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Asymmetric node placement in fiber-based quantum networks
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Restrictions imposed by existing infrastructure can make it hard to ensure an even spacing between the nodes
of future fiber-based quantum networks. We investigate here the negative effects of asymmetric node placement
by considering separately the placement of midpoint stations required for heralded entanglement generation, as
well as of processing-node quantum repeaters in a chain. For midpoint stations, we describe the effect asymmetry
has on the time required to perform one entangling attempt, the success probability of such an attempt, and
the fidelity of the entangled states created. This includes accounting for the effects of chromatic dispersion
on photon indistinguishability. For quantum-repeater chains, we numerically investigate how uneven spacing
between repeater nodes leads to bottlenecks, thereby increasing both the waiting time and the time states are
stored in noisy quantum memory. We find that while the time required to perform one entangling attempt may
increase linearly with the midpoint’s asymmetry, the success probability and fidelity of heralded entanglement
generation and the distribution time and error rate for repeater chains all have vanishing first derivatives with
respect to the amount of asymmetry. This suggests resilience of quantum-network performance against small
amounts of asymmetry.
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I. INTRODUCTION

The quantum internet promises the distribution of quantum
entanglement between any two points on the planet [1]. En-
tanglement can be a valuable resource that enables a variety
of applications in domains such as quantum cryptography
[2–5], distributed quantum computing [6–8], and quantum
sensing [9–11]. A major outstanding challenge towards the
construction of large-scale ground-based quantum networks
is the fact that entangling rates over optical fiber decline
exponentially with the length of the fiber due to attenuation
losses. While classical amplification strategies are not viable,
a special class of devices called quantum repeaters can be
used to reach high entangling rates over long optical fibers
[12,13]. By using quantum repeaters as intermediate nodes, a
fiber is divided into segments over which entanglement can be
distributed more efficiently than over the full fiber length. Al-
though various proposals for quantum repeaters exist [14,15],
only proof-of-concept experiments have been realized so far
[16,17].

In order to build a quantum network, decisions need to
be made on where its nodes are positioned and how they
are connected. These nodes include the end nodes of the
network, quantum repeaters, and potentially midpoint stations
as required by some entanglement-generation protocols (as
depicted in Fig. 1) [18,19]. For the midpoint stations, as well
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as for quantum repeaters running at least some specific types
of protocols (such as the one investigated in this paper), opti-
mal network performance requires the nodes to be positioned
symmetrically [20–22], that is, with an internode spacing that
is the same between all neighboring nodes. To understand
why symmetric placement of repeater nodes can be favor-
able to the performance, consider the following. For quantum
repeaters in a chain, the end-to-end capacity for generating
entanglement is equal to the minimal capacity over all pairs
of neighboring nodes in the chain [23]. This minimal capacity
is maximized by a symmetric placement of repeater nodes,
and hence a symmetric placement optimizes the end-to-end
capacity. We note however that there exist specific repeater
protocols that do perform best, according to specific perfor-
mance metrics, under asymmetric node placement [24,25].
The suboptimal capacity of such a node placement suggests
that improvements on the protocols could perhaps result in
a symmetric placement being optimal again. This is demon-
strated by Ref. [20], where it is shown that the advantage
found in Ref. [25] vanishes when one further optimizes the
protocol.

Symmetric placement of nodes in a quantum network may
not always be possible. For instance, if a quantum network is
built using existing infrastructure, this restricts the freedom
in choosing the locations of the nodes [26]. Therefore, in
this paper, we address the question of how asymmetric node
placement affects the performance of a quantum network. We
do so by investigating two separate aspects of asymmetric
quantum networks. First, we consider asymmetric place-
ment of midpoint stations and examine how entanglement
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generation between two neighboring nodes is affected
(Sec. II). We identify three independent effects, namely, on
the cycle time of entanglement generation (Sec. II A; see the
beginning of Sec. II for a definition), on the success proba-
bility of entanglement generation and the fidelity of generated
entanglement through the introduction of imbalanced losses
(Sec. II B), and on the photon indistinguishability through
chromatic dispersion (Sec. II C). Second, we consider asym-
metric placement of quantum repeaters in a chain (Sec. III).
Here we focus specifically on processing-node repeaters exe-
cuting a SWAP-ASAP protocol (as explained in Sec. III and
studied in, e.g., Refs. [27,28]). Notably, the results presented
in this paper indicate robustness against small amounts of
asymmetry. For asymmetry in the placement of the midpoint
station, we find that both the success probability and fidelity
have a vanishing first derivative with respect to how asymmet-
rically the midpoint is positioned (granted that the photons
are shaped such that the effects of chromatic dispersion are
negligible). However, the cycle time increases linearly with
the asymmetry in the case when the time required to exchange
signals between neighboring nodes is the limiting factor (it
may be independent of asymmetry if this is not the case).
Similarly, we find that both the entangling rate and error rate
in a SWAP-ASAP repeater chain have vanishing first deriva-
tives with respect to how asymmetrically the repeater nodes
are positioned. This robustness suggests that, when designing
a quantum network, nodes do not need to be placed exactly
symmetrically. It furthermore suggests that the effects of con-
straints on node locations imposed by existing infrastructure
on network performance may not be too severe.

