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Tridiagonal matrix decomposition for Hamiltonian simulation on a quantum computer
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The construction of quantum circuits to simulate Hamiltonian evolution is central to many quantum algo-
rithms. State-of-the-art circuits are based on oracles whose implementation is often omitted, and the complexity
of the algorithm is estimated by counting oracle queries. However, in practical applications, an oracle imple-
mentation contributes a large constant factor to the overall complexity of the algorithm. The key finding of
this work is the efficient procedure for representation of a tridiagonal matrix in the Pauli basis, which allows
one to construct a Hamiltonian evolution circuit without the use of oracles. The procedure represents a general
tridiagonal matrix 2" x 2" by systematically determining all Pauli strings present in the decomposition, dividing
them into commuting subsets. The efficiency is in the number of commuting subsets O(n). The method is
demonstrated using the one-dimensional wave equation, verifying numerically that the gate complexity as a
function of the number of qubits is lower than the oracle-based approach for n < 15 and requires half the number
of qubits. This method is applicable to other Hamiltonians based on the tridiagonal matrices.
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I. INTRODUCTION

Simulation of quantum Hamiltonians is one of the first di-
rections that can potentially demonstrate quantum advantage
[1]. Over the years this field has evolved, and great progress
has been made since the first description [2]. The latest de-
veloped techniques, such as the quantum walk algorithm [3],
simulation by qubitization [4], and others [5-8], are often
described in terms of calls to an oracle, but the construction
of the oracle is usually not specified. In a notable exception
from the above, the oracle is constructed in Ref. [9] and the
constant factor in gate scalability is calculated.

The standard approach to implement a circuit for Hamil-
tonian simulation on a quantum computer is to decompose
the Hamiltonian H into a sum of Pauli strings (tensor product
of Pauli matrices) and approximate the operator e~"#! with
product formulas [10,11]. With a naive approach, the number
of Pauli strings to consider is 4" if the size of H is 2" x 2".
It was conjectured that modeling e~ using this approach is
more efficient if one can group the resulting Pauli strings into
commuting sets [12—14]. It was shown that the set of all Pauli
operators (without identity) of size 4" — 1 can be divided into
2" 4 1 different subsets, each consisting of 2" — 1 internally
commuting elements [15].

The problem of partitioning a Hamiltonian decomposi-
tion in the Pauli basis featuring sets of commuting operators
was studied in the framework of simultaneous measurements
[16]. Typically, this problem may be solved by building a
graph with Pauli strings as nodes, connected if they commute,
i.e., the clique problem. Further, it can be reduced to the
graph-coloring problem which is NP-complete, but heuristics
exist [17].
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In this work we consider Hamiltonians of a special kind
which are constructed using tridiagonal matrices. Tridiagonal
matrices come to light in many different areas of mathe-
matical and applied sciences, commonly in the discretization
of differential equations [18,19], and are used to repre-
sent discretized versions of differential operators in quantum
computing.

The proposed procedure decomposes tridiagonal matrices
into O(n) internally commuting subsets of Pauli strings, each
subset having size O(2"). It also provides the coefficients
(weights) for each Pauli string in the decomposition. It au-
tomatically leverages the structure of the tridiagonal matrix
to remove the majority of the redundant Pauli strings with
zero coefficients and provides an upper bound for the number
of Pauli strings with nonzero weights. Moreover, it contains
a formula for calculation of the weights separate from the
symbolic generation of Pauli strings.

We illustrate our method using the Hamiltonian of the
one-dimensional wave equation as an example and numer-
ically show the dependence of the number of gates on the
number of qubits. We also show that our method for n < 15
qubits has fewer gates for practical applications than one
with the oracle implementation, despite worse theoretical
scaling.

This work is organized as follows. In Sec. II we intro-
duce the notation and useful mathematical constructs. The
decomposition algorithm for an arbitrary tridiagonal matrix
is described in Sec. III, followed by specific variants for
real and real symmetric tridiagonal matrices. Section IV is a
special case of a symmetrized matrix H constructed from a
real matrix B such that both B and B are on the antidiag-
onal. In Sec. V we focus on Hamiltonian simulation, while
in Sec. VI the method is illustrated with an example of the
one-dimensional wave equation. We defer longer proofs to the
Appendix.

©2024 American Physical Society
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TABLE 1. Notational convention. Here, x = (x1,...,x,) € B",
y=O1,...,yY,) € B", and X and Z are Pauli matrices.
Notation Definition
X Negation, X = (X1, ..., X,)
x¥ Exponentiation, x¥ = (x}', ..., x")
X-y Inner product, X -y = Y ;_, x,y;
8(X,y) Kronecker delta, 5(x, y) = []_, 8,
4l 7Y = ®;‘:1 VA AT SR WAL

II. NOTATION AND DEFINITIONS

The Pauli matrices constitute a basis for the complex
vector space of 2 x 2 matrices and comprise operators
P={I,X,Y, 7}, where

=0 D= o)
r=(0 %) 72=( %)

A tensor product of several Pauli matrices is called a Pauli
string. The length of a Pauli string is the number of Pauli
operators in the string, and it is exactly n when decomposing
a 2" x 2" matrix. We denote the set of Pauli strings of length
naspP,.

The Pauli basis decomposition of an arbitrary matrix B is
given by

M
1
B:E;ajpj, P; € Py, (1)

where M is the number of terms in the decomposition and
a; € C in general. Hereinafter we omit the tensor sign when
writing Pauli strings (e.g., X ® Y ® Z®Y 1is abbreviated as
XYZY).

