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Decoherence in exchange-coupled quantum spin-qubit systems: Impact of multiqubit
interactions and geometric connectivity
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We investigate the impact of different connectivities on the decoherence time in quantum systems under qua-
sistatic Heisenberg noise. We considered three types of elementary units, including node, stick and triangle and
connect them into ring, chain, and tree configurations. We find that rings exhibit greater stability compared with
chains, contrary to the expectation that higher average connectivity leads to decreased stability. Additionally, the
stick configuration is more stable than the triangle configuration. We also observe similar trends in entanglement
entropy and return probability, indicating their potential use in characterizing decoherence time. Our findings
provide insights into the interplay between connectivity and stability in quantum systems, with implications for
the design of robust quantum technologies and quantum error correction strategies.
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I. INTRODUCTION

To pursue a practical quantum computer, it is necessary
to successfully combine numerous qubits and ensure high
levels of accuracy in single and two-qubit manipulations, as
quantum error correction requires >99.9% fidelity in gate
operations. Among different qubit platforms, while ultracold
atoms and Si spin qubits are most promising ones for achiev-
ing scalability, operations on these systems suffer from lower
fidelity rates as compared with ion traps and superconduct-
ing qubits [1–7]. While previous experimental studies have
demonstrated high fidelity in operations on single [8–10] or
two-qubit systems [11–18], achieving the same level of fi-
delity in multiqubit systems remains challenging as the scale
of the system increases. Improving scalability is therefore
a key problem in the study of the physical realization of
quantum information processing, relevant to various platforms
including dopants in semiconductors, gate-defined quantum
dots, photons and atoms in cavities, Rydberg atom arrays,
superconducting quantum circuits, and trapped atomic ions
[19–21].

To improve the fidelity of multiqubit systems, it is im-
portant to investigate the factors that may impact their
decoherence, and consequently, the fidelity of applied quan-
tum controls as the system size increases [22–24]. For the
execution of quantum algorithms, qubits must be intercon-
nected, allowing for operations to be performed on the
connected qubits. However, this connectivity often leads to
decoherence, as observed in systems such as ultracold atom
setups and IBM’s superconducting qubits [2,3]. In a quan-
tum device, two aspects on how the qubits are connected
worth consideration: the number of links between the pairs of
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qubits, as well as how the qubits are geometrically connected.
Intuitively, if there are less connections between qubits, the
device would have longer coherence time because the qubits
are less affected by their neighbors. Contrary to the com-
mon perception that increased connectivity invariably leads
to faster decoherence, an important previous study [25] has
demonstrated that this is not always the case. The research
highlighted that the geometry of the device, such as ring and
chain configurations, plays a significant role in determining
decoherence behavior. It was found that greater average con-
nectivity does not necessarily result in a more rapid decay of
coherence. This revelation opens up a new area of inquiry re-
garding the impact of geometric connectivity on decoherence
times. Inspired by this work, our research aims to provide a
more comprehensive understanding of how geometric connec-
tivity influences decoherence in multiqubit systems.

In this paper, we investigate the impact of different geo-
metric connectivity patterns using various elementary units
on the decoherence time under quasistatic Heisenberg noise.
We begin by introducing a range of elementary units and
then assemble them into ring, chain, and tree configurations
to determine which arrangement can maintain quantum state
stability for a longer duration as the system size increases.
At the first glance, one may have the perception that more
links between qubits leads to less stability, provided that the
system size is fixed. Surprisingly, we find that the geometric
connectivity plays a key role, such that the ring configuration
is generally more stable than the chain, even if with a greater
number of links. Furthermore, we analyze the entanglement
entropy and observe similar trends to the return probability in
both chain and tree configurations. These similarities suggest
that both entanglement entropy and return probability can be
effectively utilized to characterize the decoherence time.