II. ASYMMETRY IN MIDPOINT PLACEMENT

Two popular methods for the creation of entanglement
between neighboring nodes in a quantum network are
single-click heralded entanglement generation [18,29,30] and
double-click heralded entanglement generation (also known
as the Barrett-Kok protocol) [19,31–34]. In both of these
protocols, time is slotted. In each time slot, the nodes perform
a single attempt at entanglement generation. Such an attempt
consists of both nodes sending a photon entangled with a local
qubit to a midpoint station, where the photons interfere and
are measured. The midpoint then sends a message to the end
nodes containing the measurement outcome. Depending on
the measurement outcome, the attempt is declared either a
success or a failure. The probability that it is declared a suc-
cess is called the success probability and denoted by Psucc. The
duration of each time slot (i.e., the time required to perform
one attempt) is called the cycle time and denoted by Tcycle. The
(average) rate at which successes occur is then given by

R = Psucc

Tcycle
. (1)

After a successful attempt a state ρ is shared by the two
neighboring nodes. Ideally, the state ρ is some pure maximally
entangled target state |φ〉〈φ|. However, due to noise, ρ will
instead be a mixed state with fidelity

F = 〈φ|ρ|φ〉. (2)

FIG. 1. Symmetric and asymmetric positioning of a midpoint
station for heralded entanglement generation. The magnitude of the
parameter �L is a measure for how large the asymmetry is; �L and
Ltot are defined in Eq. (3).

We will use the success probability Psucc, the cycle time Tcycle,
and the fidelity F as performance metrics for heralded entan-
glement generation.

In this section we study the effect of displacing the mid-
point station from the exact center between the nodes (as
illustrated in Fig. 1) on our performance metrics. We do so
by separately examining the effect on the cycle time, the
effect that the resulting imbalanced losses have on the success
probability and the fidelity, and the effect on the photon indis-
tinguishability (which in turn affects primarily the fidelity but
also the success probability). In order to do so we first need
a method for quantifying how far the midpoint has been dis-
placed. To that end, let the fiber distance between the midpoint
station and the left-hand (right-hand) node be denoted by Lleft

(Lright). Then we define

�L = Lleft − Lright,

Ltot = Lleft + Lright. (3)

The parameter �L is then a measure of the amount of asym-
metry, as shown in Fig. 1. As we will show below, the effects
of asymmetric midpoint placement on the cycle time, success
probability, and fidelity are all quantified by |�L|.

A. Cycle time

First we consider the effect of asymmetric midpoint
placement on the cycle time of the entanglement-generation
protocol between neighboring nodes. During each cycle both
nodes need to emit entangled photons that reach the midpoint
station simultaneously. Then the midpoint station sends a mes-
sage with the measurement result back to each of the nodes.
Assuming both the entangled photons and the messages travel
with the same velocity c, the cycle time at least includes the
communication time between the midpoint station and the
node that is farthest away, that is, Tcycle � 2

c max(Lleft, Lright ).
This can be rewritten as

Tcycle �
1

c
(Ltot + |�L|). (4)

When the cycle time is limited only by the speed-of-light
communication delay, the cycle time will be exactly equal to
the right-hand side of the equation. However, we note that
in practice the cycle time is often much longer (see, e.g.,
Refs. [30,34]), for example, due to local operations or the
limited rate at which entangled photons can be emitted. In that
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regime, the cycle time may be independent of �L until the
asymmetry becomes so large that the communication delays
are again the limiting factor.

