed spectral
line profile is “identified” with one of the processes—emission or absorption. An accurate determination of the
transition frequency requires a description of the absorption line profile inseparable from the emission process,
and vice versa. The theoretical aspects discussed in this paper create prerequisites for more accurate experiments.
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I. INTRODUCTION

At present, experimental progress has ascertained that the
spectral line profile can be studied in detail as a precisely
measurable quantity. The theory of a natural line profile in
atomic physics was developed beginning with the pioneer
works [1] within quantum mechanics and [2] within quan-
tum electrodynamics (QED). An extended QED theory of the
line profile for many-electron atoms and highly charged ions
(HCIs) was described in [3]; see also [4]. The development
of the line profile theory is closely related to experimental
advances in measuring the transition frequency in the hydro-
gen atom [5,6], where the 1s − 2s two-photon transition was
measured with an accuracy of about 10−15 relative magni-
tude. Such experiments have stimulated interest in theoretical
studies of effects beyond the resonance approximation. The
most important consequences in the line profile theory were
found in the form of corrections to the transition frequency
arising due to nonresonant terms in the photon scattering cross
section [7,8]. These corrections [called nonresonant (NR)]
expressly demonstrate the breach of the resonance approxima-
tion. The largest contribution originates from the states closest
in energy to the resonant one.

Even larger contributions come from the interference be-
tween the resonant and nonresonant states. However, in the
total cross sections, the interference terms survive only for
the states with the same symmetry. Such states are rather
rarely located close by energy in atomic spectra. Therefore,
an important step that initiated further research was made in
[7], where NR corrections were considered in the differential
cross sections, most often observed in experiments, and the

*d.solovyev@spbu.ru

distorted profile used later in [9] was derived. In this case,
interference NR corrections for the states with different sym-
metries contribute to the line profile, and these corrections,
called quantum interference effects (QIEs), are the main topic
of theoretical and experimental studies [10–15].

In the general case, the QIE depends on the angles be-
tween the vectors characterizing the emitted and absorbed
photons (photon polarization, propagation direction, or their
combination). This, in turn, opens the possibility to avoid the
NR-shift of the transition frequency by the choice of such an
angle when the QIE is equal to zero (“magic angle”). Any
NR corrections make the line profile asymmetric (by mere
construction), while NR corrections (though much smaller) to
the total cross section do not depend on “experimental geom-
etry” and, therefore, the corresponding asymmetry is always
present. Based on the ever available asymmetry of the line
profile, it was concluded in [7,8,16] that NR corrections set a
limit to the accuracy of the transition frequency determination.

It was argued in [9] that even for an observed asymmetric
line profile, the transition frequency can be unambiguously
determined giving an “invariant” that is independent of the
experimental conditions. This can be achieved by subtract-
ing the asymmetric part of the line profile. The subtraction
procedure described in [9] was grounded in the Fano-Voigt
profile, since the QIE was first discussed by Fano [17] and
the Voigt line profile parametrization was used. The concept
of symmetrization of the observed line profile [9] is intended
to determine the frequency of a particular transition with a
number of significant digits far in excess of the NR correc-
tions. However, the most specific for nonresonant corrections
is their dependence on the process used in the experiment,
and therefore NR corrections are an inherent part of the ex-
perimental conditions. Since the nonresonant corrections are
the result of going beyond the resonant approximation, the
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transition frequency can be uniquely determined only within
the resonant approximation.

The question of unambiguously determining the transition
frequency with an accuracy higher than that given by the NR
corrections can be addressed for the definition. In particu-
lar, the determined value should correspond to the transition
frequency representing the energy difference of the atomic
levels, and then it should be used for the subsequent de-
termination of physical constants by comparing theoretical
and experimental values [9]. This, however, applies to the
determination of the transition frequency for an atom unper-
turbed by measurement (Bohr atom). Since this frequency
value cannot be measured directly (NR corrections prevent
this), an appropriate treatment of the experimentally obtained
data is required. As a consequence, several definitions can
be provided, one of them referring, for example, to the de-
termination of the most probable value (from the maximum
of the observed profile—“line maximum” or equally at half-
maximum), the other to the determination of the “line center”
for a symmetrized profile. But both procedures involve an
appropriate theoretical analysis of the measured quantities
in order to obtain a Bohr value for the transition frequency.
To achieve this, all points of the process considered in the
experiment have to be strictly defined. A detailed discussion
of this issue is presented in Sec. II.

For the more detailed investigation of the problem, we
have to recall a fundamental requirement of the theory: the
scattering process has to start and end with a stable state [18].
In traditional atomic resonant spectroscopy, this requirement
was ignored and the transitions between two unstable states
(cascade transitions) were commonly observed; see, for ex-
ample, [19–23]. The main goal of this communication is to
show that with the growth of the accuracy for spectroscopic
measurements, this requirement becomes obligatory. An ex-
cellent example that helps to justify this statement is the paper
[9] on the superaccurate measurement of 2s − 4p transition
frequency in a hydrogen atom. The final state 4p in this
transition is unstable. Its decay occurs among other channels
also via cascades. In spite of the fact that the cascades rep-
resent fractions from the dominant decay to the ground state,
their analysis for nonresonant effects and, as a consequence,
the asymmetry of the line profile is a matter of principal
importance. It should be emphasized that the experiment in
[9] can be considered the first in which NR effects were
observed. The emergence of quantum interference effects in
the cascade (QIEc) emission process and their engagement in
the absorption line profile is discussed in the last part of the
present paper.

Measuring the absorption transition frequency to an un-
stable state leads to a set of possible situations beyond the
resonance approximation, each of which is consistent with
certain experimental conditions. For example, one possible
way to determine the transition frequency corresponds to the
case when all emitted photons are registered [9], where due
to the processing of the experimental data, the frequency was
defined as the “line center.” Possible experiments where the
excited state decays into fixed allowed lower states were dis-
cussed in [24]. In this case, the decay to a particular state leads
to an asymmetry different from that revealed in [9]. Then the
determination of the “line center” should be made by choosing

a different asymmetry parameter, and the transition frequency
of the Bohr atom can be extracted for any particular photon
scattering channel as one defined in [9]. But in all cases, the
reasons leading to the asymmetry of the observed line profile
(including QIEc) should be subjected to theoretical analysis,
without which significantly different values of the transition
frequency can occur.

This paper has several goals. One, as stated above, refers
to the need to account for cascade radiation to determine
the absorption frequency. Another one is to demonstrate the
existence of some “invariant” frequency (with respect to the
experimental conditions and within the experimental error
bars) for every possible definition of transition frequency be-
yond the resonance approximation.

II. NONRESONANT SHIFTS IN 2s → 4p ABSORPTION

In this section, we discuss issues related to determining
the transition frequency in spectroscopic experiments where
the line profile is measured with high precision. These as-
pects are directly associated with the definition of optical
standards and the subsequent calculation of the fundamen-
tal physical constants. Hereafter, by the frequency standard
(“frequency invariant”) we will understand the value that
can be reproduced in experiments repeating exactly the same
conditions. There are several obvious ways to extract the tran-
sition frequency from the observed line profile. One of them,
commonly accepted in theoretical analysis, is represented by
the extremum condition and the definition of the transition
frequency as the most probable; see, e.g., [7,10,11,25–27].
Below we also show that the analysis of the definition for the
most probable frequency value is identical for the frequency
at the full width at half-maximum (FWHM), which in any
case requires the identification of the maximum. Another way
corresponds to the determination of the “line center”; see [9].
Obviously, these recipes give the same result for a symmetric
line profile. Within the resonance approximation, both can be
used to determine the frequency standard. Due to asymmetry,
which arises when nonresonant contributions to the photon
scattering amplitude are taken into account, the maximum
and the “line center” in the general case may not coincide.
So, going beyond the resonance approximation, defining a
frequency standard meets obvious obstacles. (i) Using the
extremum condition to determine the transition frequency,
the asymmetry of the line shape can be accounted for as an
additional frequency shift arising from the nonresonant terms
in the scattering amplitude. This, however, can be effectively
recognized with a theoretical description of the process used
in the experiment. (ii) For an asymmetric line profile, the “line
center” as well as the “line maximum” cannot be uniquely
defined, so a symmetrization procedure is required [9]. This
was the reason for the conclusion that there is no unambiguous
definition of the transition frequency beyond the resonance
approximation [7,8,28].

Both mentioned concepts are correlated by the line profile
model used to match the measured line profile. Theoretical
background shows that the line profile has a parameter ω0,
which can be used as a frequency “invariant” (this parameter
serves as the most probable value for the symmetric profile
and corresponds to the eigenvalues of the Hamilton opera-
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tor). Similarly, the symmetrization procedure for the observed
profile should lead to an unambiguous definition of the “line
center.” By obtaining a symmetrical shape, the most probable
and the “line center” should coincide. However, the coinci-
dence of the definitions within the two concepts depends on
how accurately the process has been estimated theoretically or
the symmetrization procedure has been applied. For example,
as was shown in [24], a photon scattering process with a
fixed final state can be used for this purpose. Obviously, the
symmetrization procedure for any particular decay channel
should reproduce the transition frequency found in [9]. Below
we demonstrate that from every set of experimental data,
corresponding to a certain decay channel, the same “invariant”
frequency value can be extracted. So, even if the “perturbed
atom” frequency cannot be determined uniquely, the “un-
perturbed atom” frequency invariant, ω0, always remains the
same.

In the following discussion, we will only deal with such
a simplified picture, since it is sufficient for theoretical es-
timates of the observed line contour asymmetry. The real
situation is more complicated and requires a detailed fitting
of the experimental data by theoretical matching of the ap-
propriate (in particular, asymmetric) profile for the observed
spectrum, making it possible to accurately determine the po-
sition, intensity, half-width, Voigt parameter, and baseline
shift [29,30]; see also [9] for the case under consideration.
To demonstrate that the analyses of the asymmetry and the
corresponding shift of the line maximum are identical for the
frequency determined at the full width at half-maximum, it
is sufficient to consider the one-photon scattering process [7].
In particular, in [7] the corresponding asymmetric profile for
the Lyman-α line in the hydrogen atom was constructed in
the linear approximation, for which the frequency shift was
determined both at the maximum and at the FWHM.