The rest of the paper is organized as follows: In Sec. II,
we introduce our model and describe the elementary units
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and geometric connectivity configurations, including rings,
chains, and trees. We also outline the method used to extract
the decoherence time. Moving on to Sec. III, we present
the results of our study, comparing the decoherence time of
elementary units (“node,” “stick,” and “triangle”) in ring and
chain configurations (Sec. III A). Additionally, we analyze
the entanglement entropy and its relationship to the return
probability for ring, chain, and tree configurations (Sec. III B).
Finally, in the concluding section, Sec. IV, we summarize our
findings and their implications, highlighting the importance
of geometric connectivity in understanding and mitigating
decoherence effects in quantum systems.

II. MODEL AND METHOD

In this study, we investigate the impact of geometric con-
nectivity on decoherence time in a system with Heisenberg
interaction. We consider different connectivity patterns, in-
cluding ring, chain, and tree configurations constructed from
multiple elementary units.

We start with a system with Heisenberg interaction on
connected qubits, described by the Hamiltonian:

H =
∑

i j

Ji j (t )σ i · σ j, (1)

where σ i is the vector of Pauli matrices on spin i. Experimen-
tal evidence suggests that the Heisenberg interaction is the
dominant source of noise between qubits, denoted by Ji j (t ),
which is usually referred to as “crosstalk” in the literature
[25]. In our analysis, we have chosen to disregard single-qubit
interaction terms (such as Zeeman terms represented by Ezσiz)
to primarily focus on two-qubit crosstalk, because the errors
incurred in two-qubit gates are much higher than those in
single-qubit gates [26]. In Appendix A, we have shown results
that include a single-qubit term with EZ = 0.1J0 (where J0 is a
parameter relevant to the strength of crosstalk to be described
later) and have found that our main conclusions remain valid.

By examining the evolution of decoherence time across
different connectivity configurations, we aim to achieve a
comprehensive understanding of how geometric connectivity
influences decoherence in multiqubit systems.

Our research focuses on the evolution of a given initial
state |�(0)〉 under the influence of such noise in Eq. (1). In
other words, connected quantum bits experience crosstalk,
which leads to decoherence of a prepared initial state. We
investigate how long a prepared initial state can be preserved
under this noisy situation in different geometric configura-
tions, which can be understood as undergoing a “scrambling”
process where a closed many-body system loses memory of
what it was.

In the presence of Heisenberg interaction, it is important
to consider both static and dynamic aspects of the noise. In
experimental settings, the frequency of noise fluctuations is
much lower than the characteristic timescale of the experi-
mental manipulations. Therefore, we primarily focus on the
effect of quasistatic noise, which is characterized by a normal
distribution. To account for this noise, we employ the Monte
Carlo method to randomly select noise intensities and aver-
age their effects. Specifically, for quasistatic noise, we model
the coupling strength Ji j (t ) as a Gaussian distribution with

FIG. 1. The figure illustrates the three different elementary units
used in our study: node, stick, and triangle. The vertices represent
qubits, the gray lines indicate the regions within each unit where
quantum gates are allowed, and the red lines represent the connec-
tions between repeated units. Our focus in this paper is to investigate
the effects of different geometric connectivity configurations on the
system.

a mean value Ji j,0 and a deviation σ . We use Monte Carlo
method to realize the Gaussian distribution. For example, the
interaction between qubits 1 and 2 is randomly sampled as
J12 ∼ N (J0, σ

2) and the interaction between qubits 2 and 3 is
randomly sampled as J23 ∼ N (J0, σ

2), etc. Note that although
these Ji j are sampled randomly, during one Monte Carlo step
they remain unchanged, implying a quasistatic noise. It is
worth noting that as experimental operations become more
accurate in the future, the influence of dynamic noise may
become more significant. In this paper, our main focus is on
the study of quasistatic noise and its impact. The effects of
dynamic noise are discussed in Appendix B.

Next, we expand our model to include the study of geomet-
ric connectivity. We explore various elementary units such as
the node, stick, and triangle. and examine their geometry in
ring, chain, and tree configurations to understand how these
different connectivities affect the system’s behavior. As de-
picted in Fig. 1, the vertices represent qubits, the gray lines
represent the parts within each unit where quantum gates are
allowed, and the red lines represent the connections between
repeated units. These elementary units are then geometrically
connected in different configurations, in the forms of a ring,
chain, or tree, as shown in Fig. 2. In this study, we investigate
the decoherence time of these elementary units with L rang-
ing between four and ten, where L represents the number of
qubits. A visualization of these larger clusters are shown in
Appendix C.

