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Dissipation and decoherence of quantum systems in thermal environments is important to various spectro-
scopies. It is generally believed that dissipation can broaden the line shape of spectroscopies, and thus stronger
system-bath interaction can result in more significant homogeneous broadening of two-dimensional electronic
spectroscopy (2DES). Here we show that the case can be the opposite in the regime of electromagnetically
induced transparency (EIT). We predict that assisted by EIT, the homogeneous broadening of the 2DES at a
higher temperature can be significantly reduced due to the detailed balance. This anomalous effect is due to the
long-lasting off-diagonal peaks in 2DES.
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I. INTRODUCTION

As known to all, multitransition and higher temperature
can induce more significant decoherence and thus result in
broader linewidth [1,2]. However, it has been theoretically
predicted and experimentally observed that the multitransition
of a nitrogen-vacancy (NV) center in diamond can have longer
coherence time than the single transitions due to manipulation
of the quantum bath evolution via flips of the center spin [3,4].
Therefore, it might be interesting to investigate the effect of
the temperature on the homogeneous broadening in spectro-
scopies. In this paper we theoretically demonstrate that the
homogeneous broadening of the two-dimensional electronic
spectroscopy (2DES) in the presence of electromagnetically
induced transparency (EIT) can be anomalously reduced at
higher temperatures because of the detailed balance.

In recent years 2DES has emerged as a powerful tool for
investigating the ultrafast dynamics of complex quantum sys-
tems [1,5–13], including quantum wells [14], quantum dots
and two-dimensional (2D) materials [15,16], perovskites [17],
organic photovoltaic cells [18–21], photosynthetic complexes
[22–30], NV centers in diamond [31], and chiral molecules
[32]. The fundamental theoretical framework of 2DES in-
volves the application of three coherent laser pulse trains to
samples, generating third-order polarization signals. Through
the analysis of the nonlinear signals, 2DES can unveil nuanced
aspects of electronic coherence, energy transfer pathways, and
correlations within a wide array of physical systems. Notably,
explorations of ultrafast processes in molecular aggregates,
photosynthetic complexes, and semiconductor nanostruc-
tures has unearthed fundamental principles governing the
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dynamics of excited states. Given that the time-correlation
function intricately influences quantum dynamics in conjunc-
tion with the system Hamiltonian, the center-line slope of
2DES has been proposed as a means to extract information
regarding system-bath interaction under various conditions
[33–35]. When spectral line bands from different processes
overlap, making it challenging to distinguish distinct peaks
[36], the ability of 2DES to resolve both the structure and
dynamics is significantly hindered. The problem tends to get
worse as the environment around a molecule becomes more
diverse. As a result, the application of 2DES is significantly
limited by the spectral linewidth.

On the other hand, the EIT has been widely used to re-
alize optical nonreciprocity [37,38], suppress dissipation in
artificial light-harvesting systems [39], and polarize the nu-
clear spin at the vicinity of NV centers in diamond [40,41].
Intuitively, it may be natural to utilize the EIT to effectively
improve the signal-to-noise ratio of 2DES [42]. The previous
investigation proposes utilizing the quantum optical EIT effect
to improve multidimensional spectroscopic measurements be-
yond the standard resolution limits [42]. However, at high
temperature, only the downhill population relaxation has been
taken into account, while the uphill population relaxation has
been neglected therein. In other words, the whole relaxation
does not fulfill the detailed-balance condition [1,2]. But it is
worth noting that under nonzero temperature conditions, the
uphill population relaxation in combination with the downhill
population relaxation drive the open quantum system towards
the steady state described by the Boltzmann distribution [1,2].
It is this fundamental principal that inspires us to take into
account this overlooked crucial information and consider the
influence of temperature on the spectral resolution, making it
more aligned with real-world scenarios.

The rest of the paper is structured as follows. In Sec. II
we introduce the theoretical model and perform calculations
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FIG. 1. Schematic illustration of removing homogeneous broad-
ening by EIT and coupling to a high-temperature bath: (a) pulse
sequence, (b) four-level system, and (c) Feynman diagrams.

based on the response functions. In Sec. III numerical simula-
tion results are presented and analyzed. Section IV describes
the physical implementation. Finally, a summary and discus-
sion are provided in Sec. V. In Appendices A and B we derive
the master equations for a two-level system and a four-level
system, respectively. In Appendix C we discuss the whole
rephasing signal.