For a one-photon scattering process (one photon is ab-
sorbed and one is emitted), the differential cross section can
be represented as

dσ ∼ C

x2 + �2
r

4

+ a x + b x

x2 + �2
r

4

= C

[x − �(x)]2 + �2
r

4

. (1)

Here the notations given in [7] are retained, and the con-
stants a, b, and C are determined by the resonant and
nonresonant amplitudes and their interference (see below).
The expression (1) originated from the one-photon scatter-
ing cross section and is exactly the same as in [9,15]. The
resulting profile on the right-hand side of (1) represents
the asymmetric contour of the spectral line arising in the
presence of a near-resonant level, and �(x) = (b/2C)(x2 +
�2

r /4) + (a/2C)(x2 + �2
r /4)2 is the corresponding frequency-

dependent shift (x = ω0 − ω, �r is the width of the resonance
state). The half-maximum shift of the resonance curve as an
experimentally observed measure of the apparent bias of the
line center was found as

�

(
±�r

2

)
= b�2

r

4C
+ a�4

r

8C
,

�(0) = b�2
r

8C
+ a�4

r

32C
, (2)

where the offset of the profile maximum is also written. In
each of the expressions presented above, the first summand
comes from the quantum interference effect. The difference
of the two shifts refers to factor 2 [see Eqs. (12) and (13) in
[7]], which is not essential for further analysis, or it can be
accounted for by simply multiplying the obtained results.

Focusing on the definition of the transition frequency 2s −
4p, as in [9], in this section we restrict ourselves to describing
the QIE for the resonance state 4p only [7,24], while the
eligibility to separate the absorption profile from the total
process (i.e., from emission) is discussed in the next part of the
paper. The interfering pathways are given by the transitions
2sF=0

1/2 → 4pF=1
1/2 and 2sF=0

1/2 → 4pF=1
3/2 , and the final result,

employing the “line maximum” definition, can be expressed
as (see Appendix A 1)

ωmax = ω0 + δωr,

δωr = fnr

fres

�2
r

4�r
. (3)

Here ω0 can be defined as the difference of the eigenvalues
of the total Hamiltonian with inclusion of relativistic, QED,
etc. effects, and it corresponds to the line center (maximum)
of the symmetric line profile. We characterize the atomic state
by the principal quantum number n, the orbital momentum
l , the total angular momentum j, accounting for the electron
spin s and the total atomic momentum F due to the nuclear
spin momentum, I . �r represents the natural level width of the
resonant excited state nrlr , and �r represents the correspond-
ing fine-structure interval included in the definition of b in
Eq. (1) [7]. Considering the particular case of 2sF=0

1/2 → 4pF=1
1/2

and 2sF=0
1/2 → 4pF=1

3/2 transitions, the numerical values for the
level width �r = 1.2941 × 107 Hz and the fine-structure inter-
val �r = E4pF=1

3/2
− E4pF=1

1/2
= 1 367 433.3 kHz, see [33], can be

used with a sufficient accuracy, giving δωr a value up to four
digits after the decimal point. The QIE in Eq. (3) or Eq. (2)
has an angular dependence, e.g., between the polarization
vector of the incident photon �ei and the direction vector of
the emitted photon �ν f via the amplitudes fnr, fres.

The concept of determining ωmax (as well as others) from
Eq. (3) implies the existence of a frequency invariant ω0 rep-
resenting the most probable value of the transition frequency
for a symmetric line profile. The amplitudes fnr and fres are
uniquely determined by the quantum numbers of the states
involved in the process under study. If in the process of the
frequency measurement only the emission of the outgoing
photon is detected without fixing its frequency [9], the sum-
mation over all the final states should be done as follows:

δωr =
∑

n f l f j f Ff
fnr∑

n f l f j f Ff
fres

�2
r

4�r
. (4)

Otherwise, specific scattering channels are defined by the
dependence on the set of quantum numbers n f l f j f Ff in fnr

and fres. A straightforward comparison of Eqs. (3) and (4)
demonstrates the difference in approaches to determining the
transition frequency. In particular, it is literally seen that the
angular dependence in these expressions does not have to be
the same.

052802-3



DMITRY SOLOVYEV et al. PHYSICAL REVIEW A 109, 052802 (2024)

TABLE I. Numerical values of the transition frequencies ωmax. The ω0 values, see [33], used in the calculations are shown in the second
column. The third column shows the NR correction values Eq. (3) for specific scattering channels. The last column contains the ωmax values
for hyperfine centroid, ωc [summed over the total momentum Ff with weight (2Ff + 1)/(2 j f + 1)(2I + 1)]. The last column shows also ν1/2,
ν3/2, borrowed from [9]. The very last row shows values obtained for ν2s−4p. All values are given in kHz.

Transition ω0 in kHz, see [33] δωr in kHz ωmax in kHz ωc in kHz

2sF=0
1/2 → 4pF=1

1/2 → 1s
Ff =0
1/2 616520152558.5 60.7127 616520152619.2 616520152550.9

2sF=0
1/2 → 4pF=1

1/2 → 1s
Ff =1
1/2 −30.3563 616520152528.1

2sF=0
1/2 → 4pF=1

1/2 → 2s
Ff =0
1/2 616520152558.5 60.7127 616520152619.2 616520152550.9

2sF=0
1/2 → 4pF=1

1/2 → 2s
Ff =1
1/2 −30.3563 616520152528.1

2sF=0
1/2 → 4pF=1

1/2 → 3s
Ff =0
1/2 616520152558.5 60.7127 616520152619.2 616520152550.9

2sF=0
1/2 → 4pF=1

1/2 → 3s
Ff =1
1/2 −30.3563 616520152528.1

2sF=0
1/2 → 4pF=1

1/2 → 3d
Ff =1
3/2 616520152558.5 −30.3563 616520152528.1 616520152550.9

2sF=0
1/2 → 4pF=1

1/2 → 3d
Ff =2
3/2 6.0713 616520152564.6

ν1/2, rms 616520152558.5 616520152566.8 616520152550.9
ν1/2, Ref. [9] 616520152555.1(3.0)

2sF=0
1/2 → 4pF=1

3/2 → 1s
Ff =0
1/2 616521519991.8 −15.1782 616521519976.6 616521520010.8

2sF=0
1/2 → 4pF=1

3/2 → 1s
Ff =1
1/2 30.3563 616521520022.2

2sF=0
1/2 → 4pF=1

3/2 → 2s
Ff =0
1/2 616521519991.8 −15.1782 616521519976.6 616521520010.8

2sF=0
1/2 → 4pF=1

3/2 → 2s
Ff =1
1/2 30.3563 616521520022.2

2sF=0
1/2 → 4pF=1

3/2 → 3s
Ff =0
1/2 616521519991.8 −15.1782 616521519976.6 616521520010.8

2sF=0
1/2 → 4pF=1

3/2 → 3s
Ff =1
1/2 30.3563 616521520022.2

2sF=0
1/2 → 4pF=1

3/2 → 3d
Ff =1
3/2 616521519991.8 30.3563 616521520022.2 616521519908.3

2sF=0
1/2 → 4pF=1

3/2 → 3d
Ff =2
3/2 −151.7819 616521519840.0

ν3/2, rms 616521519991.8 616521519982.3 616521519985.2
ν3/2, Ref. [9] 616521519990.8(3.0)
ν2s−4p, rms 616520931628.6 616520931625.1 616520931621.7
ν2s−4p, Ref. [9] 616520931626.8(3.0)

For the process of detecting all outgoing photons, in
[9,15] it was found that the observed line profiles for tran-
sitions 2sF=0

1/2 → 4pF=1
1/2 (ν1/2) and 2sF=0

1/2 → 4pF=1
3/2 (ν3/2) are

asymmetric. The resulting asymmetry is exactly consistent
with Eqs. (2) and (4). The angular factor involved in the
ratio

∑
n f l f j f Ff

fnr/
∑

n f l f j f Ff
fres can be expressed through

a second-order Legendre polynomial: P2(cos θ ) = (1/4)(1 +
3 cos 2θ ). Solving the equation P2(cos θ ) = 0 (θ = ̂(�ei, �ν f )),
one can find the magic angle θ = ± arccos(1/

√
3) + πn (with

an arbitrary integer n). Thus, the asymmetry of the observed
line profiles can be avoided by appropriate choice of the angle.
Equivalently, in the experiment [9], a special procedure of
subtracting the asymmetric part of the line profile [by in-
troducing the Fano-Voigt contour, the left-hand side of the
expression (1) convolved with the Gaussian profile] was used
to determine ν1/2 and ν3/2 [15]. The determined values were
then used to calculate the weighted average of the hyperfine
centroid, ν2s−4p, corrected for the hyperfine shift �HFS:

ν2s−4p = 1
3ν1/2 + 2

3ν3/2 − �HFS,

�HFS = 132 552.092(75) kHz. (5)

As a result of this processing, the weighted average value
ν2s−4p (line center) was standardized as the transition fre-
quency, which was then used to determine the proton
charge radius and the Rydberg constant. Although significant
progress has been made in solving the “proton radius puzzle,”
the experiments [21,31] do not eliminate the problem; see

[32]. So, the question of accuracy and universality of deter-
mining the transition frequency remains relevant.

Turning to another possible experimental condition of
determining the transition frequency, the case when the
final state is fixed can be considered. Accordingly, see Ap-
pendix A 1, this NR correction is defined by Eq. (3) and does
not depend on any angles between scattered photons [24].
The resulting frequencies for the partial channels are given in
Table I, where the ω0 values, hyperfine centroids for specified
final states, and nonresonant frequency shifts are also given.