We extract the decoherence time by calculating the return
probability

P(t ) = |〈�(0)|�(t )〉|2, (2)

where |�(0)〉 is the initial state and |�(t )〉 is the state at time
t . We choose the initial state as |�(0)〉 = |↑ ↓ · · · 〉, shown
in Fig. 2. We note that the decoherence of a quantum system
strongly depends on its initial state, as studied previously in
Refs. [27,28]. In this work, our aim is to conduct a compara-
tive analysis of various qubit geometric configurations, which
necessitates the selection of an initial state that is compatible
with these different setups. The product state selected here
is the most basic form that can accommodate all configura-
tions, ensuring a fair and unbiased comparison. We have also
explored the Greenberger-Horne-Zeilinger (GHZ) state as an
alternative initial state. The findings related to this are detailed
in Appendix D, and they do not alter our primary conclusion.
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FIG. 2. Illustration of chain, ring, and tree configurations using
different elementary units. The vertices represent qubits, the gray
lines indicate the regions within each unit where quantum gates are
allowed, and the red lines represent the connections between repeated
units. The arrows inside the vertices represent the initial states that
we choose. An upward arrow indicates a spin-up state at this site,
while a downward arrow indicates a spin-down state. In our study, we
focus on the qubits that are affected by noise-induced decoherence,
which are the qubits between which quantum gates are applied.
Moreover, only connected qubits can implement two-qubit gates.
Therefore, we adopt a model with Heisenberg interaction between
connected qubits to investigate the impact of the crosstalk noise.

The return probability P(t ) ∝ PA(t )Pφ (t ) can be expressed
as

PA(t ) = P∞ ± (1 − P∞)e−(t/T ∗
2 )α

, (3)

where PA(t ) is the amplitude term, Pφ (t ) is the frequency
term, and the decoherence time T ∗

2 is extracted from fitting.
In the case of elementary unit node with quasistatic noise,
we analyze the probability P(t ) as a function of time t .
Figure 3 shows the evolution of P(t ) for L = 6, J0 = 100/t0,
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FIG. 3. The probability P(t ) as a function of time t for elemen-
tary unit node, with quasistatic noise under chain configuration. The
solid line represents the evolution of P(t ) as a function of time under
L = 4, J0 = 100/t0, σ = 0.4/t0, t0 is the time unit, while the dashed
line corresponds to the fitted curve. We extract the envelope lifetime
based on Eq. (3) to characterize the decoherence time, and we obtain
T ∗

2 = 0.489t0.
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FIG. 4. The decoherence time T ∗
2 as a function of system size L

for elementary unit node, with quasistatic noise. The blue inverted
triangle markers correspond to the ring configuration, while the or-
ange upright triangle markers represent the chain configuration. The
dashed line represents the fitting curve for the ring using the for-
mula T ∗

2 (L) = τ0L−γ , while the dash-dotted line represents the fitting
curve for the chain. For the ring configuration, the fitting parameters
are (τ0, γ ) = (4.957, 1.192), and for the chain configuration, the
parameters are (2.950, 1.197). The interacting strength J0 = 100/t0

and the deviation σ = 0.5/t0. The decay trend is similar to Ref. [25].

σ = 0.4/t0, represented by the solid line. In this work, we
denote t0 as our time unit, which is about 100 μs in super-
conducting qubits [29] and about 700 μs for a typical iron
trap quantum device [30]. The dashed line corresponds to the
fitted curve, while the dotted line represents the asymptotic
value P∞. We extract the envelope lifetime using the Eq. (3),
and obtain decoherence time is T ∗

2 = 0.489t0. In the case of
a transmon qubit system, T ∗

2 is around 95 μs, in consistency
with experiments.