Manipulation of Pauli strings is possible with bit arith-
metic. For a single bit x, p € B = {0, 1} we use the following
notation for powers:

W=x®p=x®pD1,

where @ is XOR (addition modulo 2). Definitions for strings
of bitsx = (x,...,x,) € B", wherex; € B, j=1,...,n,are
summarized in Table 1.

For x € B" we define the vector |x) € (C?)®" as

n

%) = @) ) = Ixi, ... x). )

=1

Further, we define the function that converts non-negative
integers to binary

BIN : N U {0} — B". 3)

Note that BIN as well as the bit string x are encodings of an
integer, where the leftmost bit encodes the lower register. For
example, the string 1101 is the encoding of 1 x 1 +1 x 2 4
Ox4+1x8=11

To express Pauli strings with X and Z matrices we use bit
strings z, X, p € B" and definitions in Table I,

Zp) = @ Z%|p1) = (=1)*"|p), “4)

=1
X¥p) = QX" Ip) = pY). ©)
=1

An arbitrary Pauli string can be defined as the image of
the extended Pauli string operator (Walsh function) W : B" x
B" — P, as follows:

n
W(x, z) = i**X*2" = (X VX927, (6)
j=1

with the ordinary matrix product between X* and Z*. It can
be seen that the Walsh function is bijective. Thus, each Pauli
string can be encoded with a unique pair (x, z) and (1) can be
rewritten as

B= zl > BV (x.2), 9
x,zeB"
where By, € C. There is one-to-one correspondence between
aj from (1) and By , in (7).

By {P;, P}®" we denote the nth Cartesian product
of the set {P;, P»} with elements interpreted as Pauli
strings. For example, {P;, P,})®*> = {P,, P} @ {P|, P,} =
{PrQ P, PPQP, P, P, P, ® P»}. As before, the product
Py ® P; is abbreviated P P;.

III. TRIDIAGONAL MATRIX DECOMPOSITIONS

We consider an arbitrary tridiagonal matrix B € CV*V,
where N = 2" of the following form:

ci a 0 ... 0 0 0
by ¢ a ... 0 0 0
0 by ¢s ... 0 0 0
B=1": : P : : : . (8)
0o 0 O CN_2 an_» 0
0 0 0 bv_o cn-1 an-—i
o o0 o0 ... 0 by_1 CN

Proposition 1 provides the maximal possible set of Pauli
strings with nonzero coefficients in the decomposition of an
arbitrary tridiagonal matrix with complex entries. We limit
our consideration to tridiagonal matrices with only real entries
(proposition 3), and further, we consider only tridiagonal sym-
metric real matrices (a; = b;) in corollary 2 and provide the
maximal possible set of Pauli strings with nonzero coefficients
in each case, as well as provide a possible partitioning of these
strings into sets of internally commuting operators.

A. Pauli strings present in the decomposition

We formulate the following proposition regarding the de-
composition of an arbitrary tridiagonal matrix B with complex
entries shown in (8) into Pauli strings:

Proposition 1 (Decomposition of an arbitrary tridiag-
onal matrix). An arbitrary tridiagonal matrix B € CV*V,
where N = 2", can have Pauli strings in its decomposition
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with nonzero coefficients only from the union of the following disjoint sets with total cardinality of (n + 1)2" :

0. .z} ® {,Z} ®
L. {1.Zzy ® {,Z} ®
2. {,zy ® {1.Z} ®
3. {.zy ® {,Z} ®
n—1. 1.2} ® XY} ®
n. X, v} ® X, v} ®

® {,Z} ® {.Z} ® {7}
® {,Z} ® {,Z} ® ({X,Y}
® {,Zz} ® {X,)Y} ® ({X,r}
® X,)ry} ® X, ¥} ® ({X,v}
® X,)rYy ® XY} ® ({X,Y}
® X,)ry} ®© X, v¥} ® ({X,r}

The first step in the procedure for decomposition of a
tridiagonal matrix in the Pauli basis (1) consists of symbolic
generation of Pauli strings starting from all diagonal {/, Z}
operators to all antidiagonal operators {X, Y} by replacing one
diagonal operator on the right with an antidiagonal operator
at each step m. The decomposition weights can be calculated
later, based on the selected Pauli strings, see Sec. III B. Note
that the cardinality of the union in proposition 1 is based on
the structure of an arbitrary tridiagonal matrix; weight calcu-
lation may result in fewer Pauli strings in the decomposition.

We denote the sets in proposition 1 as

StL={I, 2" X, Y}®", m=0,....n. (9

When m = n (m = 0) the first (second) tensor product is omit-
ted. Each step m generates 2" Pauli strings, and we divide
these strings into two sets named S,, + and S, _, where +
indicates that the number of ¥ operators in every Pauli string
in the set is even and — indicates that this number is odd.
When m = 0, there are no Y operators, so we will denote it
as Sp. Note that each m corresponds to a row labeled by m in
proposition 1.