In [24] it is stated that the obtained values can be used
as a transition frequency with the same rights as the value
determined in [9]. Moreover, each of them can be considered
as a frequency standard if the experiment provides accurate
registration of the state into which decay occurs. Since the
profile asymmetry for the case of a fixed final state is inde-
pendent of the angle, the corresponding maximum shift (or at
FWHM) can be treated as the “standard” QED corrections.
By subtracting δωr , they can be reduced to the “invariant”
frequency ω0 [33]. Then, applying (5), the centroid frequency
is ν2s−4p = 616 520 931 628.6 kHz, and the definitions of the
transition frequency as “line center” and “line maximum”
result in a difference of about 2 kHz, lying well outside the
resonance approximation and within the experimental error.
Another possibility to obtain coincident results for the max-
imum and the line center is the averaging procedure [similar
in meaning to finding the centroid frequency, Eq. (5)]. Even
using the arithmetic mean for the frequencies of the hyperfine
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centroids (three for the s states and one for the 3d3/2 state)
combined with (5), the result ν2s−4p = 616 520 931 628.6 kHz
arises without taking into account the NR corrections.

The results collected in Table I clearly show that “line max-
imum” can be used to determine the frequency “invariant”: (i)
the result reported in [9] represents the averaged centroid, and
(ii) the same result can be achieved using the partial scattering
channels in conjunction with the nonresonant corrections. It
is worth noting that the procedure of constructing centroids
described above seems to be simpler than the symmetrization
(Fano-Voigt) procedure employed in [9]. Subtraction of rela-
tively big numbers (NR corrections, which may reach 1 MHz
[9]) is always more dangerous than obtaining the same results
without subtraction. In centroids, asymmetry cancellation is
automatic due to opposite signs of nonresonant corrections for
two components. Notwithstanding, it is found that there is a
difference at the 2 kHz level for the centroid extracted from
partial transitions and the result reported in [9]. This is the
manifestation of going beyond the resonance approximation.
In the general case, the “central” values of such centroids may
vary, although they should be within the experimental error.
Nevertheless, the determination of physical constants is very
sensitive to this possible difference in values.

So far, we have discussed the problem of determining
the transition frequency from an observed line contour by
recording the entire radiation [9] or by measuring partial de-
cay channels. At the same stage, one can raise the question
of identifying the observed line profile with the absorption
process, as in the experiment [9]. In particular, it was claimed
that the found line profile represents absorption, although it
was measured by recording the emitted photons. Thus, the au-
thenticity of the separation or the identification of the emission
with the absorption process at the level of a few kHz should
be carefully checked [34]. This question brings us back to
the problem of a detailed description of the process and its
corresponding line profile. Within such a description, effects
leading to significant asymmetry are possible. In other words,
it is worth discussing whether the emission process can affect
the absorption profile and vice versa. This is what we will deal
with in the next section.

III. ENGAGING THE EMISSION PROCESS
IN DETERMINATION THE ABSORPTION

TRANSITION FREQUENCY

The fundamental principles governing the detailed descrip-
tion of an observed line profile require detailed consideration
of all the processes involved in the measurements. For ex-
ample, the evaluation of nonresonant terms in the photon
scattering cross section shows a distinct difference for the
cases when all outgoing photons are registered or when
a particular scattering process is utilized in determining
the transition frequency [24]. The QED formulation of the
line profile theory itself and the use of the resonance ap-
proximation for the photon scattering cross section require
consideration of the process from a stable to a stable state. The
exploitation of the metastable state is also admissible. For its
part, the determination of the 2s − 4p absorption frequency is
not limited to the two-photon scattering 2s → 4p → 1s(2s)
process, but also involves transitions to 3s and 3d states,

which then decay through two-photon emission into the stable
1s state (the 2s metastable state) [9]. We drop the discus-
sion about the ambiguity of separating the cascades from
the “pure” two-photon emission [39], since the interference
between these two types of the probabilities is too small.
Accordingly, the determination of the 2s − 4p transition fre-
quency can only be aptly described by taking into account
the following cascade processes: 2s + γ → 4p → 3s(3d ) +
γ → 2p(3p) + γ → 1s(2s) + γ . Further, we restrict our-
selves to describing the cascade emission to the 1s state only
but taking into account the hyperfine structure of the levels.

It is worth noting that cascade radiation is also subject to
the quantum interference effect when interference between
sublevels of hyperfine structure is considered. Within the
framework of the above approximations (see also [10,25]), a
detailed consideration of the 2s + γ → 4p → 3s(3d ) + γ →
2p(3p) + γ → 1s(2s) + γ cascade transition should include
4pF=1

1/2 4pF=1
3/2 states as resonant (denoted below as state r)

(see [9]), states 3s1/2 and 3d3/2, 3d5/2 as the first cascade
state (denoted below as state a), and then states 2p1/2, 2p3/2,
3p1/2, 3p3/2 (denoted below as b state). In our subsequent
calculations, we sum over the total atomic momentum F for
the states a and b. Leaving the resonance term in the cross
section (see Appendix B for details), the effect of QI in the
cascade can be described by regarding in the amplitude apart
from the resonant states also the states nearest in energy. The
amplitude contains now three energy denominators, each of
which can be reduced to the absorption resonance denom-
inator using the energy conservation law. Then QIEs arise
for a and b states exactly as for r states with appropriate
widths and energy intervals between resonant and neighboring
nonresonant states.

Considering first the cascade through the 3s state, it can
be found that the absorption frequency, determined from the
extremum condition, is (see the derivation in Appendix B)

ωmax = ω0 + δωr + δωa + δωb, (6)

where ω0 represents ν1/2 or ν3/2, according to the notations in
[9], and δωi is given by

δωi = f (c)
nr

f (c)
res

�2
r

4�i
ϒ,

ϒ = (�r + �a)2(�a + �b)2

(�r + �a)2(�a + �b)2 + (�r+�a)2�2
r +(�a+�b)2�2

r

.

(7)

Here i is one of the states denoted by r, a, b. We define f (c)
res as

the numerator of the resonance amplitude. In the case of the
cascade going via the state 3s1/2, this amplitude corresponds
to the 2sF=0

1/2 + γ → 4pF=1
1/2(3/2) → 3s1/2 + γ → 2p1/2 + γ →

1s1/2 + γ transition, f (c)
nr corresponds to one of the nonres-

onant contributions 2s1/2 + γ → 4pF=1
1/2(3/2) → a + γ → b +

γ → 1s1/2 + γ , �i represents the energy splitting between
the states r, a, or b (as, for example, �r ≡ E4pF=1

3/2
− E4pF=1

1/2
),

and the δωi correction is written out in the lowest order.
Assuming that all outgoing photons are directed to the

same detector (i.e., photon direction vectors, �ν, are aligned,
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TABLE II. Numerical values of nonresonant shifts and total contribution δω , multiplied by a branching ratio factor of W4p−nala/�4p. The
value of the angle at which the maximum (θmax) and minimum (θmin) values are reached is given, as well as the values of NR corrections at
the magic angle (θm). The values of the angle at which the total contribution is zero (if it exists), θ0, cascade fraction (branching ratio), and the
process in question are given in the detached row. All values are given in kHz.

Angle δωr + δω3p in kHz δωr + δω2p in kHz δω in kHz

2sF=0
1/2 → 4pF=1

1/2 → 3s1/2 → 2p1/2 → 1s1/2; θ0 = ±0.403 619;

2sF=0
1/2 → 4pF=1

1/2 → 3s1/2 → 3p1/2 → 1s1/2; W4p−3s/�4p ≈ 0.0377

θmin = 0 −3.388 −17.342 −0.781
θmax = π/2 61.587 52.008 4.282
θm 39.942 28.898 2.595

2sF=0
1/2 → 4pF=1

1/2 → 3d3/2 → 2p1/2 → 1s1/2; θ0 = ±0.403 605;

2sF=0
1/2 → 4pF=1

1/2 → 3d3/2 → 3p3/2 → 1s1/2; W4p−3s/�4p ≈ 0.0043

θmin = 0 −0.339 −1.734 −9. × 10−3

θmax = π/2 6.164 5.203 4.9 × 10−2

θm 3.997 2.890 3.0 × 10−2

2sF=0
1/2 → 4pF=1

1/2 → 3s1/2 → 2p3/2 → 1s1/2
a; θ0 = ±0.637 414; W4p−3d/�4p ≈ 0.0377

θmin = 0 −21.679 −0.817
θmax = π/2 43.343 1.634
θm 21.675 0.817

2sF=0
1/2 → 4pF=1

1/2 → 3d3/2 → 2p3/2 → 1s1/2;

2sF=0
1/2 → 4pF=1

1/2 → 3d3/2 → 3p3/2 → 1s1/2; W4p−3d/�4p ≈ 0.0043

θmax = 0 −224.435 −74.460 −1.285
θmin = π/2 −218.192 −67.534 −1.229
θm −220.274 −69.843 −1.247

aThere is no decay to the 3p3/2 state.

�ν4p−3s ‖ �ν3s−2p(3p) ‖ �ν2p−1s), the NR corrections are

δωr = −1

2
(1 − 3 cos 2θ )

�2
r

4�r
ϒ,

δωa = 0, δωb = 2
�2

r

4�b
ϒ. (8)

Here and below, θ denotes the angle between the polarization
vector of the incident photon and the direction vector of the
emitted photons (this corresponds to the conditions of experi-
ment [9]), and the numerical factors arise from the ratio of the
radial parts of the amplitudes. It may be noted that when Ff

is fixed, the results [24] are reconstructed. Thus, the angular
dependence in Eq. (8) is due to summation over the total
atomic momenta in the amplitudes f (c)

res and f (c)
nr .