III. RESULTS

A. Decoherence time under quasistatic noise

We initially focus on the ring and chain connectivity
configurations. We discuss the tree configuration in a later
stage because the system size involved is significantly larger.
We specifically investigate the results of the node elemen-
tary unit’s tree configuration for a system size of L = 8 in
Sec. III B.

First, we extract the decoherence time T ∗
2 for the elemen-

tary unit node, with the system size up to L = 10. We set the
interaction strength as J0 = 100/t0 and the deviation as σ =
0.5/t0. Choosing J0 = 100/t0 allows for faster decay of the
system and more accurate calculation of T ∗

2 , as the product of
the energy unit J0 and the decoherence time remains constant.
Figure 4 shows that the decoherence time T ∗

2 exhibits similar
behavior to that reported in Ref. [25]. We fit these results
using the power-law form T ∗

2 (L) = τ0L−γ , finding the corre-
sponding fitting parameters (τ0, γ ) for ring are (4.957, 1.192),
and for chain are (2.950, 1.197). It can be observed that in
the ring configuration, with the node as the elementary unit,
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the overall decoherence time decreases as the system size L
increases. Specifically, the decoherence time decreases from
T ∗

2 = 1.004t0 at L = 4 to T ∗
2 = 0.201t0 at L = 10, resulting

in a decline of approximately 80%. On the other hand, for the
chain configuration, the decoherence time also decreases with
increasing system size L, but at a slower rate compared with
the ring configuration. Similar results have been reported in
Ref. [25]. Specifically, for the chain, the decoherence time
decreases from T ∗

2 = 0.543t0 at L = 4 to T ∗
2 = 0.297t0 at

L = 10, corresponding to a decline of approximately 45%.
Minor discrepancies between our numerical results and those
of Ref. [25] may arise from differences in the chosen energy
scale, variations in the Monte Carlo process, and numerical
fluctuations when extracting T ∗

2 from the envelope fitting.
In Fig. 4, we notice an oscillatory behavior in the dephasing

time for the ring configuration of nodes. Specifically, there
are noticeable dips for configurations with an odd number
of qubits, suggesting that these configurations have a shorter
lifetime compared with similar cases with an even number of
qubits. This phenomenon can be attributed to an “even-odd”
effect, which is linked to the number of spins in the system.
When the number of spins is even, each spin can align itself
in the opposite direction to its two neighbors. However, in a
system with an odd number of spins, at least one spin will
be unable to align oppositely to both its neighbors, resulting
in a state of “frustration.” This frustrated state has a higher
local entropy, making it less stable and leading to shorter
lifetimes. This effect is specific to ring configurations with
an odd number of nodes and does not occur in configurations
based on sticks and triangles, where the number of qubits is
always even. Similarly, chain configurations do not exhibit
this frustration effect. In the analysis of GHZ states presented
in Appendix D, we do not observe this even-odd effect, as
expected, because GHZ states are symmetrized and thus not
subject to frustration.

Next, we investigate the behavior of elementary units
stick and triangle up to L = 10, considering an interact-
ing strength of J0 = 100/t0 and a deviation of σ = 0.5/t0.
In Fig. 5, we observe that for the ring configuration with
the stick as the elementary unit, the overall decoherence
time decreases as the system size L increases. Specifically,
the decoherence time decreases by 48%, from T ∗

2 = 1.185t0
at L = 6 to T ∗

2 = 0.614t0 at L = 10. We note that we ex-
cluded the case of L = 4 for the stick elementary unit,
as it comprises only two elementary units, which cannot
form a ring. We have fitted the results using the power-law
form T ∗

2 (L) = τ0L−γ . The corresponding fitting parameters
(τ0, γ ) for the ring configuration are (12.008, 1.293), and
for the chain configuration, they are (1.589, 0.606). As for
the chain configuration with the stick as the elementary unit,
the overall decoherence time also decreases with increas-
ing system size L. Comparatively, at L = 6, the decoherence
time decreases from T ∗

2 = 0.625t0 to T ∗
2 = 0.444t0 at L = 10,

representing a decrease of 29%. In summary, the chain ex-
hibits a slower rate of decrease in decoherence time with
increasing size. However, the ring configuration consistently
displays greater stability than the chain at the same system
size.