The bit string notation from Sec. II provides a concise
description of sets S), , where the correspondence to m is

m,
given by bit string x as follows:

Spy = {W(x z):x-z=0(mod 2), x=V,, ze[B”},
Sy = {W(x, z):x-z=1(mod2), x=V,, z € [B”},
(10)

where V' is a selector with m bits set to one and the following
n—m blts set to zero, like V" = (1, ..., 1,0, ..., 0), formally:
N—

m

m n—m

S
VE= (o), o= {(1) Z:j . D
The bit string x corresponds to m such that the first m positions
of the bit string set to one, and the remaining (n — m) positions
are all zeros. To generate each subset an, 4, Z traverses all
numbers 0, ..., n and the generated Pauli strings are sorted
according to the outcome of X - z.
Each of the subsets §,, , contains commuting Pauli strings
due to the following proposition:
Proposition 2 (Commutativity criterion). Let P = W(X, z)
and Q = W(a, b) be two Pauli strings of length n, where
X,z,a,b € B". Then, P and Q commute if

x-b=a-z(mod?2). (12)

n

Corollary 1. Let P =W (x,z) and Q = W(x,b) be two
Pauli strings of length n, where x, z, b € B". Let the parity of
Y operators in both strings be equal, then P and Q commute.

Proposition 2 and corollary 1 are proven in Appendix A 2.
We reach a conclusion that S;, . and S, _ each are internally
commuting subsets. Therefore the general matrix decompo-
sition will have 2n + 1 internally commuting subsets.

Analogous to the general case, for a real tridiagonal matrix
B the following proposition will hold:

Proposition 3 (Real tridiagonal matrix). A real tridiago-
nal matrix B € RV, where N = 2", can have Pauli strings
in its decomposition with nonzero coefficients only from the
union of 2n 4+ 1 disjoint internally commuting sets S, +, 2n
of which have a cardinality of 2"~! each and one of which is
given by Sp + and has a cardinality of 2". The cardinality of
the union is (n + 1)2".

For the case of a real symmetric tridiagonal matrix B the
symmetry will enable additional cancellations in the decom-
position, such that only S, + may be present. This is reflected
in the following corollary:

Corollary 2 (Real symmetric tridiagonal matrix). A real
symmetric tridiagonal matrix B € RV, where N = 2", can
have Pauli strings in its decomposition with nonzero co-
efficients only from the union of n+ 1 disjoint internally
commuting sets, n of which are given by S, + and have a
cardinality of 2"~! each and one of which is given by Sy
and has a cardinality of 2". The cardinality of the union is
(n+2)2"1,

For convenience we omit the superscriptnin §;), | and omit
the +, when the length » and parity is clear from context.

B. Decomposition weights

In order to calculate the coefficients (weights) of the pro-
posed decomposition, it is easier to separate the calculation
of the weights for the “diagonal” and “off-diagonal (antidiag-
onal)” subsets. The matrix B can be written as a sum of the
diagonal D and off-diagonal F matrices: B = D + F'. The di-
agonal matrix D after decomposition consists of Pauli strings
of length 7 in the subset Sy containing only Z and I operators.
The coefficients By , of corresponding W (x, z) within this first
internally commuting set can be calculated as

2"—1

Boz= Y (=1, (13)

p=0

where ¢, is a diagonal element of the matrix B as in (8) and 0
is (0,...,0),z e B".
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FIG. 1. Illustrating the contribution of commuting subsets S, +
to decomposition of the matrix B. Same colors contribute to the same
commuting subset. Colors: S| — green, S, — blue, S5 —red, S4 — black.

For the off-diagonal matrix F, the weights By, of the
decomposition [see (7)] may be calculated for each W (x, z)
in a subset S, + given in (9) as follows:

L)
Bra= Y ¥ (—1)*PNPSBIN(p + 1), BIN() a,
p=0

2"—1
+ 37 MU= BNOSBIN(p— 1), BING) )b

p=1

(14)

where (x,z) corresponds to (10), and a, and b, are the
off-diagonal elements of matrix B as in (8). The expression
BIN( p)x is calculated as the bit-wise XOR of bit string x with
the inverted bit string p.

Note that (14) holds only for the decomposition of
off-diagonal elements, while (13) holds only for the diag-
onal elements of matrix B. These formulas are derived in
Appendix A 1.

C. Visualization of commuting subsets

The elements of matrix B can be used to calculate the
coefficients of Pauli strings in its decomposition using (14).
In Fig. 1 we show the correspondence between elements of B
and subsets S, which contain the corresponding Pauli strings.
The diagonal consists of Pauli strings containing only Z and /
operators and corresponds to Sy. For the off-diagonal elements
we are left with n subsets S, + specified in (9). To show the
correspondence, consider the off-diagonal component F of a
real symmetric matrix B for n = 4. For a symmetric matrix
(see cor0311ary 2) we have the following subsets with size
2=l =23

Si+=1{1,2)* ® (X},
So =1{1,Z)%* @ (XX, YY)},
S3. ={,Z} ®{XXX,XYY,YXY,YYX]},

Sy = {XXXX,XXYY,XYXY,XYYX,
YXYX,YXXY,YYXX,YYYY}.

Figure 1 illustrates how these subsets correspond to the el-
ements of a 2* x 2* matrix B. Each Sy, m=1,...,41s
given a color and the structure is apparent. The length of the
antidiagonal segment is equal to 2™, where m is the number of
the {X, Y'} Pauli operators on the right in the S, expression.

The said structure not only appears for real symmetric ma-
trices. It follows from the associativity of the tensor product,
where we take the n — m matrices from the set {/, Z} on the
left with m matrices from the set {X, Y} on the right. For each
Pauli string P from the subset S,, . we have

P =Pp®Fy, 15)

where Pp is a diagonal matrix of size 2" x 2"7™ and P, is
an antidiagonal matrix of size 2™ x 2.