It is found that the correction δωa is equal to zero.
This is valid only for the case when photons are registered
in one direction, otherwise the correction does not van-
ish at all. Using the values �r = 1.2941 × 107 Hz, �r =
1 367 433.3 kHz, �3d = 1.0295 × 107 Hz, �3p = 3.0208 ×
106 Hz, �3s = 1.0054 × 106 Hz, �2p = 9.97624 × 107 Hz,
�3p = 3 241 327.3 kHz, and �2p = 10 939 469.7 kHz [33],
the frequency shifts are given in Table II at various
angles θ .

As it follows from Eq. (8), the correction δωr is zero at
angles θ = ±1/2 arccos(1/3) + πk (k is an integer), other
than the magic angle θm = arccos(1/

√
3). Solving the equa-

tion for the total correction δω (θ0) = δωr + δω2p = 0, one

can find the angle at which it vanishes (if it exists; see Fig. 2
in Appendix B 2). According to [9], the fraction of the cascade
process is about 4% of all photons captured by a detector.
It can be found as a ratio of partial transition probability to
the level width: W4p−3s/�4p ≈ 0.0377, W4p−3d/�4p ≈ 0.0043,
which were used to obtain the total contribution, δω . It
should be noted that using these coefficients to obtain the tran-
sition frequency ν2s−4p instead of the rms value (see Table I)
leads to a different centroid.

FIG. 1. A Feynman graph depicting a four-photon scattering pro-
cess with a one-photon absorption link. Here i, f denote the initial
and final states, respectively, and r, a, and b are the intermediate
resonant states. State r is the resonant contribution to the absorbing
photons, and a and b reflect the cascade contribution in the radiation
process. The frequencies of the emitted photon are denoted by ω2,
ω3, ω4 and the absorbed photon ω1.
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FIG. 2. The QIEc for the transitions 2sF=0
1/2 → 4pF=1

1/2 (4pF=1
3/2 ) →

3s1/2 → 2p1/2(2p3/2), 3p1/2(3p3/2) → 1s1/2 as a function of the an-
gle between the vectors �ei, �ν f given by the expressions in Eq. (8).
In parentheses the state leading to interference is indicated. The
total contribution, δω , expressed by the sum of partial channels, is
represented by the solid line. The values are plotted in Hz. The effect
corresponds to the transition frequency ν1/2 measured in [9].

Repeating the calculations for the cascade transition going
through the state 3d3/2 for the ν1/2 frequency, one can obtain

δωr = 1

20
(1 − 3 cos 2θ )

�2
r

4�r
ϒ,

δωa = 0, δωb = 1

5

�2
r

4�b
ϒ. (9)

Here the resonance amplitude corresponds to 2sF=0
1/2 +

γ → 4pF=1
1/2 → 3d3/2 + γ → 2p1/2 + γ → 1s1/2 + γ ,

and the nonresonant amplitudes are related to (i)
2sF=0

1/2 + γ → 4pF=1
3/2 → 3d3/2 + γ → 2p1/2 + γ →

1s1/2 + γ , �r ≡ E4pF=1
3/2

− E4pF=1
1/2

, and (ii) 2sF=0
1/2 + γ →

4pF=1
1/2 → 3d3/2 + γ → 2p3/2 + γ → 1s1/2 + γ , �b ≡

E2p3/2 − E2p1/2 , E3p3/2 − E3p1/2 decay channels. The numerical
values, multiplied by a factor of 0.0043 according to the
contribution of the cascade to the transition frequency
measurements in [9], are collected in the second segment
of Table II. When the resonant channel is treated as passing
through the 2p3/2(3p3/2) state, the numerical results are
presented in the third and fourth segments of Table II
(the corresponding graphs are illustrated Figs. 2–5 in
Appendix B).

From the above analysis, one can conclude that the con-
tribution of QIEc is in general significant, but is suppressed
by the relative fraction of the cascade process in the total
radiation recorded in the experiment [9]. Nevertheless, the
interfering paths in the cascade process are influential at the
level of several kilohertz on the absorption line profile. This
asymmetry can be expressed through a nonresonant correction
to the transition frequency, defined here as the maximum
of the line profile. This correction does not vanish at the
magic angle; see Table II. In practice, this means that the
symmetrization procedure applied in [9] has reduced the QIEc
to the value estimated here at the magic angle because an
appropriate asymmetry parameter was used. Although the
value of δω is within the error bars of the experiment, for the

“central” value with the same uncertainty, a frequency shift at
the kHz level can be expected.

Above we gave as a demonstration an analysis on measur-
ing the transition frequency ν1/2. Similarly, one can perform
calculations for the transition frequency ν3/2. Discarding for
brevity the details of the calculations, the numerical results
are presented in Table III.

The main conclusion of this section, however, which
follows from the QIEc analysis, is that the Fano profile ob-
tained with the cascade process should be involved in the
symmetrization procedure [9]. Then, for example, several pa-
rameters related to the asymmetry of the line profile due to
different processes should be used to best fit the experimental
data. The asymmetry parameters do not necessarily depend
equally on the angle and can in principle be treated as in-
dependent of each other. In fact, we can state that modern
spectroscopic experiments represent a frontier leading to the
next generation of experiments in which the problem of reso-
nance approximation will have a decisive role.

As a consequence, consideration of the cascade pro-
cess affecting the determination of the absorption transition
frequency shows the inseparability of the absorption and
emission processes in describing the line profile beyond the
resonance approximation. The “central” value is expected to
be shifted at the kHz level. Gathering together the results of
this study, it can be seen that the photon scattering process
used in the experiment [9] is rather complicated and has to
include the analysis of the observed line profile asymmetry.
This asymmetry is caused not only by the effect of quantum
interference for resonant absorption, but also by cascading
emission processes. Assuming the need to increase the experi-
mental accuracy (e.g., for precision determination of physical
constants), the analysis of cascade processes will be increas-
ingly required for experiments of the type in [9] (when all
radiation is detected). However, for the measured 2s − 4p line
in the experiment in [9], it is possible to distinguish a case
unaffected by QIEc. The main contribution to the emission
comes from the 4p − 1s emission line, in which there is no
cascade. Consequently, this scattering channel is preferable
for determining the transition frequency. An appropriate ex-
periment can be performed by registering emitted photons
with a certain energy equal to 4p − 1s. Such experiments
should be more accurate.

IV. CONCLUSIONS

In this paper, the principles of transition frequency deter-
mination based on precision spectroscopic experiments, and,
as a consequence, the accuracy of its definition, are discussed
in detail. The assumption that the asymmetry of the line
profile caused by nonresonant terms in the scattering cross
section limits the accuracy of the transition frequency deter-
mination, see, e.g., [7,8], has been countered in [9], where
the value of transition frequency was obtained with accuracy
far beyond the NR corrections. This seeming controversy
follows from the new situation arising in atomic resonant
spectroscopy, when the observed (neatly measured) line pro-
file should be symmetrized through fitting the experimental
data with the “proper” (Fano-Voigt) profile.
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TABLE III. Numerical values of nonresonant shifts for specified cascade transitions corresponding to the frequency ν3/2 = E4pF=1
3/2

− E2sF=0
1/2

and total contribution δω , multiplied by a factor of W4p−nl/�4p. The notations are the same as in Table II. All values are given in Hz.

Angle δωr + ω3p in Hz δωr + ω2p in Hz ω in Hz

2sF=0
1/2 → 4pF=1

3/2 → 3s1/2 → 2p1/2 → 1s1/2;

2sF=0
1/2 → 4pF=1

3/2 → 3s1/2 → 3p1/2 → 1s1/2; W4p−3s/�4p ≈ 0.0377

θmax = 0 39.954 28.902 2.596
θmin = π/2 7.446 −5.780 6.3 × 10−2

θm 11.058 −1.927 0.344
2sF=0

1/2 → 4pF=1
3/2 → 3s1/2 → 2p3/2 → 1s1/2

a; θ0 = 0.528655;

θmax = 0 21.679 0.817
θmin = π/2 −13.006 −0.490
θm −9.152 −0.345

2sF=0
1/2 → 4pF=1

3/2 → 3d3/2 → 2p1/2 → 1s1/2; θ0 = 0.651 478;

2sF=0
1/2 → 4pF=1

3/2 → 3d3/2 → 3p1/2 → 1s1/2; W4p−3s/�4p ≈ 0.0043

θmax = 0 9.571 8.836 7.9 × 10−2

θmin = π/2 −106.438 −114.926 −0.952
θm −16.235 −18.690 −0.150

2sF=0
1/2 → 4pF=1

3/2 → 3d3/2 → 2p3/2 → 1s1/2;

2sF=0
1/2 → 4pF=1

3/2 → 3d3/2 → 3p3/2 → 1s1/2; W4p−3s/�4p ≈ 0.0043

θmax = 0 −37.927 −6.192 −0.190
θmin = π/2 −153.437 −129.889 −1.218
θm −63.665 −33.709 −0.419

aThere is no decay to the 3p3/2 state.

In [7,8,24] the asymmetric line profile distorted by mea-
surement was considered. Without loss of generality, the
transition frequency value for such a line shape can be chosen
as corresponding to the maximum, i.e., the most probable
value (see the discussion in Sec. II). Then the result (transition
frequency value) begins to depend on the decay channel for
the excited state [24]. This happens only beyond the resonance
approximation, and the obtained transition frequencies differ
by NR corrections. This led to the conclusion that beyond the
resonance approximation it is not possible to define uniquely
the atomic transition frequency. In this paper, it was demon-
strated that the extraction of the symmetric line profile and
determination of its frequency can be successfully made for
any process with a fixed decay channel with the same result
(the frequency invariant or the frequency standard) as in [9].
Definition of the frequency standard was not the main goal of
[9], but actually the frequency “invariant” obtained with many
digits beyond the NR correction value may serve as such a
standard.