In Fig. 6, we observe consistent trends in the decoherence
time for both ring and chain configurations. For the ring
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FIG. 5. The decoherence time T ∗
2 as a function of system size L

for elementary units stick, with quasistatic noise. The blue inverted
triangle markers correspond to the ring configuration, while the
orange upright triangle markers represent the chain configuration.
The dashed line represents the fitting curve for the ring using the
formula T ∗

2 (L) = τ0L−γ , while the dash-dotted line represents the
fitting curve for the chain. For the ring configuration, the fitting
parameters are (τ0, γ ) = (12.008, 1.293), and for the chain config-
uration, the parameters are (1.589, 0.606). The interacting strength
J0 = 100/t0 and the deviation σ = 0.5/t0. The decoherence time for
ring configuration is longer than that of chain configuration.
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FIG. 6. The decoherence time T ∗
2 as a function of system size

L for elementary units triangle, with quasistatic noise. The blue
inverted triangle markers correspond to the ring configuration, while
the orange upright triangle markers represent the chain The dashed
line represents the fitting curve for the ring using the formula
T ∗

2 (L) = τ0L−γ , while the dash-dotted line represents the fitting
curve for the chain. For the ring configuration, the fitting parameters
are (τ0, γ ) = (1.363, 0.511), and for the chain configuration, the
parameters are (3.182, 1.371). The interacting strength J0 = 100/t0

and the deviation σ = 0.5/t0. The decoherence time for ring config-
uration is also longer than that of chain configuration.
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configuration with the triangle as the elementary unit, the
decoherence time decreases gradually as the system size L
increases. Specifically, T ∗

2 decreases from 0.655t0 for L = 4
to 0.414t0 for L = 10. On the other hand, in the chain con-
figuration with the triangle as the elementary unit, the overall
decoherence time also decreases with increasing system size
L, showing a similar rate of decrease. The decoherence time
decreases from T ∗

2 = 0.462t0 for L = 4 with to T ∗
2 = 0.107t0

for L = 10. Similarly, the fitting parameters (τ0, γ ) for the
ring configuration are (1.363, 0.511), and for the chain con-
figuration, they are (3.182, 1.371) when using the power-law
form T ∗

2 (L) = τ0L−γ . The overall rate of decay is relatively
similar between the ring and chain configurations, highlight-
ing the distinct influence of the elementary unit triangle and
stick on the decoherence dynamics.

Intuitively, one might expect that a lower average number
of qubit connections would extend the decoherence time. The
reasoning is straightforward: fewer qubit connections mean
fewer positions for applying quantum gates, which could po-
tentially reduce the impact of noise on the system. However, in
Figs. 5 and 6, we observe that the ring configuration is gener-
ally more stable than the chain configuration, despite the fact
that the average number of connections between qubits in a
ring consistently exceeds that in a chain. This counterintuitive
relationship between the complexity of qubit interconnections
and decoherence dynamics could provide valuable insights
into optimizing quantum computing architectures for im-
proved stability. We also observe that the decoherence times
for configurations formed by elementary units stick and trian-
gle do not exhibit the oscillatory dependence seen in Fig. 4.
This absence of oscillatory behavior is due to the fact that
these configurations always contain an even number of qubits,
eliminating the even-odd effect.

Now, we proceed to calculate the decoherence time T ∗
2 as

a function of the system size L for the elementary units stick
and triangle with ring and chain configurations, considering
different deviation values σ .