II. THEORETICAL MODEL

In essence, the two-dimensional spectroscopy is the
third-order nonlinear polarization signal generated by the in-
teraction of three coherent ultrashort laser pulses with the
substance [1], where the heterodyne detection method is ap-
plied to detect the signal. As shown in Fig. 1(b), four pulses
are applied, including three short probe pulses and one long
control field. The first probe pulse is temporally centered at
t = 0, and the next two probe pulses are delayed by t1 and
t2 in time successively. Finally, a heterodyne pulse is applied
after the time interval t3. The first three ultrashort laser pulses
generate a signal, which is heterodyne detected by a fourth
pulse in a specific phase-matching direction. In 2DES the ex-
citation frequency axis ω1 and detection frequency axis ω3 are
the Fourier transform of the time delays t1 and t3, respectively.
In addition to a sequence of four pulses commonly used in
traditional 2D spectroscopy, a narrow-band control field is
applied to drive a specific transition between the energy levels
a1 and c in Fig. 1(b). Here, broadband probe pulses can drive
the transitions between b and a j ( j = 1, 2).

Without loss of generality, we first consider the 2DES
generated by the R2 path, that is, the stimulated emission
process in the direction of ks = −k1 + k2 + k3. Here, four
Feynman diagrams can be drawn for the R2 path, as shown
in Fig. 1(c). We remark that in the three-level case, i.e., a2

is absent, there is only one kind of Feynman diagram for the
R2 path, which is not shown here. And the broadband probe
pulses cannot induce the transitions a1 � a2 and c � a j , but
b � a j ( j = 1, 2).

The total Hamiltonian, including the interaction between
the system and the control field, reads

H =
∑

j

ω j | j〉〈 j| − �

2
e−iνct |a1〉〈c| + H.c., (1)

where ω j is the energy of the state | j〉 ( j = b, a1, a2, c), and
we assume h̄ = 1 for simplicity, � = μa1cεc is the Rabi fre-
quency, with μa1c being the transition dipole moment, and εc

and νc are the amplitude and the frequency of the control field,
respectively. Here, ωa2 is adjustable in our investigation.

Generally, the quantum dynamics are governed by the
quantum master equation ρ̇ = − i

h̄ [H, ρ] − Γ1L(Aa2a1 )ρ −
Γ2L(Aa1a2 )ρ [1,39,43], where L(Aαβ )ρ = 1

2 {A†
αβAαβ, ρ} −

AαβρA†
αβ , with {A†

αβAαβ, ρ} being the anticommutator, and
Aαβ = |α〉〈β| the quantum-jump operator from the initial state
|β〉 to the final state |α〉. The exact quantum dynamics can be
obtained by the hierarchical equation of motion, which can
be exponentially accelerated by a recently developed quantum
algorithm [44,45]. However, under certain circumstances, the
quantum master equation approach without the quantum-jump
term can provide an analytical result and thus effectively help
us grasp the underlying mechanism. In the interaction picture,
assuming νc = ωa1 − ωc, the time evolution of the density
matrix is determined by

˙̃ρa1a1 = −Γ1ρ̃a1a1 + Γ2ρ̃a2a2 + i

2
�(ρ̃ca1 − ρ̃a1c),

˙̃ρa1c = i

2
�(ρ̃cc − ρ̃a1a1 ) − γa1cρ̃a1c,

˙̃ρcc = i

2
�(ρ̃a1c − ρ̃ca1 ) − Γcρ̃cc,

˙̃ρa2a2 = Γ1ρ̃a1a1 − Γ2ρ̃a2a2 ,

(2)

where γa1c = (Γ1 + Γc)/2 + γ (0)
a1c , and the population relax-

ation rates between the states a1 and a2 are respectively Γ1

and Γ2, between which the relation is governed by the detailed
balance [2]. γ (0)

a1c is the pure-dephasing rate between states a1

and c. Here, we have assumed that the population relaxation
Γc of the metastable state c can be neglected. As a result, we
can obtain the Green function as

Ga1a1,a1a1 = −1

4iA1A3�̃
[A1e− γa1c

2 t (A+
2 ei �̃

2 t + A−
2 e−i �̃

2 t )