IV. DECOMPOSITION FOR A SYMMETRIZED MATRIX

A Hermitian matrix H can be constructed from any

matrix B as
0 B
H = (BT O)' (16)

As before, consider the case where the matrix B is tridiagonal
of size 2" x 2", therefore the size of H is 2"t! x 2"*+! Here,
we assume B to be real and therefore H is symmetric. The
following statement holds:

Corollary 3. The number of terms in the decomposition of
a symmetric matrix H (16) is equal to the number of terms in
the decomposition of the real matrix B and is bounded above
by (n+ 1)2". The Pauli strings in the decomposition of H
can be partitioned into the following subsets of commuting
strings:

So= (X} QU.Z}. (m=0).
1
S = {ﬁ}@{l,Z}@{X,Y}, m=1,...,n—1,
1 1

S, = (X, VI QX Y}, (m=n),
1

where the expression {Y\Y} selects X or Y such that the
number of Y operators in each Pauli string is even.

The weights of the decomposition of H may be calculated
using formulas (13) and (14). For any square matrix B with its
Pauli decomposition given in (7) the following equality holds:

1

H=— ) Repo,X —ilmp , XZ)@W(x.2);  (17)

x,zeB"

for details see Appendix A 3.

Consider a symmetric matrix H (16) consisting of B and
BT with n = 4 as an example. According to corollary 3, Pauli
strings in the decomposition of H can be arranged into the
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FIG. 2. Illustrating the contribution of commuting subsets S,, to
decomposition of the matrix H of size 2° x 2° with B and B of
size 2* x 2*. Same colors contribute to the same commuting subset.
Colors: S| — green, S, — blue, S3 —red, S, — black. Sy corresponds to
the diagonal of each B matrix.

ilcs 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

following sets:

So=X ® {I.LZ} ® {I,Z} ® {I,Z} ® {I,Z},

Si= XV} ® (1.2} ® {1.Z} ® {1.Z} ® {X,Y},

= X7} ® (1.2} ® {1.Z} ® X.Y} ® {X.Y},
Sy= {X,¥} ® (1.Z} ® (X.Y} ® {X.Y} ® {X.Y},
So= (X.V) ® (XY} ® (X.V} ® (XY} ® (X.Y).

These are similar to subsets which arise in the decomposi-
tion of a real symmetric matrix B, but now the size of each
subset is 2". This follows from the fact that the terms with
an odd number of Y operators, which were zero for the real
symmetric case, now appear in the decomposition because the
Y operator can be selected as the leading term to make the
number of Y operators even (see corollary 2). Figure 2 shows
which elements correspond to which set for the matrix H of
size 2° x 2°.

V. CIRCUIT FOR HAMILTONIAN SIMULATION

We have shown the two steps in matrix decomposition,
namely, the generation of Pauli strings based on matrix
structure and the calculation of decomposition weights. Im-
portantly, Pauli strings are assembled into commuting sets.
The information about commuting sets may serve to reduce
the circuit complexity of Hamiltonian simulation [13] and
to accelerate simulation of quantum dynamics on a classical
computer [12]. In this section we use this approach to con-
struct a circuit for Hamiltonian simulation.

The parameters that should be taken into account when
implementing the evolution of the Hamiltonian [4] include
the number of system qubits n, evolution time ¢, target error
€, and how information on the Hamiltonian H is accessed by
the quantum computer. Our circuit does not require additional

TABLE II. Diagonalization operators D; for a real symmetric
tridiagonal matrix of size 2% consisting of the Hadamard operators
H, the controlled-NOT CX(c, t), and controlled-Z CZ(c, t) operators,
where ¢ and ¢ are the control and the target qubits, respectively.
Qubits are labeled from 1 to 4.

Dy Simultaneous diagonalization operators for subset S

D, HHHI CX(1,4) CX(2,4)CX(3,4) HHHH

D, HHHI CX(1,3) CX(1,4) CX(2,3)CX(2,4) CX(3,4)
CZ(1,4)CZ(2,4) CZ(3,4) HHHH

D; HHHI CX(1,3)CX(1,4)CX(2,4)CX(3,4)
CZ(1,4)CZ(2,4)CZ(3,4) HHHH

D, HHHI CX(1,2)CX(1,4)CX(2,3)

CZ(1,3)CZ(3,4) HHHH

qubits, and it does not use oracles to access information. As
we organized a large number of Pauli strings into an exponen-
tially smaller number of commuting subsets, we could expect
improvement in the accuracy according to the Trotterization
formula.

The task of Hamiltonian simulation is to implement the
operator e~''" on a quantum device. For an operator H rep-
resented by a tridiagonal or symmetrized (as discussed in
Sec. IV) matrix H, the quantum circuit is constructed as
follows.

First, we generate internally commuting sets of Pauli
strings {S,, .} needed for the decomposition of H. These
strings can be simultaneously diagonalized [12,13]. As an ex-
ample, Table II contains the diagonalization operators Dy for
the real symmetrical tridiagonal matrix of size 2* discussed
in Sec. III C. Note that Dy is an identity since the Sy set is
already diagonal. These procedures, i.e., the generation of
the commuting sets of Pauli strings and optional simultane-
ous diagonalization, are determined by the tridiagonal matrix
structure. These steps do not need to be repeated when the
matrix changes values, making this approach suitable for use
in variational algorithms [20,21].