In Figs. 7(a) and 7(b), we present the decoherence times for
the elementary units stick with ring and chain configuration,
considering different deviation σ and interacting strength J0 =
100/t0. Due to the limitation of the elementary unit stick, the
case of L = 4 is excluded as it consists of only two elementary
units, which cannot form a ring. Therefore, we focus on the
L = 6 case for the ring. Notably, in the ring configuration,
the overall decoherence times are longer compared with the
chain. The dependence of the ring and chain to system size
varies with different σ . For relatively large σ values, such
as σ = 0.5/t0, the decoherence time for the ring configu-
ration decreases faster as the system grows. However, for
relatively small σ values, e.g., σ = 0.2/t0, the decoherence
time decreases slower as the system size increases. Never-
theless, regardless of the value of σ , the stability of the ring
is consistently better to that of the chain at the same system
size.

In Figs. 7(c) and 7(d), we investigate the decoherence times
of the elementary unit triangle for both ring and chain con-
figurations, taking into account varying values of deviation σ

and interaction strength J0 = 100/t0. Similar to the stick con-
figuration, the ring configuration consistently shows longer
overall decoherence times compared with the chain. Unlike
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FIG. 7. The decoherence time T ∗
2 as a function of system size

L for (a) elementary units stick with ring configuration, for (b) ele-
mentary units stick with chain configuration, for (c) elementary units
triangle with ring configuration, and for (d) elementary units triangle
with chain configuration with different deviation σ and interacting
strength J0 = 100/t0.

the stick configuration, however, the ring demonstrates weaker
dependence to system size for the elementary unit triangle.
This implies that, irrespective of the σ value, the decoherence
time in the ring configuration decreases at a slower rate as
the system size increases. Nonetheless, as observed in earlier
comparisons, the ring configuration continues to outperform
the chain in terms of stability, maintaining longer decoherence
times than the chain at the same system size.

Another observation from Fig. 7 is that the stick elemen-
tary unit consistently outperforms the triangle in terms of
stability. For example, by comparing Fig. 7(a) with Fig. 7(c)
or Fig. 7(b) with Fig. 7(d), we can clearly see that, under
the same σ and L with the same geometric configuration,
the decoherence time of the quantum state with the stick
elementary unit is always longer than that with the trian-
gle elementary unit. We conclude that the stick elementary
unit displays greater stability compared with the triangle
unit.

The stability of different qubit configurations under noise
can be influenced by various factors, but we propose that
symmetry plays a crucial role in the superior stability of ring
configurations compared with chains. Taking a small system
with L = 3 as an example [31], the Hamiltonian for the ring
configuration commutes with the total spin, meaning that the
total spin is conserved. This conservation provides a degree of
protection against decoherence, preserving the quantum state.
Chain and tree configurations do not exhibit this property. As
the size of the system increases, the total spin conservation
is no longer maintained in the ring configuration. However,
a residual protective effect from the initial symmetry persists.
We attribute this lingering protection to the inherent symmetry
of the ring configuration, which we believe is the primary
reason for its enhanced stability compared with chains.
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FIG. 8. The decoherence time T ∗
2 as a function of σ for elemen-

tary units node for ring, chain, and tree configuration at system size
L = 8. The interacting strength J0 = 100/t0.

B. Entanglement entropy for different geometric connectivity

Due to the potential for large system sizes in tree configu-
rations, our current study of the tree configuration specifically
focuses on the results of the node elementary unit for a sys-
tem size of L = 8. In addition to extracting the decoherence
lifetime, we also calculate the entanglement entropy, a highly
relevant physical quantity in theoretical studies. We partition
the system into a target system α and an environment β, and
obtain the density matrix of the target system by perform-
ing a partial trace operation: ρα (t ) = Trβρ(t ), where ρ(t ) =
|
(t )〉〈
(t )| represents the density matrix of the entire system
at time t . The entanglement entropy is defined as

S(t ) = −Trα[ρα (t ) ln ρα (t )], (4)

where ρ(t ) = |
(t )〉〈
(t )| is the density matrix at time t .
We investigate the influence of varying the deviation σ on

the decoherence time for a system with L = 8 qubits. In the
case of the node elementary unit, as σ increases, the decoher-
ence time gradually decreases for all three connectivity types:
ring, chain, and tree. However, the ring configuration shows
a faster rate of decrease compared with the chain and tree.
Despite the variations, the ring consistently outperforms the
chain and tree in terms of decoherence time, indicating that
the ring configuration is more stable, in line with our previous
conclusions.