B. Imbalanced losses

As attenuation loss in fiber scales exponentially with the
length of the fiber, having a midpoint station that is off-center
will result in an imbalance between the losses encountered
by the photons. To be more precise, let P0 be the probability
that when a node attempts photon emission, this photon is
emitted successfully, couples successfully to fiber, and is then
successfully detected at a detector at the end of the fiber,
given that the fiber has length zero. Then the probability that
photon emission at the left node leads to photon detection at
the midpoint station is given by

Pleft = P0e−Lleft/Latt , (5)

where Latt is the attenuation coefficient of the fiber. The same
equation holds for Pright, but with Lleft replaced by Lright. In an
asymmetric setup we will have Pleft �= Pright, which is what we
mean by imbalanced losses. This can affect both the success
probability Psucc and the fidelity F of heralded entanglement
generation.

For both the single- and double-click protocols, expres-
sions for Psucc and F in terms of, among other parameters,
Pleft and Pright can be found in Ref. [35]. In order to make the
effect of imbalanced losses explicit in these expressions, we
introduce the parameters

Ptot ≡ PleftPright = P2
0 e−Ltot/Latt ,

Psum ≡ Pleft + Pright = 2
√

Ptot cosh

( |�L|
2Latt

)
. (6)

Nontrivially, we find that for both protocols (to leading order,
as discussed below) we can eliminate Pleft and Pright com-
pletely from the expressions for Psucc and F in favor of Ptot

and Psum. The effect of imbalanced losses is then captured
entirely by the dependence of Psum on �L. We discuss the
resulting expressions and their implications for the single- and
double-click protocols separately below.

In the double-click protocol, both nodes emit a photon. The
mode that the photon is emitted in (e.g., its polarization) is
entangled with the state of the emitter, and entanglement be-
tween the emitters is heralded when both photons are detected
in different modes at the midpoint station after interfering on
a beam splitter. By eliminating Pleft and Pright as described
above, we find (see Appendix A)

Psucc, 2click = d1 + 2pdcPsum + O
(
p2

dc

)
,

F2click = d2 − d3 pdcPsum + O
(
p2

dc

)
. (7)

The parameters d1, d2, and d3 have no direct dependence on
�L and are given by

d1 = 1
2 Ptot − pdc

[
4 + r − 1

2 (2 − r)(1 + V )
]
Ptot,

d2 = [
1
2 qem(1 + V ) + 1

4 (1 − qem)
]
(1 + 8pdc)

− 1
2 (2 − r)qem pdc(1 + V )2,

d3 = qem

Ptot
(2V + 1). (8)

Here pdc denotes the detector dark-count probability. The
notation O(xn) represents any terms that are of order n in
the parameter x. As pdc is typically small, we have only
included leading-order terms in Eq. (7) (the full expressions
can be found in Appendix A). Here V denotes the indis-
tinguishability of the photons, which can itself depend on
the asymmetry through the effect of chromatic dispersion as
discussed in Sec. II C. It is assumed that the state shared
between a node’s emitter and the photon it emits is given
by 1

3 (4F − 1)|ψ〉〈ψ | + 1
3 (1 − F )1, which has fidelity F to

the state |ψ〉 = 1√
2
(|00〉 + |11〉) and where F = Fem,left (F =

Fem,right) for the left (right) node. We then have

qem = 1
9 (4Fem,left − 1)(4Fem,right − 1). (9)

Finally,

r =
{

1 for non-photon-number-resolving detectors
2 for photon-number-resolving detectors. (10)

We see that when the dark-count probability is zero, the
double-click protocol is not affected by imbalanced losses
at all. This is explained by the fact that the probability of
both photons surviving their respective fiber segments is equal
to the probability of a single photon surviving the full fiber
length Ltot, which is not affected by asymmetry. The reason
why the protocol is affected in the presence of dark counts
is that as the photon arrival probability on the longer leg
becomes of the same order as the dark-count probability,
the probability of falsely heralding successful entanglement
becomes large. This results in both an increased rate and a
reduced fidelity.