The transition frequency value obtained as a result of pro-
cessing the data from the experiment [9] pertains rather to
a special case and is, according to the presented analysis,
the first step in measuring the transition frequency beyond
the resonance approximation. Although increasing the accu-
racy of measurements by an order of magnitude, this type of
experiment still faces obstacles beyond the resonance approx-
imation related to (i) defining the transition frequency; (ii)
the accuracy of the subtraction procedure and its replicability;
and (iii) the need to account for asymmetry due to cascade
emission.

In particular, we found that, first, the transition frequency
values, ω0 (tabulated in [33]), can be found by subtracting
the corresponding NR correction from ωmax. This implies
promptly from the definition of the maximum of the line
profile, Eq. (3). Second, different processing of the measured
ωmax can be performed, resulting in deviations of the transition
frequency values within the experimental error, but with a
different “central” value. Third, because of the inseparability
of the absorption process from the emission, the asymmetry
caused by the cascade radiation leads to an additional shift
of the absorption transition frequency. Despite its fractional
contribution at the 4% level, the corresponding distortion of
the line profile remains significant for experiments of the type
in [9]. This circumstance leads to a more preferable partial
photon scattering channel for measurements: 2s − 4p − 1s,
which is easily achieved by matching with 4p − 1s emitted
photons.

The presence of cascade emission in the measurement of
the 2s − 4p transition frequency is the crucial factor in the
context of the experiment [9]. The corresponding asymmetry,
which is invisible to the naked eye, has to be taken into
account when fitting the observed line profile. The Fano-Voigt
contour used in [9] should be modified at least in the linear
approximation [see the procedure in [7] and Eq. (1)], using
the formulas for the photon scattering cross section with the
presence of a cascade emission process given in Appendix B.
As a consequence, the resulting profile should depend on the
parameters of the intermediate atomic states involved in the
cascade emission, such as level width and energy (energy
splitting).
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The issue of reconciliation among the concepts of optical
frequency standards can be considered in accordance with
the following stipulations. (i) A unique definition of tran-
sition frequency can be obtained only within the resonant
approximation; going beyond it requires further theoreti-
cal processing. Extending the definition of the transition
frequency beyond the resonance approximation necessarily
involves a detailed description of the nonresonant effects lead-
ing to the asymmetry of the observed line profile. (ii) With
NR corrections, the transition frequency begins to depend on
the preparation of the initial state, on the decay to the final
state, and on the geometry of experiment. (iii) Dependence on
the lowest-order NR corrections can be eliminated from the
experimental data by using a “magic angle” or by direct sub-
traction of asymmetric contributions from these data [9]. In
this way, the transition frequency value invariant with respect
to the geometry of experiment (“line center” according to [9])
can be obtained. (iv) The determination of the “invariant”
transition frequency, for the absorption process, has to care-
fully consider the emission and vice versa. (v) Still, the “line
maximum” can be used to determine the transition frequency
“invariant.” For the same obstacles caused by nonresonant ef-
fects, the invariant can be found using the averaging procedure
or subtracting the NR corrections. (vi) The strategy opposite
to the experiment [9] is preferable. The detection of emitted
photons corresponding to decay to the ground state eliminates
the asymmetry of the line profile caused by radiation.

Throughout the paper, we explore “line maximum” instead
of “line center,” which corresponds to the choice of the most
probable value. We also include in the consideration all possi-
ble decay channels as the equivalent sources for determination
of the resonant transition frequency. In this way we obtain,
in the case of N channels, N equivalent (not equal) resonant
transition frequencies differing from each other by NR cor-
rections. All these values for resonant transition frequency are
automatically invariant with respect to the geometry of ex-
periment; neither a “magic angle” nor asymmetry subtraction
from experimental data is required. The “line center” value
for the resonant transition frequency as well as all “line maxi-
mum” values are equally suitable for the choice as frequency

standards in conjunction with appropriate evaluation of NR
corrections. The question is which conditions are easier to
reproduce in every laboratory: use of a “magic angle,” the
asymmetry subtraction procedure, or choosing the particular
decay channel to the final state. The answer is probably dif-
ferent for the different candidates to the frequency standard.
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APPENDIX A: DETERMINATION OF THE TRANSITION
FREQUENCY THROUGH TWO-PHOTON SCATTERING

1. Quantum interference effect

The details of the analysis below can be found in [24].
To be self-consistent, we give only a brief summary of it.
To determine the resonant transition frequency we use the
definition Eq. (B10). In the case of the two-photon scattering
process, the dependence of the cross section

∑
�e f

σi f on the
incident photon frequency represents the natural line profile
for the transition nili jiFi → nrlr jrFr , which can be expressed
by (Fano profile)

σi f = C

[
fres

(ω0 − ω)2 + �2

4

+ 2Re
fnr(

ω0 − ω − i�
2

)
�

]
dω,

(A1)

where � = Enr lr jr′ Fr′ − Enr lr jr Fr , σi f = ∑
�e f

σi f , C is some
constant that is not important for our further derivations, and

fres =
∑

xy

Ares
xy

{{
ei

1 ⊗ ν
f
1

}
y ⊗ {

ei
1 ⊗ ν

f
1

}
y

}
00, (A2)

fnr =
∑

xy

Anr
xy

{{
ei

1 ⊗ ν
f
1

}
y ⊗ {

ei
1 ⊗ ν

f
1

}
y

}
00, (A3)

where ei
1 denotes the polarization vector of the incident photon

and ν
f
1 is the direction vector of the outgoing photon. Coeffi-

cients Axy are defined as

Ares
xy = 6(−1)−y

2Fi + 1
�2

x�y

{
1 1 y
1 1 x

}{
1 1 x
1 1 1

}{
1 x 1
Fr Fi Fr

}{
1 x 1
Fr Ff Fr

}

× |〈nili jiFi||r||nrlr jrFr〉〈nrlr jrFr ||r||n f l f j f Ff 〉|2, (A4)

Anr
xy = 6(−1)F ′−F−y

2Fi + 1
�2

x�y

{
1 1 y
1 1 x

}{
1 1 x
1 1 1

}{
1 x 1
F ′ Fi F

}{
1 x 1
F ′ Ff F

}
×〈nili jiFi||r||nrlr jrFr〉〈nrlr jr′Fr′ ||r||nili jiFi〉〈n f l f j f Ff ||r||nrlr jr′Fr′ 〉〈nrlr jrFr ||r||n f l f j f Ff 〉. (A5)

Using the definition of transition frequency via the “maximum” of the line profile (most probable), Eq. (A1), according to
Eq. (B10), we find

d

dω
σi f (ω) = −8{ fnr[�2 − 4(ω − ω0)2] + 4� fres(ω − ω0)}

�[�2 + 4(ω − ω0)2]2 = 0. (A6)

Expansion of Eq. (A6) into the Taylor series in the vicinity of ω0 yields

− 8 fnr

�2�
− 32 fres(ω − ω0)

�4
+ O((ω − ω0)2) = 0. (A7)
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TABLE IV. The NR corrections in kHz to the transitions fre-
quency 2sF=0

1/2 → 4pF=1
1/2 taking into account the neighboring 4pF=1

3/2

for the experiment with correlation {�ei, �ν f }.

Final state δω to ν1/2 [9] δω to ν3/2 [9]

1sF=0
1/2 60.7127 −15.1782

1sF=1
1/2 −30.3564 30.3564

2sF=0
1/2 60.7127 −15.1782

2sF=1
1/2 −30.3564 30.3564

3sF=0
1/2 60.7127 −15.1782

3sF=1
1/2 −30.3564 30.3564

3dF=1
3/2 −30.3564 30.3564

3dF=2
3/2 6.0713 −151.7819

Finally, neglecting the terms of the order O[(ω − ω0)2] in
Eq. (A7) and solving it with respect to ω, we arrive at the
definition of ωmax:

ωmax = ω0 − δω, (A8)

where

δω = fnr

fres

�2

4�
. (A9)

With our definition of � this value corresponds to the lower
component of the fine structure of the level nrlr . For the upper
sublevel of two neighboring components of the energy level,
we would arrive at the same expression as Eq. (A8) but with
the opposite sign of �, an additional weighting factor orig-
inating from the summation over projections in the resonant
term, and with � = �nl j′F ′ . NR correction in Eq. (A8) can
depend on the arrangement of the experiment, i.e., on the
angle between the vectors �ei and �ν f .

The smallness of NR corrections in Eq. (A9) is defined by
the ratio �/�. Equation (A9) is obtained as the lowest term
of the series expansion over �/�. The approximations that
were used for derivation of Eq. (A9) are valid up to the higher-
order terms in the parameter �/�. This parameter is always
small for two neighboring components of the fine structure.
The parameter �/� may not be small for two neighboring
hyperfine sublevels, but this requires special study [35].

2. Application to 2sF=0
1/2 → 4pF=1

1/2 and 2sF=0
1/2 → 4pF=1

3/2 transitions

Now we turn to an evaluation of 2sF=0
1/2 → 4pF=1

1/2 transition
frequency, taking into account the NR corrections originating
from the neighboring 4pF=1

3/2 level. For this purpose, we set in
all equations nili = 2s, ji = 1/2, Fi = 0, nrlr = 4p, jr = 1/2,
Fr = 1, jr′ = 3/2, Fr′ = 1. For the final states, we chose the
states listed in Table IV. Note that the hyperfine structure of
1s and 2s electron shells was resolvable in experiments [9].
The results of evaluations are presented in Table IV.

For evaluation of NR corrections according to Eqs. (A1),
(A2), and (A9), we use theoretical values given in [33],
which incorporate relativistic, QED, nuclear size, and hy-
perfine structure corrections. Thus, � = E4pF=1

3/2
− E4pF=1

1/2
=

1 367 433.3 kHz, and the calculated value of the level width
is found as � = �4pF=1

1/2
= 1.2941 × 107 Hz. These values give

a sufficiently accurate result for δω up to four digits after the
decimal point. The parameter �/� in this case is equal to
0.009 46, so the expansion in powers of this parameter works
very well.