− 2i�̃(Γ2A3 + Γ1A4e−A1t )],

Ga2a2,a1a1 = Γ1

4i�̃A1B5
[2i�̃B1(e−A1t − B2)

+ A1B3e− γa1c
2 t (ei �̃

2 t + B4e−i �̃
2 t )], (3)

Ga1a1,a2a2 = −Γ2

A1
(−1 + e−A1t ),

Ga2a2,a2a2 = 1

A1
(Γ1 + Γ2e−A1t ),

where �̃ =
√

4�2 − γ 2
a1c, A1 = Γ1 + Γ2, A±

2 = [Γ2(Γ1

+ Γ2 − γa1c) + �2](i�̃ ± γa1c) ∓ 2Γ1�
2, A3 = −(Γ1 + Γ2)

(Γ1 + Γ2 − γa1c) − �2, A4 = 2A3 + �2, B1 = −2(Γ1 +
Γ2)(Γ1 + Γ2 − γa1c) − �2, B2 = (B1 − �2)/2, B3 = (Γ1
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FIG. 2. 2DES with ωa1b − ωa2b = 0.18Γ1 when t2 = 3Γ −1
1 , and

(a) kBT = 0.01Γ1, � = 0, (b) kBT = 0.01Γ1, � = 9Γ1, (c) kBT =
0.1Γ1, � = 9Γ1, (d) kBT = 5Γ1, � = 9Γ1.

+ Γ2 − γa1c)(γa1c + i�̃) + 2�2, and B4 = (Γ1 + Γ2 − γa1c)
(−γa1c + i�̃) − 2�2.

If we consider the R2 term in the rephrasing case, the
response function is written as [1]

S(ω3, t2, ω1) = Re
2∑

i, j=1

|μbai |2|μa j b|2Ga j b,a j b(ω3)

× Ga j a j ,aiai (t2)Gbai,bai (ω1), (4)

where μbai is the transition dipole moment between the states
b and ai (i = 1, 2).

III. NUMERICAL RESULTS AND ANALYSIS

We investigate the effect of temperature on the 2DES under
the near-resonant condition in the long-population-time limit,
as shown in Fig. 2. When there is no control field, there is
only one peak in Fig. 2(a) due to the absence of EIT. If the
control field is applied, e.g., Fig. 2(b), the diagonal peak is
split into two peaks in which the homogeneous broadening is
partially reduced. However, if the temperature is increased,
e.g., kBT = 0.1Γ1 in Fig. 2(c), two additional small peaks
begin to emerge at the side of the above two peaks. Interest-
ingly, if temperature is sufficiently high, i.e., kBT = 5Γ1 in
Fig. 2(d), the original large peak in Fig. 2(a) is almost evenly
split into four peaks. Notice that the homogeneous broaden-
ing is even narrower than that in Fig. 2(b), which has been
significantly reduced due to the EIT. In general, the downhill
and uphill rates fulfill the detailed balance [2]. At the absolute
zero temperature, there is only population transfer from the
higher level to the lower one. As the temperature increases,
the population back-transfer emerges due to the heating by
the bath. We remark that the combination of heating and the
EIT results in the elimination of homogeneous broadening in
the long-population-time limit.

In order to illustrate the underlying physical mechanism
explicitly, we consider the case of a large detuning between
the two levels a1 and a2. We discuss the kBT = Γ1 case as
shown in the upper panel of Fig. 3, i.e., at low temperatures.
When t2 = 0, there are two sets of diagonal peaks at ωa j b

( j = 1, 2), respectively. The diagonal peak at ωa1b is split into
four small peaks due to the EIT introduced by the control
field, which induces the transition between a1 and c, while the
diagonal peak at ωa2b remains as a whole large peak. When
the population time elapses, e.g., t2 = 0.5Γ −1

1 , a set of off-
diagonal peaks at (ωa1b, ωa2b) emerge due to the population
transfer from level a1 to a2. And generated by the processes
corresponding to the four Feynman diagrams in Fig. 1(c), the
peaks in 2DES which overlap with each other in the nearly
resonant case will be separated. When the population time is
sufficiently long, e.g., t2 = 5Γ −1

1 , we can observe from the
spectroscopy that the peaks at ω3 = ωa1b have disappeared
and the peak in the bottom-right corner has been enhanced.
And that’s because in the long-population-time limit, i.e.,
t2 � Γ −1