When a quantum state evolves in time under the action
of =" and the matrix H is represented in Pauli basis as in
formula (1) [or, equivalently, as in (7)], the Lie-Trotter product
formula [10] and its higher-order variants [11] should be im-
plemented, taking the internally commuting sets into account.
Given the time evolution governed by the Hermitian H and
the number of Trotter repetitions r, using our decomposition
we have

—1t
—itH
e =ex v zW (X, Z)
Pl 2 P
x,zeB"
2n . r
—1t -
=|[Texp (55 ) | +e. (18)
21y

where S; = >, ,BXk,ZW(xk, z) are renumbered Pauli strings
from subsets S, + defined in (10), which contain up to 2"
terms each. The approximation is constructed with a Lie-
Trotter product formula for 2n + 1 internally commuting sets
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S+ of Pauli strings, and the accuracy can be estimated as

2n . r 2
—itH —u 5 t

€= |e " — Hexp ( Sk> = 0(—>, (19)
o 2y r

where || - || denotes the spectral norm. The expression (18) can
be diagonalized as

lz_n[ex _itS’
p 28y k
k=0
2n —it
=]]exp |:2”r > BueaW (xt. Z)}
k=0 z
2n —it
=[1[b! . 2k 2 | Di, 20
g kexp<2nr;ﬁk. k.> e Q0

where Dy is the diagonalization operator for each subset S.
The number k fixes the string X, and the inner summation
over z covers the commuting subset as in (10). The operator
Ay, is a diagonal operator corresponding to W (xy, z). It is
important to note that the coefficients B remain the same after
diagonalization, or in other words, diagonalization depends
only on the structure of the matrix (i.e., depends only on the
Pauli subset) and does not depend on the values of the matrix
elements. The computation of Dy, is done by using Clifford al-
gebras [12,13]. The Dy operators consist of the combinations
of the single-qubit Hadamard operators and the two-qubit CX
and CZ operators; the number of gates in Dy scales as on?),
where 7 is the number of qubits.

It can be seen that in order to evaluate the propagator e~
as in (18) and (20), one has to compute the coefficients By,
and implement 2n + 1 diagonal exponents Ay ;. The coeffi-
cients can be computed by using formulas (13) and (14), and
in order to implement 2n + 1 diagonal exponents, one can use
the results from Ref. [22], where it is shown that the gate
count for a circuit which implements the diagonal exponent
can be reduced to O(N’) gates with N’ < 2", without ancillary
qubits.

Combining all the results together, we obtain gate
complexity estimated as O[r(2n + 1)(2n% + 2")] = O(rn2"),
since for one Trotter step for each of 2n + 1 commuting sets
one needs to implement D, D', and diagonal exponents.
When considering the Trotter formula of an arbitrary
order p, each Trotter step will contain O(5/2!) times
more gates, but the accuracy € will be achieved in fewer
steps r. In Ref. [11] the Trotterization error considered
by leveraging information about commutation and the
following scaling is given: € = 0(““‘";+’W) with eomm =
gy W [Hyp, Hyl, I and H = 375 Hj,
where H; are anti-Hermitian (which is the case since simu-
lation of €7 is considered in Ref. [11]). It is an interesting
question whether it is possible to obtain some tight upper
bound for acomm. For now, we will use scaling provided by

the authors in Ref. [23], i.e., € = O(W), where

rP
H = Z}jw:] H;. Note that in this formula H can be considered
as the sum of 2n 4 1 matrices formed from commuting sets.
Thus, M =2n+ 1 and the resulting number of gates g is

iHt

given by

tn|H|\Y?
g=O|:tn22”5P||H||<n”6 ”) } Q1)

This scaling can be made more accurate by taking into
account information about the commuting sets. This can be
seen for the case where all Pauli strings commute, making
the Trotter error equal to zero. It is possible to find some
order of Pauli strings that will reduce the error, but since the
number of all possible combinations grows exponentially, this
is a difficult task [24].

VI. QUANTUM SIMULATION EXAMPLE: SOLVING
THE WAVE EQUATION

Tridiagonal matrices arise when discretizing derivatives.
For example, the solution of the heat equation u,(x,t) =
[k (x)uy(x, t)]y may be written as [19]

u(x,t) = u(x, 0),

where B is a real symmetric tridiagonal matrix as in Sec. III.

Another example is the wave equation, considered here in
more detail. The wave equation in one dimension with ampli-
tude u(x, t) and speed c(x) defined in the interval x € [0, 1] is
given by

 (x, 1) = [, O]y ux,0) €R. - (22)

We consider the case of the Dirichlet boundary conditions and
set the initial conditions for u and u, as follows:

u(0,t) =u(l,t) =0,
u(x,0) = gx), u(x,0)=0. (23)

telRy,

Following Costa et al. [25], we reduce (22) to the
Schrodinger equation. Thus, consider the Hamiltonian in the
following form (% is space discretization step):

R 24
_E(B* o)’ 24

which leads to the Schrédinger equation (we use natural units
such that 77 = 1) with a two-component quantum state ¥ =

(Pv. d6)",
ﬁ((bv)_j 0 B (¢v>
di\eeg) — n \B" 0J\¢g)

This recovers the original (discretized) wave equation (22) if
—BB' = L, where L is the Laplacian giving an approximation
of the second-order space derivative. To apply the method
proposed in this work, we need the matrix B to be square
and have the size 2" x 2", so we slightly change the matrix B
proposed by Costa et al. [25] by writing the Dirichlet bound-
ary conditions explicitly, and we have also incorporated c(x)
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into this matrix:
0O 0 O 0
0 —C2 C3

0 0 —C3 C4

Byxy =

0 0 0 0 . —CN-2 CN—1 0

0 0 0 0 . 0 —CN—1 CN

0O 0 O 0 0 0 0
The wave speed values ¢, k=1,...,N with N =2" re-

sult from the discretization of the speed profile c(x). The
resulting Hamiltonian H has the form described in Sec. IV.
Based on (17) the coefficients of the decomposition are
given by

2"-2

Boo=— Y (=1)PNO¢
k=1

2"-2
S (=1 BNOSBING + 1), BING) e,
k=1

Bx.z

(25)

where X = x(m, n) =V, as defined in (11).