Moreover, an important observation from the figures is
that the chain and tree configurations exhibit similar decoher-
ence times (Fig. 8). This finding highlights the comparable
stability of these two connectivity types. Our results help in
strengthening our understanding of how different connectivity
patterns impact the overall stability and performance of quan-
tum systems. The geometric configuration plays a crucial role
in determining the decoherence behavior, which is valuable
for designing robust quantum systems and devising quantum
error correction strategies.

In Fig. 9, we observe a remarkable similarity between the
trends of the entanglement entropy and the return probability
P(t ), indicating that both measures can effectively describe
the decoherence time of the system. This finding highlights
the potential of utilizing the entanglement entropy as an al-
ternative measure to characterize the degradation of quantum
coherence. Additionally, our analysis demonstrates that the
stability of the tree configuration configuration is comparable
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FIG. 9. The entanglement entropy S(t ) (upper curves) and the
return probability P(t ) (lower curves) for elementary unit node for
(a) ring, (b) chain, and (c) tree configuration at system size L = 8.
The trend of the entanglement entropy S(t ) is very close to that of
the return probability P(t ), so both can be used to characterize the
decoherence lifetime.

to that of the chain configuration, regardless of whether it
is assessed based on the entanglement entropy or the deco-
herence time. This observation suggests that both chain and
tree connectivities exhibit similar levels of vulnerability to
decoherence effects, further emphasizing the importance of
geometric connectivity in determining the overall stability of
quantum systems. These insights contribute to advancing our
understanding of the interplay between connectivity patterns
and decoherence dynamics, paving the way for improved
strategies in quantum information processing and quantum
device design.

IV. CONCLUSIONS AND DISCUSSIONS

In summary, this paper investigates the influence of
connectivity on the decoherence time under quasistatic
Heisenberg noise. By examining various configurations of
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elementary units, including rings, chains, and trees, we un-
cover interesting and counterintuitive results. Specifically, we
find that rings exhibit greater stability compared with chains,
contrary to the expectation that more links between qubits
leads to decreased stability. We attribute this difference to the
role of symmetry, which can protect the quantum state from
leakage into other subspaces.

Additionally, we observe that the stick configuration is
more stable than the triangle configuration, which is expected
due to the disparity in their average connectivity. Notably, the
disparity in decoherence time between rings and chains is sig-
nificant, even though their average connectivity is relatively
similar. These findings shed light on the complex interplay
between connectivity and stability in quantum systems.

Furthermore, our results highlight the comparable stability
of tree and chain configurations, as evident from both the
entanglement entropy and decoherence time analyses. This in-
sight underscores the importance of considering connectivity
patterns when designing quantum systems and devising quan-
tum error correction strategies. Overall, our findings should
help in strengthening our understanding of the impact of con-
nectivity on decoherence dynamics, providing inspirations for
the development of robust quantum technologies.
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APPENDIX A: THE EFFECT OF SINGLE-QUBIT TERMS

In Sec. II, we mentioned that the results shown in the main
text are obtained with single-qubit interaction terms (Zeeman
terms such as Ezσiz) ignored. The main reason is that errors
incurred in two-qubit gates are much higher than those for
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FIG. 10. The decoherence time T ∗
2 is plotted as a function of L

for systems composed of nodes in rings and chains, both with and
without single-qubit terms. We take σ = 0.4/t0, J0 = 100/t0, and
Ez = 0.1J0.
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FIG. 11. Variation of the decoherence time with the system size
L for (a) ring and (b) chain configuration. Each plot represents
different values of α ranging from one to three. The decoherence
times are rescaled by dividing each value by the maximum T ∗

2 for
comparison. We take σ = 0.5/t0 and J0 = 100/t0. The elementary
unit employed in the study is the node. Despite variations in system
size and different values of α, the decoherence times remain rela-
tively consistent within each geometric connectivity.