As was found in [24], NR corrections to the transition fre-
quency 2sF=0

1/2 → 4pF=1
1/2 are independent of the experimental

“geometry” when the final state is fixed. However, these NR
corrections appear to be strongly dependent on the method
of frequency registration, i.e., on the choice of the state into
which the final excited level decays, 4pF=1

1/2 . Moreover, this
dependence concerns only the quantum numbers of the final
state, and the result does not depend on the frequency of the
outgoing photon. The latter circumstance is understandable,
since according to Eq. (A9) the NR corrections are propor-
tional to the ratio fnr/ fres, where the corresponding energy
differences are reduced.

When the hyperfine structure of the final levels is resolved,
the NR corrections differ only by the values of the total mo-
mentum Ff of the final hyperfine sublevel. This can be seen
from the closed expressions (A4) and (A5) for the NR correc-
tions via 6 j-symbols. Therefore, for the transition frequency
2sF=0

1/2 → 4pF=1
1/2 , three different values of ωmax

res corresponding
to Ff = 0, 1, 2 can be derived by using ω0 from [33] and NR
corrections from Table IV:

Ff = 0, ωmax
res = 616 520 152 619.2 kHz,

Ff = 1, ωmax
res = 616 520 152 528.1 kHz,

Ff = 2, ωmax
res = 616 520 152 564.2 kHz. (A10)

If in the process of the frequency measurement only the
emission of the outgoing photon is detected without fixing its
frequency, the summation over all the final states should be
done. In the case of our interest, this summation appears as
follows:

δω =
∑

n f l f j f Ff
fnr∑

n f l f j f Ff
fres

�2

4�
. (A11)

Now the NR correction begins to depend on the angle between
the vectors �ei, �ν f ; see [9,24].

According to Eq. (A11), the NR correction vanishes
for certain angles θ1 = arccos(1/

√
3) = 54.7◦ and θ2 = π −

θ1 = 125.3◦. The possibility of using “magic angles” to de-
termine the transition frequencies in atoms was mentioned in
[15,33]. In [15] it was noted that the method of extracting the
transition frequency value from the experimental data used
in [9] is actually equivalent to the use of “magic angles.”
The same “magic angles” arise in different areas of quantum
physics where the interference of two electric dipole ampli-
tudes is involved; see, for example, [36].

The evaluation of atomic transition frequencies using
“magic angles” was considered in [25]. The values of “magic
angles” in [25] coincide with those given above for simi-
lar transitions. Evaluating the transition frequencies 2sF=0

1/2 −
4pF=1

1/2 and 2sF=0
1/2 − 4pF=1

3/2 using Eq. (A11) for “magic angles”
with theoretical values ω0, �, and � gives

ωmax
res = 616 520 152 558.5 kHz,

ωmax
res = 616 521 519 991.8 kHz, (A12)
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which are within the experimental error bars reported in [9].
Additional mathematical details to derive the above formulas
can be found in [24].

APPENDIX B: QUANTUM INTERFERENCE EFFECT
IN A CASCADE PROCESS

1. Four-photon scattering process with one-photon
absorption and three-photon cascade emission

The theoretical derivation of the line profile is usually
given by considering the photon scattering process within
the resonance approximation [3]. Within this approach, only
the part that corresponds to the resonant process is studied,
while the rest is discarded. Then, since the absorption part
and the part responsible for the emission process are given as
the numerator of the scattering amplitude, the resulting profile
can be attributed equally to both absorption and emission. The
dominant nonresonant effect arises due to the state adjacent
to the resonant one [7]. The idea of [7] is widely utilized in
modern studies of the photon scattering processes on atoms;
see, for example, [10,11,25,30,37,38]. The various features
of nonresonant contributions are of particular importance for
precision spectroscopic experiments such as [9]. For example,
the attention of researchers was drawn to the angular depen-
dence of the resulting corrections to the transition frequency.
As a rule, the subject of study is the process of two-photon
scattering, when one photon is absorbed and the other is
emitted. Theoretical calculations of NR corrections for the
experiments based on two-photon spectroscopy (two photons
are absorbed) were presented recently in [26,27], where the
dependence on the external experimental conditions was also
discussed in the example of a helium atom [27]. The main
conclusion of all such theoretical calculations requires special
consideration of nonresonant corrections for each particular
experiment.

Becoming an inevitable part of precision atomic physics,
nonresonant effects arising in the transition frequency mea-
surement process can play a decisive role. Such effects, and
in particular the QIE (quantum interference effect), should
be taken into account in experiments pursuing the goal of
increasing the accuracy. In this connection, a detailed the-
oretical description of the experiment should consider the
accompanying details of the process beyond the resonance
approximation. For example, it can be shown that in the
four-photon scattering process (one photon is absorbed and
three are emitted) in experiments like [9], the cascade radia-
tion affects the absorption profile. As mentioned above, this
possible effect follows directly from the theoretical derivation
of the line profile. To demonstrate this explicitly, here we
consider the influence of interfering paths in cascade radia-
tion. The interference effect arises with a description of the
process i + γ → r → a + γ → b + γ → f + γ , where γ is
the absorbed or emitted photon, i and f denote initial and final
atomic states, respectively, r corresponds to the resonant state
under study, and a, b represent the states corresponding to the
cascade in radiation. According to theoretical foundations, the

very construction of the QED theory requires a description of
the photon scattering by atoms, starting from the (meta)stable
state and ending with the (meta)stable atomic level. Thus,
we restrict ourselves to the consideration of the initial state
i = 2sF=0

1/2 and the final state 1s1/2. As a first step, we use
the resonance approximation only to describe the cascade
radiation, assuming the smallness of the effects beyond it; see,
for example, the problem discussed in [39]. Schematically,
such a description can be illustrated by the Feynman graph
in Fig. 1, where the initial and final states are assumed to
be (meta)stable, and the process occurs through one-photon
absorption to the resonance state r culminating in cascade
radiation with the resonant states a and b.

The resonant approximation adopted for cascade radiation
means that the Feynman graphs accounting for photon permu-
tations are omitted in Fig. 1 and only the resonance terms are
left in the arising sums over the entire spectrum (see below).
Then, the S-matrix element (in relativistic units h̄ = c = 1)
corresponding to the diagram in Fig. 1 is

S(4γ )
f i = (−ie)4

∫
d4x1 d4x2 d4x3 d4x4ψ f (x1)

× (
γ μ1 A∗

μ1
(x1)

)
S(x1, x2)

(
γ μ2 A∗

μ2
(x2)

)
× S(x2, x3)

(
γ μ3 A∗

μ3
(x3)

)
S(x3, x4)

[
γ μ4 Aμ4 (x4)

]
ψi(x4).

(B1)

For an arbitrary atomic state A,

ψA(x) = ψA(�r)e−iEAt , (B2)

where ψA(�r) is the solution of the Dirac equation for the
atomic electron, EA is the Dirac energy, ψA = ψ+

A γ0 is the
Dirac conjugated wave function, γμ ≡ (γ0, �γ ) are the Dirac
matrices, and x ≡ (t, �r) is the four-dimensional space-time
coordinate. The photon field or the photon wave function
Aμ(x) is defined by

Aμ(x) =
√

2π

ω
eμei(�k�r−ωt ) = e−iωt Aμ(�r), (B3)

where eμ are the components of the photon polarization four-
vector (�e is the three-dimensional polarization vector for real
photons), k ≡ (ω, �k) is the photon momentum four-vector,
�k is the wave vector, and ω = |�k| is the photon frequency.
Equation (B3) corresponds to the absorbed photon, and A∗

μ(x)
corresponds to the emitted photon. Finally, the electron prop-
agator for the bound electron can be presented in the form
of the eigenmode decomposition with respect to one-electron
eigenstates:

S(x1, x2) = i

2π

∫ ∞

−∞
d� e−i�(t1−t2 )

∑
n

ψn(�r1)ψn(�r2)

� − En(1 − i0)
,

(B4)

where the sum over n spans the entire Dirac spectrum.
By integrating over time variables, four δ-functions can

be obtained: (2π )4δ(E f + ω4 − �1)δ(�1 + ω3 − �2)δ(�2 +
ω2 − �3)δ(�3 − ω1 − Ei ). Then integration over �i reduces
them to a δ-function representing the conservation law of the
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four-photon scattering process, leading to

S(4γ )
f i = −2π ie4δ(E f − ω1 + ω2 + ω3 + ω4 − Ei )

∫
d3r1 d3r2 d3r3 d3r4 ψ f (�r1)

× (
γ μ1 A∗

μ1
(�r1)

)∑
n1

ψn1 (�r1)ψn1
(�r2)

E f + ω4 − En1 (1 − i0)

(
γ μ2 A∗

μ2
(�r2)

)∑
n2

ψn2 (�r2)ψn2
(�r3)

E f + ω3 + ω4 − En2 (1 − i0)

× (
γ μ3 A∗

μ3
(�r3)

)∑
n3

ψn3 (�r3)ψn3
(�r4)

Ei + ω1 − En3 (1 − i0)

(
γ μ4 A∗

μ4
(�r4)

)
ψi(�r4). (B5)

Passing to the dipole approximation for transverse photons and using the relations S f i = −2π iUf iδ(
∑

k E f k − ∑
k Eik ) and

−im ωnk (�r)nk = ( �p)nk [40], in the nonrelativistic limit the scattering amplitude can be approximately written as

U (4γ )
f i ∼

∑
n1 n2 n3

〈 f |�e∗
4�r4|n1〉〈n1|�e∗

3�r3|n2〉〈n2|�e2�r2|n3〉〈n3|�e1�r1|i〉[
�E f n1 + ω4 + i0

][
�E f n2 + ω3 + ω4 + i0

][
�Ei n3 + ω1 + i0

] , (B6)

where the notation �Ec d ≡ Ec − Ed is introduced, and a common factor is omitted for brevity. Resonance occurs when one or
all of the energy denominators can turn to zero. By designating the corresponding states as n1 = r, n2 = a, and n3 = b, we can
characterize them as absorption i + γ → r, the upper emission link in the cascade r → a + γ , subsequent decay a → b + γ ,
and the lower cascade link b → f + γ .