1 , the entire population of the level a1 has been uni-
directionally transferred to level a2. The lower panel of Fig. 3
is simulated at kBT = 103Γ1, that is, at a sufficiently high
temperature. In the case of t2 = 0, we cannot discriminate the
difference between Fig. 3(d) for kBT = 103Γ1 and Fig. 3(a)
for kBT = Γ1. When t2 = 0.5Γ −1

1 , two off-diagonal peaks
appear in Fig. 3(e). In addition to the one in Fig. 3(b), there
is one at (ωa2b, ωa1b) because of the population back-transfer
from the lower level to the higher level due to heating by
the bath. At t2 = 5Γ −1

1 , the peaks in these four regions of
Fig. 3(f) do not disappear, which is quite different from the
observation in the case of kBT = Γ1. Because of nonvanishing
Γ2, the bidirectional population transfer between levels a1 and
a2 always exists dynamically.

In a real system, there is not only the downhill relaxation
from a1 to a2 but also the uphill relaxation from a2 to a1.
The ratio of the two relaxation rates is determined by the
temperature and the energy gap between a1 and a2. In order
to observe the different scenarios as shown in Figs. 2 and
3, we can effectively adjust the energy gap between a1 and
a2. As the energy gap increases, the 2DES obtained when a1

and a2 are nearly resonant will split, and thus more detailed
information about the dynamics under investigation will be
revealed.

The average of inhomogeneous broadening will superpose
2DES with different level spacings ωa1a2 between |a1〉 and
|a2〉. When the static disorder is small, the average of inho-
mogeneous broadening will not essentially modify our main
findings, as shown in Fig. 4(a). As the static disorder in-
creases, the homogeneous broadening will be enlarged due
to the average of inhomogeneous broadening, as shown in
Fig. 4(b). Therefore, we may safely arrive at the conclusion
that the anomalously reduced homogeneous broadening can
be still observed as long as σ < 2.6Γ1, which is within the
experimental observation σ = 1.4Γ1 [46].

So far as the average of the interaction between the electric
field and the transition dipole moments of molecules is con-
sidered, it will superpose 2DES with different widths of the
gaps between the peaks in Fig. 2(d). If the electric field is big
enough or the interaction between the electric field and the
transition dipole moments of molecules are nearly identical,
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(a) (b) (c)

(d) (e) (f)

FIG. 3. 2DES for � = 9Γ1, ωa1b − ωa2b = 50Γ1 and t2 = (a, d) 0, (b, e) 0.5Γ −1
1 , (c, f) 5Γ −1

1 . In the top panel, kBT = Γ1, while in the
bottom kBT = 103Γ1.

our main findings will not be essentially modified. In order
to make the interaction between the electric field and the
transition dipole moments of molecules nearly identical, we
can initially prepare the sample to be crystal [47].

IV. PHYSICAL IMPLEMENTATION

To demonstrate our theoretical proposal, we use the
energy-level structure of two pheophytins, i.e., PheD1 and
PheD2, in the PSII-RC. Their energies are respectively E1 =
15030 cm−1 and E2 = 15020 cm−1. The electronic coupling
between them is J = −3 cm−1 [46]. We calculate the new
energy levels of the dimer due to the coupling as ε1 = (E1 +
E2 + �E )/2 = 15 031 cm−1 and ε2 = (E1 + E2 − �E )/2 =
15 019 cm−1, where �E =

√
(E1 − E2)2 + 4J2 is the gap be-

tween two levels a1 and a2. In order to realize the four-level

FIG. 4. 2DES with ωa1b − ωa2b = 0.18Γ1 when t2 = 3Γ −1
1 ,

kBT = 5Γ1, � = 9Γ1, and (a) σ = Γ1, (b) σ = 2.6Γ1.

configuration in Fig. 1, we utilize a vibronic mode with
frequency 745 cm−1 with relaxation rate Γb = 0.1 ps−1 [48],
i.e., |b〉 = |g〉|1〉v , |c〉 = |g〉|0〉v , |a1〉 = |ε1〉|0〉v , and |a2〉 =
|ε2〉|0〉v , where |0〉v and |1〉v are respectively the ground and
first excited state of the vibronic mode. The pure-dephasing
rates are respectively γ (0)

a1c = γ
(0)

a1b = γ
(0)

a2b = 10Γ1 and γ
(0)

bc =
10Γb. The Rabi frequency of the control field is � = 9Γ1. The
downhill population transfer rate is Γ1 = 10 ps−1. Here, the
uphill population transfer rate Γ2 and Γ1 satisfy the detailed-
balance relation, i.e., Γ2/Γ1 = exp(−�E/kBT ), where T is
the ambient temperature.