In the single-click protocol, both nodes also perform pho-
ton emission and send those photons to the midpoint station.
However, before emission starts, the emitter is prepared in
an unbalanced superposition of a bright state from which
photons can be emitted and a dark state from which emission
is impossible. How large the amplitude of the bright state is
is parametrized by the bright-state parameter α. As a result,
after emission, the state shared by the emitter and the photon
takes the form

√
1 − α|dark〉|0〉 + √

α|bright〉|1〉, (11)

where |0〉 (|1〉) indicates the absence (presence) of the photon.
An attempt is then considered a success in the case when only
one photon is detected at the midpoint station (as opposed
to two for the double-click protocol), creating an entangled
state that is a superposition of the left-node emitter being in
the bright state but the right-node emitter in the dark state
and vice versa. However, in the case when both emitters are
in the bright state but one of the emitted photons is lost, a
success is heralded without the creation of an entangled state.
Therefore, even when the only imperfection in the system is
fiber attenuation, the created entangled state is never pure.
The fidelity of the created entangled state will depend on the
choice of α; when α is small, the relative probability that both
nodes are found in the bright state is suppressed, resulting
in a good fidelity. However, using a small α also results in
a small success probability. In the case when the midpoint
is placed symmetrically and there are no imperfections but
losses, for α � 1, the success probability and fidelity can be
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approximated as Psucc ≈ 2α
√

Ptot and F ≈ 1 − α. (See, e.g.,
Ref. [36] for a further discussion of this effect.) Thus, choos-
ing the value of α is a matter of trading off success probability
and fidelity. In an asymmetric setup it has been found that in
the case in which one wants to optimize the fidelity, the equa-
tion αleftPleft ≈ αrightPright should be satisfied [30]. Therefore,
we assume here that the bright-state parameters are always
chosen such that

αleftPleft = αrightPright ≡ q, (12)

where q parametrizes the remaining degree of freedom. As the
bright-state parameter needs to be small in order to get good
fidelity, we will present here a result that is leading order not
only in the dark-count probability but also in the parameter q.
Eliminating αleft and αright in favor of q and Pleft and Pright in
favor of Ptot and Psum, we find (see Appendix A)

Psucc, 1click = 2q + 2pdc + O
(
q2, p2

dc, qpdc
)
,

F1click = s1 − s2Psum + O
(
q2, p2

dc, qpdc
)
. (13)

Here the parameters s1 and s2 are defined by

s1 = 1

2
(1 +

√
V )

q

q + pdc

[
1 + q − (1 + r)pdc

+ q

q + pdc

(
r pdc − 1

4
(2 − r)(1 + V )q

)]
,

s2 = 1

2
(1 +

√
V )

q

q + pdc

1

Ptot

(
1

2
q − pdc

)
. (14)

Note that the success probability of the single-click scheme is
not affected when �L is increased, as long as the bright-state
parameters are chosen to keep q constant. This behavior is not
a consequence of the leading-order expansion. It is shown in
Appendix A that the exact expression for the success proba-
bility has no direct dependence on the asymmetry either.

The success probability and fidelity as a function of the
asymmetry are shown in Fig. 2 for both protocols. We see
that in both cases imbalanced losses do not reduce the success
probability. Additionally, the fidelity falls in a similar way for
both cases, with a vanishing first derivative at �L = 0. The
reason for this is that the hyperbolic cosine to which Psum is
proportional [see Eqs. (6)] has a vanishing first derivative at
zero. As a result, the success probability and fidelity are re-
silient against small amounts of asymmetry. For instance, for
the parameters considered in Fig. 2, we see that the fidelity is
still above 99% of the value it attains for symmetric midpoint
placement at �L = 30 km.

C. Photon indistinguishability

Light waves traveling through optical fiber are subject
to chromatic dispersion, meaning that different frequency
components travel at different velocities. As a result, when
performing heralded entanglement generation, the photons
that arrive at the midpoint station are shaped differently than
the photons that are emitted by the nodes. A key requirement
for the creation of an entangled state through the interference
and measurement of the photons is that the photons are indis-
tinguishable, i.e., their wave packets need to be identical and
arrive at the midpoint simultaneously. Although chromatic

FIG. 2. Leading-order results [presented in Eqs. (7) and (13)] for
the probability that an entanglement-generation attempt is heralded
as a success and the fidelity of entangled states created upon a
heralded success of both the single-click and double-click protocols
as a function of the difference in length between the two fibers con-
necting the midpoint station [�L, defined in Eq. (3)]. This figure has
been created using the parameters Ltot = 100 km, pdc = 3 × 10−4,
q = 4 × 10−3, and Latt ≈ 22 km. Apart from attenuation losses and
dark counts, no imperfections have been included.

dispersion always results in photon deformation, the indistin-
guishability will not be affected if both photons are subjected
to the same amount of dispersion. This is the consequence
of a phenomenon known as dispersion cancellation [37,38].
The situation is different in the case when the midpoint station
is placed asymmetrically. If the photons travel through fibers
of different lengths they will undergo different amounts of
dispersion and hence be deformed differently.