single-qubit gates, as pointed out in Ref. [26], and crosstalk
plays a key role in the two-qubit decoherence process [25].
In this section, we conduct calculations in presence of single-
qubit terms. In a study [32] on IBM’s Qiskit, the simulated T ∗

2
under single-qubit gate operations is ten times longer than that
of two-qubit gate operations. This gives us a rough estimate
of Ez ≈ 0.1J0. The calculations with Ez = 0.1J0 is shown in
Fig. 10, which is compared with the results with Ez = 0. The
results from Ez = 0.1J0 and Ez = 0 are rather close, suggest-
ing that our main conclusion remain valid in presence of a
reasonable low level of single-qubit error terms.

APPENDIX B: DYNAMIC NOISE

For dynamical noise, we consider the 1/ f α noise with
α ∈ [1, 3], and the time series of the coupling strength Ji j (t )
is constructed using the fractional Brownian motion (fBm)
method [33]. We examine the variation of the decoherence
time with the system size L for two different geometric con-
nectivities: ring and chain. Figure 11 shows the results for the

FIG. 12. Visualization of (a) chain and (b) ring configurations of
the elementary unit stick. The vertices represent qubits, with gray
lines indicating connections within each unit and red lines showing
connections between repeated units. The arrows inside the vertices
represent the chosen initial states: an upward arrow signifies a spin-
up state, while a downward arrow signifies a spin-down state.
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FIG. 13. Visualization of (a) chain and (b) ring configurations of
elementary unit triangle.

ring and chain configurations. Each plot represents different
values of α, ranging from one to three.

We rescale the decoherence times by dividing each value
by the maximum T ∗

2 to facilitate comparison. The chosen
value of σ is 0.5, and the interacting strength is set as J0 =
100/t0. The elementary unit employed in our study is the
node. It is noteworthy that, despite variations in the system
size and different values of α, the decoherence times remain
relatively consistent within each geometric connectivity. This
observation suggests that the chosen geometric connectivity
has a more significant impact on the decoherence time than
the specific system size or parameter α.

Remarkably, irrespective of the system size and different
values of α, the decoherence times exhibit a consistent pat-
tern within each specific geometric connectivity. This finding
underscores the significance of the chosen geometric connec-
tivity in determining the decoherence time dynamics.

APPENDIX C: VISUALIZATION OF CHAIN AND RING
CONFIGURATIONS STUDIED IN THIS WORK

In this Appendix, we present visualizations of chain and
ring configurations formed by elementary units stick and tri-
angle. with the number of qubits, L, ranging from four to

4 5 6 7 8
L

0.0

0.5

1.0

1.5

2.0

T
∗ 2
/t

0

Node ring, product state

Node ring, GHZ state

Node chain, product state

Node chain, GHZ state

FIG. 14. The decoherence time T ∗
2 as a function of L for the

product state and the general GHZ state in different systems.

ten. Figure 12 illustrates the chain and ring configurations of
stick, while Fig. 13 depicts the chain and ring configurations
of triangle.

APPENDIX D: DECOHERENCE OF
GREENBERGER-HORNE-ZEILINGER STATES

As discussed in the main text, comparing different geo-
metric configurations constrains our choice of initial states.
We have chosen the product state |�(0)〉 = |↑ ↓ · · · 〉 as one
candidate. Another potential choice is the GHZ state, defined
as |�(0)〉G = 1√

2
(|↑ ↑ · · · 〉 + |↓ ↓ · · · 〉). We have conducted

calculations for the GHZ state in both ring and chain con-
figurations based on nodes. The results are presented in
Fig. 14. It is evident that the ring configuration with nodes
exhibits a longer decoherence time than the chain configura-
tion, supporting our main conclusion. Additionally, we note
the absence of dips for the ring case at odd L, indicating that
the even-odd effect does not apply to GHZ states.

Finally, we acknowledge that our choice of initial states
is not exhaustive. As near-term quantum devices continue to
scale up, the interplay between geometric configuration, ini-
tial states, and device properties, including decoherence times,
emerges as a significant area of interest that merits further
investigation.
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