V. CONCLUSION AND DISCUSSION

The proposed anomalous effect can be observed for a wide
range of parameters, which will be elucidated as follows. First
of all, the temperature must be sufficiently high to satisfy
Γ1/Γ2 ≈ 1, which is easily achieved for a molecule with small
level spacing, i.e., h̄ωa1a2 � kBT . This is because the contri-
butions from the off-diagonal peaks become more significant
at higher temperatures. Secondly, the population time t2 must
exceed the inverse of the relaxation rate 1/Γ1, i.e., t2Γ1 > 1,
ensuring that the off-diagonal peaks remain relatively stable
over time. The last but not the least, the Rabi frequency of the
control field needs to be sufficiently large, as the separation
of the subpeaks introduced by the EIT is proportional to the
Rabi frequency. In this study a significant phenomenon can be
observed at � = 9Γ1.

In this paper we theoretically explore the anomalous
reduction of homogeneous broadening in 2DES at high tem-
peratures, which is attributed to the detailed balance assisted
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by the EIT. Compared with lower temperatures, the homoge-
neous broadening is much narrower at higher temperatures
due to the long-lasting off-diagonal peaks, which vanish in
the former case. Since in realistic experiments R2 cannot
be separated from the rephasing signal which also contains
R3, our discovery still holds when R3 is included. When the
static disorder is considered, the homogeneous broadening is
remarkably suppressed as long as σ < 2.6Γ1, which is within
experimental observation.
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APPENDIX A: MASTER EQUATION
FOR TWO-LEVEL SYSTEM

In this Appendix we will derive the master equation for a
two-level system [49]. We begin by considering a quantum
system S coupled to a reservoir R. The Hamiltonian of the
total system is

H = HS + HR + HI , (A1)

where HS and HR are, respectively, the Hamiltonian of the
system and the reservoir, and HI describes the interaction
between them.

In the interaction picture, the von Neumann equation reads

d

dt
ρI (t ) = − i

h̄
[HI (t ), ρI (t )], (A2)

where h̄ is the reduced Planck constant. Formally, the total
density matrix ρI (t ) can be given as

ρI (t ) = ρI (0) − i

h̄

∫ t

0
dt ′[HI (t ′), ρI (t ′)]. (A3)

Inserting it into Eq. (A2) and tracing over the degrees of
freedom of the reservoir, we find

d

dt
ρS (t ) = − 1

h̄2

∫ t

0
dt ′trR{HI (t ), [HI (t ′), ρI (t ′)]}, (A4)

where we have assumed trR[HI (t ), ρI (0)] = 0.
Assuming that the coupling between the system and the

reservoir is weak, the back-action of the system on the reser-
voir can be neglected. Therefore, the density matrix of the
reservoir ρR is only negligibly affected by the interaction, and
the state of the total system at time t can be approximated by
a tensor product, i.e., the Born approximation [2]:

ρI (t ) ≈ ρS (t ) ⊗ ρR. (A5)

By substituting Eq. (A5) into Eq. (A4), we have

d

dt
ρS (t ) = − 1

h̄2

∫ t

0
dt ′trR{HI (t ), [HI (t ′), ρS (t ′) ⊗ ρR]}.

(A6)

We perform the Markovian approximation [2], in which the
time evolution of the state of the system at time t depends
only on the present state ρS (t ), i.e.,

d

dt
ρS (t ) = − 1

h̄2

∫ t

0
dt ′trR{HI (t ), [HI (t ′), ρS (t ) ⊗ ρR]}.

(A7)
As an example, we consider a two-level system whose

two states are denoted as |1〉 and |2〉, with energies E1

and E2 (E1 < E2), respectively. The Hamiltonian HS can be
written as

HS = 1
2 h̄ωAσz, (A8)

where ωA = (E2 − E1)/h̄, σz = |2〉〈2| − |1〉〈1|.
Since the system interacts with a reservoir R, the total

Hamiltonian is given by [49]

HT = HS + HR + HI , (A9)

where

HR =
∑
k,λ

h̄ωkr†
kλ

rkλ, (A10)

HI =
∑
k,λ

h̄(κ∗
kλr†

kλ
σ− + κkλrkλσ+). (A11)

ωk is the frequency of the kth mode of the reservoir with po-
larization λ and r†

kλ
(rkλ) being the raising (lowering) operator.