The denominators turning to zero should be regularized. This can be done within the framework of the QED theory by the
method described in [2]. This is achieved by inserting an infinite series of consecutive self-energy loops. This procedure should
be performed for each electron propagation part in Fig. 1. As a result, the energy shift to the state ni is added in the energy
denominators. The self-energy insertions into the outer tails in Fig. 1 can be omitted; see [3] for details. As the next step of such
an evaluation, one should examine the corresponding energy shift as real and imaginary contributions. The real part is not of
interest to us (provided that all necessary energy shifts are included in the energy difference �Ec d ), and the imaginary part plays
a principal role for the study of nonresonant effects due to its relation to the level width. Ordinarily, the regularization procedure
is replaced by the phenomenological entry of imaginary additions in the form −i�ni/2 into the energy denominator. However,
the latter should be applied carefully, since in the case of cascade emission for the lower state, the width of the upper level should
be taken into account. As a result, in our case the sum of the level widths for the states a and b should arise [3,41].

Further, we use the resonance approximation in series: (a) According to the third energy denominator in Eq. (B6),
En3 = Er and we denote Ei + ω1 − Er = ωNR. Then, the energy conservation law expressed by the δ-function in Eq. (B5)
yields E f + ω4 + ω3 + ω2 − Er − ωNR = 0. (b) In this relation we substitute ω2 = Er − Ea as a free parameter [not explicitly
involved in the amplitude Eq. (B6)], and, therefore, one can find that E f + ω4 + ω3 − Ea − ωNR = 0 represents the second
energy denominator, i.e., it can be replaced by ωNR similarly to the third. (c) Finally, substituting the resonance value
for ω3 = Ea − Eb into the last energy conservation relation again leads to E f + ω4 − Eb → ωNR. In the framework of this
approximation, we get a one-parameter ωNR problem instead of a multiparameter one, in which each frequency is matched with a
different ωNR(ωi ).

Thus, within the resonance approximation, we obtain

U (4γ )
f i ∼ A∗(1γ )

f b A∗(1γ )
ba A∗(1γ )

ar A(1γ )
ri[

ωNR − i
2 (�b + �a)

][
ωNR − i

2 (�a + �r )
][

ωNR − i
2�r

] . (B7)

Here the summation over the projections of all angular momenta is assumed, A(1γ )
ab denotes the dipole matrix elements on the

atomic states c and d , and we have discarded all remaining contributions in Eq. (B6), which include sums over n3 �= r, n2 �= a,
and n1 �= b. In these sums, however, there are terms representing the dominant contribution beyond the resonance approximation.

For the experiment [9], it is necessary to consider two measured frequencies ν1/2 corresponding to E4pF=1
1/2

− E2sF=0
1/2

and

ν3/2 → E4pF=1
1/2

− E2sF=0
1/2

. To obtain the effect of quantum interference [7,24], the state 4pF=1
1/2 is combined with 4pF=1

3/2 and
vice versa. Thus, using the expression (B7), we proceed in the same way, organizing the groups for the lower states a and b:
r = {4pF=1

1/2 , 4pF=1
3/2 }, a = {3s1/2, 3d3/2, 3d5/2}, b = {2p1/2, 2p3/2}. Thus, the four-photon amplitude in the lowest order beyond

the resonant approximation can be written as

U (4γ )
f i ∼ A∗(1γ )

f b A∗(1γ )
ba A∗(1γ )

ar A(1γ )
ri[

ωNR − i
2 (�b + �a)

][
ωNR − i

2 (�a + �r )
][

ωNR − i
2�r

]

+ A∗(1γ )
f b A∗(1γ )

ba A∗(1γ )
ar′ A(1γ )

r′i[
ωNR − i

2 (�b + �a)
][

ωNR − i
2 (�a + �r′ )

][
ωNR + �Er r′ − i

2�r′
]
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+ A∗(1γ )
f b A∗(1γ )

ba′ A∗(1γ )
a′r A(1γ )

ri[
ωNR − i

2 (�b + �a′ )
][

ωNR + �Ea a′ − i
2 (�a′ + �r )

][
ωNR − i

2�r
]

+ A∗(1γ )
f b′ A∗(1γ )

b′a A∗(1γ )
ar A(1γ )

ri[
ωNR + �Eb b′ − i

2 (�b′ + �a)
][

ωNR − i
2 (�a + �r )

][
ωNR − i

2�r
] + · · · , (B8)

where . . . denote all other terms with different combinations
of state groups r, a, and b. Finally, a cross section of the
photon scattering process can be obtained by squaring the
modulus of amplitude Eq. (B8):

σi f ∼
∑

MFi MFf

∣∣∣∣∣
∑

M

U (4γ )
f i

∣∣∣∣∣
2

. (B9)

Here we have summed over atomic angular momentum pro-
jections in the final state and averaged over the atomic angular
momentum projections of the initial state, and the sum over M
includes all necessary projections.

The transition frequency can be determined from the cross
section σi f in various ways. One obvious way is to define
the transition frequency from the extremum condition as
ωmax, where ωmax represents the value at which the cross
section reaches a maximum. Thus, ωmax is the most proba-
ble value. In conjunction with our notation ωNR = Ei + ω1 −
Er ≡ ω1 − ω0 this condition consists of

dσi f

dωNR
= 0. (B10)

Employing condition Eq. (B10) in the cross section (B9)
within the resonance approximation, it is enough to consider

only the first term in Eq. (B8). Then, we immediately arrive at

ωmax = ω0, (B11)

where, henceforth, ω0 assumes that all relativistic, QED, etc.
corrections are included in the binding energies.

In the lowest order beyond the resonant approximation, this
gives

ωmax = ω0 + δNR. (B12)

As long as the line profile remains symmetric with respect to
ω0, the definition (B10) remains the same for any other way
of extracting the transition frequency from the line profile.
For example, for the symmetric line profile the determinations
of the “line center” [9] and “line maximum” coincide. The
discussion of these two concepts is presented in the main text.

Following Eq. (B12), the nonresonant correction δNR can
be regarded as a frequency shift. This is valid for cases in
which the asymmetry of the line profile is small. In a mathe-
matical sense, this means that the profile distortion should not
exceed its width. A more stringent constraint arises as this cor-
rection is calculated. It reads �r/�Ec d � 1; see [3,4]. After
some cumbersome computations, the lowest-order correction
can be expressed as

δωi = f (c)
nr

f (c)
res

�2
r

4�i
ϒ + · · · ,

ϒ = (�r + �a)2(�a + �b)2

(�r + �a)2(�a + �b)2 + (�r + �a)2�2
r + (�a + �b)2�2

r

. (B13)

Here . . . denotes corrections of the next orders of magnitude �r,a,b or coproducts of �r , �a, and �b divided by �3
i . In contrast to

the QIE corrections, the form of Eq. (B13) does not permit further simplification (i.e., as a �2
i /�i ratio), since the order of the

any widths is almost the same. The most important point, however, is that the ratio of the nonresonant and resonant amplitudes
has been distinguished by the multiplier: f (c)

nr / f (c)
res . It is this ratio that determines the angular dependence, and the remaining

factor can easily be calculated numerically.
To obtain an explicit dependence on the angle between the polarization of the incoming photon and the directions of the

outgoing photons, it is necessary to calculate the resonant and nonresonant amplitudes included in the expression (B13). For
this, we turn to the photon scattering process used in [9] to determine the transition frequency ν1/2 and first determine the
associated quantities:

f (c)
res =

∑
Mi M f

∣∣∣∣∣
∑

M

A∗(1γ )
1s1/22p1/2

A∗(1γ )
2p1/23s1/2

A∗(1γ )
3s1/24pF=1

1/2
A(1γ )

4pF=1
1/2 2sF=0

1/2

∣∣∣∣∣
2

, (B14)

f (c)
nr,rr′ =

∑
Mi M f

∑
M

A∗(1γ )
1s1/22p1/2

A∗(1γ )
2p1/23s1/2

A∗(1γ )
3s1/24pF=1

1/2
A(1γ )

4pF=1
1/2 2sF=0

1/2
A(1γ )

2sF=0
1/2 4pF=1

3/2
A∗(1γ )

4pF=1
3/2 3s1/2

A∗(1γ )
3s1/22p1/2

A∗(1γ )
2p1/21s1/2

, (B15)

f (c)
nr,aa′ =

∑
Mi M f

∑
M

A∗(1γ )
1s1/22p1/2

A∗(1γ )
2p1/23s1/2

A∗(1γ )
3s1/24pF=1

1/2
A(1γ )

4pF=1
1/2 2sF=0

1/2
A(1γ )

2sF=0
1/2 4pF=1

1/2
A∗(1γ )

4pF=1
1/2 3d3/2

A∗(1γ )
3d3/22p1/2

A∗(1γ )
2p1/21s1/2

, (B16)

f (c)
nr,bb′ =

∑
Mi M f

∑
M

A∗(1γ )
1s1/22p1/2

A∗(1γ )
2p1/23s1/2

A∗(1γ )
3s1/24pF=1

1/2
A(1γ )

4pF=1
1/2 2sF=0

1/2
A(1γ )

2sF=0
1/2 4pF=1

1/2
A∗(1γ )

4pF=1
1/2 3s1/2

A∗(1γ )
3s1/22p3/2

A∗(1γ )
2p3/21s1/2

. (B17)
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FIG. 3. The QIEc for the transitions 2sF=0
1/2 → 4pF=1

1/2 (4pF=1
3/2 ) →

3d3/2 → 2p1/2(2p3/2), 3p1/2(3p3/2) → 1s1/2 as a function of the an-
gle between the vectors �ei, �ν f given by the expressions in Eq. (9).
The other notations are the same as in Fig. 2. The values are plotted
in Hz.