A wave packet φ in a one-dimensional medium emitted at
time t = t0 and location x = 0 takes the form

φ(x, t ) =
∫

dω φ(ω)eiω(t−t0 )−iβ(ω)x. (15)

Here β(ω) is the wave number corresponding to a monochro-
matic wave with angular frequency ω, which is determined
by the medium the wave travels in. Now let φl (φr) be the
wave packet of the photon emitted by the left (right) node. The
indistinguishability V between these photons at the midpoint
station (i.e., at x = Lleft for φl and at x = Lright for φr) is then
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defined by

V = |μ|2, (16)

where μ is given by

μ =
∫

dt φl (Lleft, t )φ∗
r (Lright, t )

=
∫

dω φl (ω)φ∗
r (ω)eiβ(ω)�L+iω�t . (17)

Here we have �t = tl − tr , where tl (tr) is the time of emission
of the photon at the left (right) node. As discussed in Sec. II B,
the indistinguishability V affects both the success probability
and the fidelity of the single- and double-click protocols.

We assume that the wave packets have a central frequency
that is close to some frequency ω0. It is then useful to Taylor
expand the wave number of the fiber as [39]

β(ω) ≈ β0 + β1(ω − ω0) + 1
2β2(ω − ω0)2 + 1

6β3(ω − ω0)3.

(18)

Here β0 = 1/vp and β1 = 1/vg, where vp and vg are the phase
and group velocity in the fiber, respectively. In addition, β2

is the group-velocity dispersion (GVD) parameter and β3 the
third-order dispersion (TOD) parameter. As the β0 contribu-
tion will only alter the global phase of μ, it does not affect
the indistinguishability and can effectively be dropped from
the expression. Furthermore, we assume �t = −β1�L + δt ,
where δt is the alignment mismatch (for δt = 0, both emis-
sions are timed such that the photons arrive at the midpoint
station exactly at the same time). Then, using �ω ≡ ω − ω0,
we can effectively write

μ =
∫

φl (ω0 + �ω)φ∗
r (ω0 + �ω)

× ei�L(β2�ω2/2+β3�ω3/6)+iδt�ωd�ω. (19)

The value of V and how much it is degraded by chromatic
dispersion depends on the exact shapes of the photons, i.e., on
φl and φr . In general, we expect the photons to be affected by
chromatic dispersion less if their spread in frequency is small,
as frequency components that are far apart also travel at veloc-
ities that are far apart. Below we derive expressions for V in
the case of two specific wave-packet shapes, namely, Gaussian
and Lorentzian. (Attenuated) laser pulses are often approxi-
mated as Gaussian, and approximate Gaussian photons can,
e.g., be produced using cavity quantum electrodynamics [40]
or spontaneous four-wave mixing [41]. Here we take Gaussian
wave packets as a generic example of a pulse which is well
localized in time and frequency, allowing us to obtain analyti-
cal results. On the other hand, Lorentzian photons are created
through the radiative decay of a two-level system. In practice,
photons will rarely be exactly Gaussian or Lorentzian as they
interact with other components in the system such as filters
and cavities. Yet we can think of the two types of photons as
two extremes in how spread out their frequency distributions
are and therefore how sensitive they are to chromatic disper-
sion. It was noted in Ref. [42] that a Gaussian wave packet,
for a fixed value of the time-distribution standard deviation,
has a frequency-distribution standard deviation that is as small
as possibly allowed by the Heisenberg uncertainty principle.

From this the authors concluded that Gaussian photons of-
fer the best protection against alignment mismatch δt . Here
it leads us to expect Gaussian photons are well protected
against chromatic dispersion. Lorentzian photons, on the other
hand, have frequency distributions with very long tails, with
|φl/r (ω)|2 only going to zero as 1

ω2 . It is expected that they are
therefore much more susceptible to the effects of chromatic
dispersion.