Here, the coupling between the atom and the kth mode of the
reservoir with polarization λ is

κkλ = −iei�k·�rA

√
ωk

2h̄ε0V
êkλ · �d21. (A12)

The unit polarization vector is ê�kλ
. The atom is positioned

at �rA, and V is the quantized volume. σ+ = |2〉〈1| = (σ−)†

are the raising and lowering operators of the atom. ε0 is the
dielectric constant of vacuum, and �d21 is the transition dipole
moment of the atom.

For simplicity, we define the following operators

s1 = σ−, (A13)

s2 = σ+, (A14)

Γ1 = Γ † =
∑
k,λ

κ∗
kλr†

kλ
, (A15)

Γ2 = Γ =
∑
k,λ

κkλrkλ, (A16)

where s′
is and Γ ′

i s are the operators in the Hilbert space of S
and R, respectively. In the interaction picture with respect to
HS + HR, we have

s̃1(t ) = σ−e−iωAt , (A17)

s̃2(t ) = σ+eiωAt , (A18)

Γ̃1(t ) = Γ̃ †(t ) =
∑
k,λ

κ∗
k,λr†

k,λ
eiωkt , (A19)

Γ̃2(t ) = Γ̃ (t ) =
∑
k,λ

κk,λrk,λe−iωkt . (A20)
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Therefore, the interaction Hamiltonian in the interaction picture reads

H̃I (t ) = h̄
∑
i=1,2

s̃i(t )Γ̃i(t ). (A21)

R0 is the initial density operator of the reservoir. The master equation is now

˙̃ρ = −
∑
i, j

∫ t

0
dt ′{[̃si(t )̃s j (t

′ )̃ρ(t ′) − s̃ j (t
′ )̃ρ(t ′ )̃si(t )]〈Γ̃i(t )Γ̃ j (t

′)〉R + [̃ρ(t ′ )̃s j (t
′ )̃si(t ) − s̃i(t )̃ρ(t ′ )̃s j (t

′)]〈Γ̃ j (t
′)Γ̃i(t )〉R}, (A22)

where we have used the cyclic property of the trace, i.e., tr(ABC) = tr(CAB) = tr(BCA), and the two correlation functions are

〈Γ̃i(t )Γ̃ j (t
′)〉R = trR[R0Γ̃i(t )Γ̃ j (t

′)], (A23)

〈Γ̃i(t
′)Γ̃ j (t )〉R = trR[R0Γ̃ j (t

′)Γ̃i(t )]. (A24)

Thus, we have

˙̃ρ = −
∫ t

0
dt ′{[σ−σ−ρ̃(t ′) − σ−ρ̃(t ′)σ−]e−iωA(t+t ′ )〈Γ̃ †(t )Γ̃ †(t ′)〉R + [σ+σ+ρ̃(t ′) − σ+ρ̃(t ′)σ+]eiωA(t+t ′ )〈Γ̃ (t )Γ̃ (t ′)〉R

+ [σ−σ+ρ̃(t ′) − σ+ρ̃(t ′)σ−]e−iωA(t−t ′ )〈Γ̃ †(t )Γ̃ (t ′)〉R + [σ+σ−ρ̃(t ′) − σ−ρ̃(t ′)σ+]eiωA(t−t ′ )〈Γ̃ (t )Γ̃ †(t ′)〉R} + H.c., (A25)

where the correlation functions of the reservoir are explicitly

〈Γ̃ †(t )Γ̃ †(t ′)〉R = 〈Γ̃ (t )Γ̃ (t ′)〉R = 0, (A26)

〈Γ̃ †(t )Γ̃ (t ′)〉R =
∑
k,λ

|κk,λ|2eiωk (t−t ′ )n̄(ωk, T ), (A27)

〈Γ̃ (t )Γ̃ †(t ′)〉R =
∑
k,λ

|κk,λ|2e−iωk (t−t ′ )[n̄(ωk, T ) + 1]. (A28)