Note that with our decomposition the expansion weights
contain wave speeds explicitly. Therefore, this provides a
method to solve partial differential equations with variable
coefficients (piecewise constant over the discretization step
dx), since decomposition can be done only once and weights
recalculated.

We have implemented the solution for wave equation and
use it with a constant speed ¢ = 1 to determine the number
of Trotter steps and the corresponding total number of gates
needed to reach the set accuracy € < 1073 (evolution time is
t = 1). This is shown in Fig. 3 as a function of the number of
qubits n supporting discretization N = 2".

The gate complexity of our algorithm for solving the wave
equation is calculated as

tnN 1/p
gld=0|:5ptn2N2<nT> } (26)

using [|H]| < |4C%| = O(N), and for p = 2 is shown with a
solid line in Fig. 3. The dashed lines in Fig. 3 represent manual
approximation to experimental points with

ga = yNVlog(N)* = yN"n", with
v=154+1/p, uw=2+1/p, 27
and the constant factor
y =25/27110%7, p=24,

y = 5/*1107r, p=e.

The actual number of gates g, scales better than the the-
oretical one gi; in formula (21). This is due to the factor

Gate count for accuracy 10~

—— Theoretical scaling (p=2)
10Y7{ — suauetal. (p=2)

1s *x p=2
10 s p=4
* p=6

Total number of gates
=
o

10°
10’
10° o
'y
2 4 6 8 10 12 14

Number of qubits for discretization
FIG. 3. Number of gates to approximate e~"" with accuracy € =
10~> for one-dimensional wave equation Hamiltonian (24). Points
represent number of gates obtained in the simulation. Red solid line
shows the theoretical gate scaling given by (26) for Trotter order p =
2. The black solid line shows number of gates from Ref. [9]. Dashed
lines are fit to the simulation data with (27).

v=15+41/p <2 in the exponent of 2" = N, the number
of the discretization points. The constant scaling factor is
about ~100, and the implementation is economical. Note that
due to the two-component Hamiltonian used in the solution
(24) of the Schrodinger equation, the actual number of qubits
isn+1.

Theoretical gate complexity for the approximation error
€ using an oracle is calculated in Ref. [9] and is shown
in Fig. 3 with a solid black line. In this reference the
authors show oracle implementation of the algorithm pre-
sented in Refs. [3,25] with the gate complexity given by
O[57tn®N(%)!/P]. Here, the scaling factor is ~O(N'*/7),
which is better than ours [v = 1.5 4+ 1/p in (27)] but with a
constant factor of ~300 000.

Therefore, when comparing our implementation with the
oracle based for Trotter order p =2, we obtain a smaller
gate count for number of qubits n < 15. The oracle-based
algorithm is also using > 2n qubits to implement oracles and
thus is less economical than our approach.

VII. CONCLUSION

We have presented an effective procedure for decomposi-
tion of a N x N tridiagonal matrix where N = 2" into 2n + 1
subsets of commuting Pauli strings. Each of these subsets
has 2" Pauli strings of length n in a general case. Significant
for applications is the decomposition of a Hermitian matrix
consisting of two real tridiagonal matrices of the given type on
the antidiagonal. For such a matrix there are n + 1 internally
commuting subsets with 2" Pauli strings of length n each, as
shown in corollary 3. The suggested decomposition procedure
considers only nonzero Pauli strings candidates, therefore im-
proving on the brute-force method which examines all 4!
possible Pauli strings.

This advantage shows up in the calculation of the de-
composition coefficients (weights, Sec. III B), because only
the potentially nonzero Pauli strings participate in the
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evaluation. For the Hermitian matrix mentioned above there
are O(N logN) binary multiplications in the evaluation of
one expansion coefficient: we need to compute O(1) products
of bit strings with length O(log N) for each term [see (14)].
This compares favorably with the brute force approach using
trace and matrix multiplications with complexity O(N3). The
Pauli matrices are sparse, which reduces the complexity of
the brute force method to O(N?) (e.g., Ref. [26]). Still, the
presented decomposition procedure has exponentially fewer
multiplications.

An additional advantage of the presented decomposition
is the automatic availability of the commuting subsets. Each
of these subsets can be simultaneously diagonalized. This
presents an opportunity for complexity reduction when evalu-
ating the Hamiltonian.

For a practical demonstration of the proposed decompo-
sition procedure we constructed a circuit for Hamiltonian
simulation using an example of the one-dimensional wave
equation (Sec. V). It is a case where a tridiagonal matrix nat-
urally arises in the discretization of the differential equation,
while the Hamiltonian is of the type considered above. There
have been numerous studies of this example in the literature;
in particular, there is an implementation using an oracle for
the Hamiltonian evolution [9].

Our main result is captured in Fig. 3, where we show
that the computational complexity, specifically the number of
gates needed to reach the accuracy of 1073, scales better than
a theoretical estimate. It is also better than the oracle imple-
mentation [9] for small circuits n < 15, with an additional
advantage that the number of qubits needed to implement
the Hamiltonian evolution with the presented method is by
a factor of two smaller than the oracle approach for any size
matrix.

We believe that our method can be applied to the five-
, seven-, and more-diagonal matrices which arise in the
discretization of differential in two and three dimensions.
Therefore, this will be a natural extension of our study.