Here it should be noted that decay to the 3d5/2 state is inher-
ently absent due to the selection rules for the electric dipole
transition 4pF=1

1/2 → 3d5/2.
The final results for the nonresonant corrections due to

QIEc can be demonstrated as graphs in Figs. 2–5. Numerical
results for specific angles are given in Tables II and III in the
main text, and an evaluation of matrix elements is presented
in the next section.

2. Evaluation of matrix elements

To evaluate matrix elements presented by A(1γ )
c d , we use the

following relation for a scalar product in the cyclic compo-
nents of two arbitrary vectors, �w and �v:

�w�v =
∑

q=0,±1

(−1)qwqv−q. (B18)

The irreducible tensor product of two polarization vectors �e1

and �e2 can be expressed as follows:

{�e∗
1 ⊗ �e2}xξ = (−1)ξ�x

∑
q1q2

(
1 1 x
q1 q2 −ξ

)
(�e∗

1 )q1(�e2)q2 ,

(B19)

FIG. 4. The QIEc for the transitions 2sF=0
1/2 → 4pF=1

1/2 (4pF=1
3/2 ) →

3s1/2 → 2p3/2(2p1/2) → 1s1/2 as a function of the angle between
the vectors �ei, �ν f . Note that the 3p3/2 state lies above 3s1/2, and
hence there is no spontaneous decay to this atomic level. The other
notations are the same as in Fig. 2. The values are plotted in Hz.

FIG. 5. The QIEc for the transitions 2sF=0
1/2 → 4pF=1

1/2 (4pF=1
3/2 ) →

3d3/2 → 2p3/2(2p1/2), 3p3/2(3p1/2) → 1s1/2 as a function of the an-
gle between the vectors �ei, �ν f . The other notations are the same as in
Fig. 2. The values are plotted in Hz.

where �a b c... = √
(2a + 1)(2b + 1)(2c + 1) . . ., and the

standard 3 j-symbol notation is used.
To characterize the atomic state further, we use a set of

quantum numbers nl jFMF , where n is the principal quantum
number, l is the electron orbital momentum, j is the total
angular momentum of the electron, �j = �l + �s (�s is the electron
spin), F is the total atomic momentum, �F = �j + �I (�I is the
nuclear spin), and MF is the projection of the total atomic
momentum. The matrix element of the cyclic component of
the radius vector is given by [42]

〈n′l ′ j′F ′MF ′ |rq|nl jFMF 〉

= (−1)F ′−MF ′
(

F ′ 1 F
−MF ′ q MF

)
〈n′l ′ j′F ′||r||nl jF 〉,

(B20)

where the reduced matrix element is

〈n′l ′ j′F ′||r||nl jF 〉 = (−1) j′+ j+I+l ′+1/2+F � j′ jF ′F

×
{

j′ F ′ I
F j 1

}{
l ′ j′ 1/2
j l 1

}
×〈n′l ′||r||nl〉 (B21)

(above the ordinary notation for the 6 j-symbol is used), and

〈n′l ′||r||nl〉 = (−1)l ′�l ′l

(
l 1 l ′
0 0 0

)∫ ∞

0
r3Rn′l ′Rnldr.

(B22)

In Eq. (B22), Rnl denotes the radial part of the hydrogen wave
function.
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Thus, to calculate the squares of the amplitudes in Eqs. (B14)–(B17), we need to sum over the projections of the eight
3 j-symbols according to Eq. (B20). The calculations are greatly simplified if we consider that for the initial state Fi = 0, MFi = 0.
Then, the following relations can be used:(

j1 j2 0
m1 m2 0

)
=

(
0 j2 j1
0 m2 m1

)
= (−1) j1−m1

√
2 j1 + 1

δ j1 j2δm1 −m2 . (B23)

In general, we can arrange a formula convenient for evaluating any amplitudes in Eqs. (B14)-(B17) as follows:

f (c)
res/nr =

∑
M

(−1)φe1q1
e∗

2q2
e∗

3q3
e∗

4q4
e∗

1p1
e2p2

e3q3
e4q4

× R

×
(

Ff 1 Fb

MFf −q4 MFb

)(
Fb 1 Fa

−MFb −q3 MFa

)(
Fa 1 Fr

−MFa −q2 MFr

)(
Fr 1 Fi

−MFr −q1 MFi

)

×
(

Fi 1 Fr′

MFi −p1 MFr′

)(
Fr′ 1 Fa′

−MFr′ −p2 MFa′

)(
Fa′ 1 Fr′

−MFa′ −p3 MFr′

)(
Fr′ 1 Ff

−MFr′ −p4 MFf

)
, (B24)

where the sum over M means the summation over q1, q2, q3, q4, p1, p2, p3, p4, MFi , Ff MFf , MFr , FaMFa , FbMFb , MFr′ , Fa′MFa′ ,
Fb′MFb′ , and the phase corresponds to φ = q1 + q2 + q3 + q4 + p1 + p2 + p3 + p4 + Ff − MFf + Fb − MFb + Fa − MFa + Fr −
MFr + Fi − MFi + Fr′ − MFr′ + Fa′ − MFa′ + Fb′ − MFb′ . The notation R in Eq. (B24) means

R = 〈n f l f j f Ff ||r||nblb jbFb〉〈nblb jbFb||r||nala jaFa〉〈nala jaFa||r||nrlr jrFr〉
× 〈nrlr jrFr ||r||nili jiFi〉〈nili jiFi||r||nr′ lr′ jr′Fr′ 〉〈nr′ lr′ jr′Fr′ ||r||na′ la′ ja′Fa′ 〉
× 〈na′ la′ ja′Fa′ ||r||nb′ lb′ jb′Fb′ 〉〈nb′ lb′ jb′Fb′ ||r||n f l f j f Ff 〉. (B25)

R is then counted numerically. According to Eq. (B24), the resonant or nonresonant squared amplitudes correspond to the choice
of the total angular momenta { jr, jr′ }, { ja, ja′ }, and { jb, jb′ } (equal or not).

Then, applying the expression (B23) to the 3 j-symbols containing the pair FiMFi and the relation (see Eq. 5 in Section 12.1
of [42])∑

κ

(−1)q−κ

(
a b q
α β −κ

)(
q d c
κ δ γ

)
= (−1)2a

∑
xξ

(−1)x−ξ�2
x

(
a c x
α γ −ξ

)(
x d b
ξ δ β

){
b d x
c a q

}
. (B26)

Thus, we arrive at

f (c)
res/nr =

∑
M ′

(−1)φ
′

3
�2

abc

(
b 1 1
β −q3 −q4

)(
a 1 1
α −p4 −p3

)(
Fa 1 1

−MFa −q2 −q1

)

×
(

1 1 Fa′

−p1 −p2 MFa′

)(
a b c

−α −β −γ

)(
c Fa Fa′

γ MFa −MFa′

)
R

×
{

1 1 b
Fa Ff Fb

}{
1 1 a
Ff Fa′ Fb′

}{
Fa′ Fa c
b a Ff

}
, (B27)

where the summation runs over q1, q2, q3, q4, p1, p2, p3, p4, FaMFa , Fb, Fa′MFa′ , Fb′ , Ff , aα, bβ, and cγ . The phase is given by
φ′ = q1 + q2 + q3 + q4 + p1 + p2 + p3 + p4 + Fa − MFa + Fa′ − MFa′ + a − α + b − β + c − γ .

Forming tensor products of polarization vectors as per the expression (B19), the final result can be represented in the form

f (c)
res/nr = 1

3

∑
Ff FaFb

∑
Fa′ Fb′

∑
abc

√
(2a + 1)(2b + 1)

(2Fa + 1)(2Fa′ + 1)
(−1)b−Fa R

{
1 1 b
Fa Ff Fb

}{
1 1 a
Ff Fa′ Fb′

}{
Fa′ Fa c
b a Ff

}

× ({{�e3 ⊗ �e4}b ⊗ { �e∗
3 ⊗ �e∗

4}a}c · {{�e1 ⊗ �e∗
2}Fa ⊗ { �e∗

1 ⊗ �e2}Fa′ }c), (B28)

where · means the scalar product.
Further evaluation of Eq. (B28) is performed numerically. In such calculations, for each squared amplitude we sum over the

total atomic momenta Fn for the final and intermediate states with the specified total angular momenta. Then, the nonzero tensor
components summed over the polarizations �e2, �e3, �e4 and in the assumption that the emitted photons are detected in one direction
(i.e., �ν2 ‖ �ν3 ‖ �ν4) can be found as ∑

�e3�e4

{{�e3 ⊗ �e4}0 ⊗ { �e∗
3 ⊗ �e∗

4}0}0 = 1

3
,

∑
�e3�e4

{{�e3 ⊗ �e4}2 ⊗ { �e∗
3 ⊗ �e∗

4}2}0 = 2

3
√

5
, (B29)
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and ∑
�e2

{{�e1 ⊗ �e∗
2}0 ⊗ { �e∗

1 ⊗ �e2}0}0 = 1

3
sin2 θ,

∑
�e2

{{�e1 ⊗ �e∗
2}1 ⊗ { �e∗

1 ⊗ �e2}1}0 = cos2 θ

2
√

3
,

∑
�e2

{{�e1 ⊗ �e∗
2}2 ⊗ { �e∗

1 ⊗ �e2}2}0 = 1

6
√

5
(3 + sin2 θ ). (B30)
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