The average photon number of the kth mode of the reservoir is

n̄(ωk, T ) = trR(R0r†
k,λ

rk,λ) = e−h̄ωk/kBT

1 − e−h̄ωk/kBT
, (A29)

where kB is the Boltzmann constant and T is the temperature.
Defining τ = t − t ′, we have

˙̃ρ =
∫ t

0
dt ′{[σ−σ+ρ̃(t − τ ) − σ+ρ̃(t − τ )σ−]e−iωAτ 〈Γ̃ †(t )Γ̃ (t − τ )〉R + [σ+σ−ρ̃(t − τ )

− σ−ρ̃(t − τ )σ+]eiωAτ 〈Γ̃ (t )Γ̃ †(t − τ )〉R} + H.c. (A30)

In the continuum limit, the nonvanishing correlation functions of the reservoir are

〈Γ̃ †(t )Γ̃ (t − τ )〉R =
∑

λ

∫
d3kg(k)|κk,λ|2eiωkτ n̄(ωk, T ), (A31)

〈Γ̃ (t )Γ̃ †(t − τ )〉R =
∑

λ

∫
d3kg(k)|κk,λ|2e−iωkτ [n̄(ωk, T ) + 1], (A32)

where g(k) is the density of states of the reservoir. Then we have

lim
t→∞

∫ t

0
dτe−i(ωk−ωA )τ = πδ(ωk − ωA) + iP

(
1

ωA − ωk

)
, (A33)

where P indicates the Cauchy principal value and ωk = kc. Based on the Markovian approximation, we replace ρ̃(t − τ ) by ρ̃(t )
and obtain

˙̃ρ =
∑

λ

∫
d3kg(k)|κk,λ|2

[
πδ(kc − ωA) + iP

(
1

ωA − ωk

)]
[n̄(kc, T ) + 1](σ−ρ̃σ+ − σ+σ−ρ̃ )

+
∑

λ

∫
d3kg(k)|κk,λ|2

[
πδ(kc − ωA) + iP

(
1

ωA − ωk

)]
n̄(kc, T )(σ+ρ̃σ− − ρ̃σ−σ+) + H.c. (A34)
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To summarize, the master equation for the two-level system reads

˙̃ρ =
[
γ

2
(n̄ + 1) + i(Δ′ + Δ)

]
(σ−ρ̃σ+ − σ+σ−ρ̃ ) +

(
γ

2
n̄ + iΔ′

)
(σ+ρ̃σ− − ρ̃σ−σ+) + H.c., (A35)

where the relaxation rate at zero temperature is

γ = 2π
∑

λ

∫
d3kg(k)|κk,λ|2δ(kc − ωA), (A36)

� =
∑

λ

P

( ∫
d3k

g(k)|κk,λ|2
ωA − kc

)
, (A37)

�′ =
∑

λ

P

( ∫
d3k

g(k)|κk,λ|2
ωA − kc

n̄(kc, T )

)
, (A38)

and are thus Lamb shifts. Therefore, the ratio between the up-
hill and downhill relaxation rates is determined by the detailed
balance as

Γ2

Γ1
= n̄

n̄ + 1
= e−h̄ωA/kBT . (A39)

APPENDIX B: MASTER EQUATION
FOR FOUR-LEVEL SYSTEM

For the four-level system considered in the main text, the
Hamiltonian of the system reads

H0 =
∑

j

h̄ω j | j〉〈 j|, (B1)

where j = b, a1, a2, c, ωb < ωc < ωa2 < ωa1 . The interaction
between the system and the control field is described by the
Hamiltonian

Hint = − h̄

2

∑
j=1,2

� je
−iνct |a j〉〈c| + H.c., (B2)

where � j = μa j cεc/h̄ ( j = 1, 2) is the Rabi frequency, with
μaic being the transition dipole moment between |ai〉 and |c〉.
εc and νc are the amplitude and the driving frequency of the
control field, respectively. In the basis {|b〉, |a1〉, |a2〉, |c〉}, the
Hamiltonian of the system can be given in the matrix form as

H = H0 + Hint

=

⎛
⎜⎜⎜⎝

h̄ωb 0 0 0

0 h̄ωa1 0 − h̄
2 �1e−iνct

0 0 h̄ωa2 − h̄
2 �2e−iνct

0 − h̄
2 �1eiνct − h̄

2 �2eiνct h̄ωc

⎞
⎟⎟⎟⎠.