We have formulated our results using Walsh operators
which lift to a map on boolean strings. Similar results can be
obtained by using Pauli strings directly. However, we believe,
using this approach, the propositions on commuting sets and
the other relevant results can be expressed algebraically in a
concise and simple form.

Finally, we believe that the found commuting subsets are
minimal, however a rigorous prove is deferred to future work.

The PYTHON code for the numerical experiment presented
in Fig. 3 is available on GitHub [27].
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APPENDIX: PROOFS

1. Formulae for decomposition coefficients

We call matrix B an upper /-diagonal matrix if it has the
following form:

e I
: : : Adyyn_1—]

and can be written as

2n—1-1
B= Y aBIN(k))(BIN(k + 1)
k=0
2M—1—1
= Y @8Bix(p1).BING BIN(p)) (BIN(g)).
P,q=0

(A2)

Similarly, the lower [-diagonal matrix is introduced as the
transposed upper /-diagonal matrix, thus we will not consider
this case separately and limit ourselves to the upper /-diagonal
matrix. We also note that Pauli strings present in the decom-
position of some matrix B will be the same for B because all
Pauli matrices except Y are symmetric and Y T = —Y, so after
transposition Pauli strings in decomposition will be the same,
but coefficients may change a bit.

Proposition 4. Let B be an upper /-diagonal matrix. If a
Pauli string P enters the Pauli string decomposition of matrix
B e C?"** nontrivially, then 3p € {0, ..., 2" — 1 — [}

BIN(p + 1) = BIN(p) ®x, (A3)

where x and z is such that P = W (x, z).
Proof. Let B € C?'*?" then decomposition into standard
basis may be written as

B= Y bpqlp)gl- (A4)
p

.qeB”

On the other hand, decomposition into Pauli basis in C>"*?"'
takes the form

1 N
B= ) BuWix2), (A5)

x,zeB"

where coefficients By, € C. These coefficients can be found
by taking the inner product of matrix B and W and using
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formulas (4) and (5) from the main text.

Bro=TrBW(x, 2)] = Tr| > bpopH@li™*X 2" | =Y (sI| D bpalp)(@li**X*Z" |Is)

p.qeB”

seB” p.qeB”

=D Y (slbpqlp) @ (=1 F) =D Y bpg(s)p@SiH(—1)

seB" p,qeB"

=D D Deabapbae ™10 = Y bpgdy =) = ) K= D) Pl

seB" p,qeB” p.qeB”
Since from (A2) we have
m—1-1
B= )" apepnengBIN(D)(BIN(Q), (A7)
p.q=0

we can obtain by, 4 by equating the coefficients for |p){(q| and
IBIN(p)) (BIN(g)|:

bp.q = bBIN(p),BIN(g) = @pOBIN(p+1),BIN(q)- (A8)

Substituting this expression into (A6), we obtain final formula
for the coefficients
211

_ X-Z z-BIN(p)
Bxz = Z H(=1) SBINGp+1) BINGY @
p=0

(A9)

Hence, for By, # 0 there should exist a solution p €
{0,...,2" — 1 — I} to the following equation:
BIN(p + 1) = BIN(p)' = BIN(p) & BIN(x). (A10)

2. Proof of proposition 1 for decomposition of general
tridiagonal matrix

Proof of Proposition 2.
PQ =W(x,2W(a,b)

n
— ® Fra g jarb ya zb
=1

n
— ® Fra l-a1~b1 (_ 1)Zz~a1Xx1XazzZIZb/
=1

n
— ® pa b (-1 )ZI-HIXEIXXIZb/ 73
=1

- ® Rl G DRI CN DRiD CVAD GV AL
=1
= (—1)*3(=1 )x-b é o jarby e anzbi 7z
=1
= (=1)"*(=D)**W(a, )W (x, 2)
= (—1)*2(=1)*PQP. (A11)

Thus, we see that two Pauli strings P and Q commute if
z-a+x-b=0(mod?2). |

seB" p,qeB"

(A6)
peB

Proof of Corollary 1. We denote the number of Y opera-
tors in Pauli string P as Ny (P). Let P correspond to W (x, z),

W(x, z) = ()i X" Z%. (A12)
I
Note that if and only if for some /, x; = z; = 1, then
PEXNZY = iXZ =Y. (A13)

Therefore, the number of all bit positions where x; = z; = 1
corresponds to the number of Y in the Pauli string, i.e.,

Ny(P)=x -1z. (Al4)

Since we have x-z=x-b (mod 2) from our assumption,
then from proposition 2 (here a = x) a commutation of P and
Q follows. Which means (12) holds, and therefore P and Q
commute. |

Proof of Proposition 1. A tridiagonal matrix decomposi-
tion comprises terms for the diagonal (I = 0), upper one-
diagonal and lower one-diagonal (that is transposed upper
one-diagonal). To obtain upper bounds on the number of Pauli
strings in the decomposition of B it suffices to check the num-
ber of pairs (x, z) that satisfy the necessary conditions from
proposition 4.