(B3)

Furthermore, we assume that the control field is resonant only
with the transition between a1 and c, namely, �1 = � and
�2 = 0. Then the Hamiltonian is simplified as

H =

⎛
⎜⎜⎝

h̄ωb 0 0 0
0 h̄ωa1 0 − h̄

2 �e−iνct

0 0 h̄ωa2 0
0 − h̄

2 �eiνct 0 h̄ωc

⎞
⎟⎟⎠. (B4)

As a result, the master equation can be written in a compact
form as

ρ̇ = −i[H, ρ] + 1
2Γ1(|a2〉〈a1|ρ|a1〉〈a2| − |a1〉〈a2|a2〉〈a1|ρ)

+ 1
2Γ2(|a1〉〈a2|ρ|a2〉〈a1| − ρ|a2〉〈a1|a1〉〈a2|)

+ 1
2Γb(|g〉〈b|ρ|b〉〈g| − |b〉〈g|g〉〈b|ρ)

+ 1
2Γ ′

b (|b〉〈g|ρ|g〉〈b| − ρ|g〉〈b|b〉〈g|)
+ 1

2Γc(|g〉〈c|ρ|c〉〈g| − |c〉〈g|g〉〈c|ρ)

+ 1
2Γ ′

c (|c〉〈g|ρ|g〉〈c| − ρ|g〉〈c|c〉〈g|) + H.c., (B5)

where |g〉 is the ground state.
Finally, we can obtain the differential equations for the

elements of the density matrix as

ρ̇a1a1 = i

2
�(e−iνctρca1 − eiνctρa1c) − Γ1ρa1a1 + Γ2ρa2a2 ,

(B6)

ρ̇cc = i

2
�(eiνctρa1c − e−iνctρca1 ) − Γcρcc, (B7)

ρ̇a2a2 = −Γ2ρa2a2 + Γ1ρa1a1 , (B8)

ρ̇a1c = −iωa1cρa1c + i

2
�(e−iνctρcc − e−iνctρa1a1 ) − γa1cρa1c,

(B9)

where ωa1c = ωa1 − ωc, γa1c = 1
2 (Γ1 + Γc) + γ (0)

a1c . For the
off-diagonal elements of the density matrix, the effect of trans-
verse relaxation rate γ (0)

a1c should be considered.
In the interaction picture with respect to H0, the master

equation reads

˙̃ρa1a1 = i

2
�(ρ̃ca1 − ρ̃a1c) − Γ1ρ̃a1a1 + Γ2ρ̃a2a2 , (B10)

˙̃ρa1c = i

2
�(ρ̃cc − ρ̃a1a1 ) − γa1cρ̃a1c, (B11)

˙̃ρcc = i

2
�(ρ̃a1c − ρ̃ca1 ) − Γcρ̃cc, (B12)

˙̃ρa2a2 = −Γ2ρ̃a2a2 + Γ1ρ̃a1a1 . (B13)

Here, we have used νc = ωac. In other words, we assume that
the driving field is resonant with the transition.

Furthermore, we assume that the population relaxation
of state c can be neglected. Thus, Eq. (B12) is further
simplified as

˙̃ρcc = i

2
�(ρ̃a1c − ρ̃ca1 ). (B14)

APPENDIX C: REPHASING SIGNAL

It is known to all that in experiments it is a challenge to sep-
arate two pathways, i.e., R2 and R3, in the rephasing direction
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FIG. 5. Four Feynman diagrams of R3.

ks = −k1 + k2 + k3. In this section we further consider the
ground-state bleaching R3. The two-sided Feynman diagrams
of the four possible processes in R3 are shown in Fig. 5.
When considering R3, we explore the effect of the population
dissipation of energy level b on the whole spectrum. It is found

FIG. 6. Rephasing signal for 2DES when t2 = 3Γ −1
b and ωa1b −

ωa2b = 0.18Γ1, and (a) kBT = 0.01Γ1, � = 0, (b) kBT = 0.01Γ1,
� = 9Γ1, (c) kBT = 0.1Γ1, � = 9Γ1, (d) kBT = 5Γ1, � = 9Γ1.

that a similar phenomenon appears in the whole rephasing
signal, as shown in Fig. 6.
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