(1) For! = 0in (A3) we get

Left-hand side = BIN(p + 0) = (p1, ..., pu), (A15)

Right-hand side = BIN(p) = @ (A16)
Thus, for a Pauli string to satisfy the necessary conditions,
x = (0,...,0) and z can be arbitrary. Therefore, the maxi-
mum number of Pauli strings in the decomposition of diagonal
matrix is bounded by 2".
(2) Forl = 1in(A3), using binary summation rules (recall

that leftmost bit encodes lowest register), we get

BIN(p + 1) = (p1. p5'. i7", ...).
Since x” = x @ p, we have

[BIN(p + Dl = py,

(A17)

. j—1
J—1
[BIN(p + D]; = pl=" = p; & [ .
k=1

Now we can write (A3) in the following form:

j—1

Pj®x; =Pj€BHPk, j>1
k=1

(A18)
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which means
(A19)

-1
i =[1n
k=1

for j > 1 and x; = 1. It follows that for any p € B", if p; =0,

then x;.1, ..., x, are equal to 0. Therefore, x can only be one
of the following strings:

(1,0,...,0),

(1,1,...,0),

(1,1,...,1). (A20)

Therefore, the maximum number of Pauli strings in the
decomposition of upper one-diagonal matrix is bounded by
n2".

In conclusion, adding the upper bounds for the diagonal,
upper, and lower one-diagonal cases, we obtain that the num-
ber of terms in the decomposition of B is upper bounded
by (n + 1)2" because Pauli strings for upper and lower one-
diagonal matrices will be the same as was mentioned before.
Each of the above strings corresponds to a particular set in the
decomposition of B provided in the proposition. |

3. Proof of proposition 3 for decomposition
of real tridiagonal matrix

Proof of Proposition 3. The condition that the matrix B is
real can be expressed as
B = B*, (A21)
where % means complex conjugation. From definitions (A5)
and (A21) it follows that

1 N
Left-hand side = — Z BxW(X,2)

2 x,zeB”
] X-ZVX7Z
= on Z Bxal” " XZ",
x,zeB"
. . 1 .
Right-hand side = > Z Br W*(x, 2)
x,zeB"
1 * NXZYyX7Z
= o Z Be (=) X*Z
x,zeB”
1 *X-Z X7Z
=50 2 BLCIIXZ
x,zeB"
1 * X-ZY1)
= Z B (—DTW(x,z). (A22)
x,zeB"

By comparing the left- and right-hand side, one can obtain
conditions on coefficients By ,:

:Bx,z = ,3:,1(_ 1 )x-z‘

Thus, By, has only the real part if x -z =0 (mod 2) or has
only the imaginary partif x -z = 1 (mod 2).

From corollary 1, Pauli strings commute if the parity of the
number of Y operators Ny = X - z in each string is the same.

(A23)

Hence, we can partition the set of Pauli strings in terms of x in
proposition 1 into commuting subsets due to the fact that for
every string X, there are two sets of z with equal cardinality
2"=1 that result in Ny being zero or one modulo 2. However,
for x = (0, ...,0), any z will not change Ny. Consequently,
we will end up with 27 subsets, each with cardinality 2",
and one subset with 2" elements. ]

Proof of Corollary 2. Let us recall the decomposition of B:

1 X
B=o > BuW(x. 2). (A24)

x,zeB"

Since X" =X, Z" = Z, and XZ = —ZX for an arbitrary
Pauli operator W (x, z), we can write

WT(x,z) = ¥*Z°X* = (= 1)**X*Z* = (—=1)**W(x, z).

(A25)
Since matrix B is symmetric,
1 N
B=B"=— 3 BN x)
x,zeB"
1 N
=2 D B (x,2). (A26)

x,zeB”

Comparing the right- and left-hand side, we obtain a condition
for coefficients By ,:

ﬁx,z = lgx,z(_l)x'zv (A27)
which can be satisfied for nontrivial By , only when
x -z =0 (mod 2). (A28)

If x =0, condition (A28) is automatically satisfied; for
each of the n remaining possible strings x only half of the
possible z strings satisfy (A28) and thus form subsets of
size 2" 1.

Also, it follows from (A28) that the number of Y operators
Ny must be even. Therefore, the decomposition of the real
symmetric tridiagonal matrix consists only of subsets S, .
Thus, we have n subsets S, 4 of size 27=1 and one subset S
of size 2". |

Proof of Corollary 3. The Hermitian matrix H is ex-
pressed in terms of matrix B:

H = 0 B (A29)
~\B" o)
Let us introduce the following matrices:
0 1 1
Ey) = 0 0) _ l(X +XZ7) (A30)
21=11 0)=3 .
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Then, H can be constructed as

H=E;Q®B+E; ®B'

1 1 _
=X ~XZ)®B+ (X +XZ)® B’

=%[X®(B+BT)—XZ®(B—B*)]

1 Z IBX,Z + ﬂx’zW(X, Z)

=—X
i ® 2

x,zeB"

1
- —XZ®

ﬁx,z - ﬁ:z £
T Z TW(X, z)

x,zeB"

1
=—X®

o > Repe,W(x.2)

x,zeB"

1
- —iXZQ®

o > Imp W (x.2)

x,zeB"

== Y (Refy,X — ilmBy,XZ) ® W(x, 2)

x,zeB"

= Z (Reﬂx,zx - Imlgx,zy) ® W(X, Z)-

x,zeB"

(A31)

Since matrix B is real valued, then according to (A23),

ImBy, =0, if x-z=0(mod?2),

Repy, =0, if x-z=1 (mod2). (A32)

Now, in Eq. (A31), since either ReBy , = 0 or ImpBy , = 0,
for x, z € B" the number of terms in the decomposition of H
is the same as that for B. From (A31) and the decomposition
in proposition 1 it follows that

So =X} QI 2} (m = 0)
1
S = {ﬁ}@{l,Z}@{X,Y}, m=1,....n—1
1 1
S, = (X, 7} QX, ¥}, (m = n)
1

i.e., the commuting subsets are constructed by appending X
or Y at the beginning of the Pauli strings in the decomposition
to ensure the required parity.
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