1. Gaussian photons

The wave packets of two Gaussian photons with frequency
mismatch δω can be written as

φl/r (ω) = 1
4
√

2πσ 2
e−(1/4σ 2 )(ω−ω0±δω/2)2

. (20)

The probability distributions |φl/r (ω)|2 are Gaussian with
standard deviation σ . When there is no TOD, the indistin-
guishability can be calculated exactly, giving

V |β3=0 =
exp

[− 2
(

δω
σ

)2 − (δtσ )2

1+�L2β2
2 σ 4

]
√

1 + �L2β2
2σ 4

. (21)

We derive this result in Appendix B. A similar expression
has been derived under the more restrictive assumption δt =
δω = β3 = 0 in Ref. [43], with which ours is consistent. In
the case when the photon indistinguishability is close to one,
1 − V |β3=0 � 1, it is well approximated by the leading-order
expansion

V |β3=0 ≈ 1 − 2

(
δω

σ

)2

− (δtσ )2 − 1

2
�L2β2

2σ 4. (22)

Finding an exact solution to Eq. (19) when the TOD is nonzero
is difficult, but a leading-order result can be readily found to
yield

V =V |β3=0(1 − �Lβ3δtσ 4)

+ O
(
�L2β2

3σ 6,�L3β2
2β3δtσ 8,�Lβ3δt3σ 6

)
. (23)

This result as well is derived in Appendix B. Note that, to
first order, the TOD does not affect the indistinguishability in
the case of δt = 0. If the alignment mismatch is itself small,
|δtσ | � 1, we can expect the TOD to have only a very small
effect on the indistinguishability.

2. Lorentzian photons

For two Lorentzian wave packets with frequency mismatch
δω we can write

φl/r (ω) =
√

2τ

π

1

1 − 2iτ
(
ω − ω0 ± 1

2δω
) . (24)

While the corresponding frequency distributions are
Lorentzian functions with 1

τ
as the full width at half

maximum, the time distributions of these photons are
one-sided exponentials with standard deviation τ . We are
not aware of an analytical method for determining the
indistinguishability for Lorentzian photons in full generality.
One method to evaluate the indistinguishability is numerical
integration as done in Refs. [44,45]. Instead we make the
simplifying assumptions that the photons arrive at the same
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FIG. 3. Loss in the indistinguishability V as a function of the
temporal photon length, as measured by the standard deviation of
the time distribution |φ(x = 0, t )|2. We include results for both
Gaussian and Lorentzian photons [Eqs. (23) and (26)], for which
the standard deviations are given by 1√

2σ
and τ , respectively. The

results assume �L = 40 km and a GVD of β2 ≈ −21.7 ps2/km
[corresponding to a dispersion coefficient of 17 ps/(nm km), which
is a typical value for single-mode optical fiber at 1550 nm [47]]. The
TOD parameter has been set to β3 = 0. Other sources of noise are
not included, that is, δt = δω = 0. The lengths of photons emitted
by some specific sources have been indicated in the figure. The
following denotations are used: QD1, QD2, and QD3, quantum-
dot sources from Refs. [48–50], respectively; NV, nitrogen-vacancy
centers in diamond [46,51,52] (some types of trapped ions, such as
Ba+ [53] and Sr+ [33], emit photons at a length close to the NV
one); SPDC, frequency-multiplexed spontaneous parametric down-
conversion sources that interface with atomic quantum memories
[54,55]; and Ca+, trapped calcium ions [34] (lifetime estimated in
[35]).

time (δt = 0), they have the same central frequency (δω = 0),
and there is no TOD (β3 = 0). The indistinguishability then
becomes exactly solvable, giving (see Appendix B for a
derivation)

V |δt=δω=β3=0 = 1 − 2
√

2√
π

(C + S) + 4

π
(C2 + S2). (25)

Here C and S are Fresnel integrals defined by S = ∫ x
0 sin(t2)dt

and C = ∫ x
0 cos(t2)dt with x =

√
1
2 |�Lβ2|τ−2. To linear or-

der, C = x and S = 0, and therefore when the effect of
dispersion is small we can use the approximation

V |δt=δω=β3=0 = 1 − 2√
π

√|�Lβ2|
τ

+ O(|�Lβ2|τ−2). (26)

We stress that the assumption δt = δω = β3 = 0 is not gen-
erally expected to hold in a real experiment; it is introduced
solely to make the problem analytically more tractable. How-
ever, by comparing to results obtained through numerical
integration we find that the assumption β3 = 0 does not
greatly affect the result in conditions typical to single-mode
fiber (see the discussion below and Fig. 4). Therefore, while
the above equations may not be able to capture the effects of δt
and δω, they do accurately capture the effects of asymmetry

FIG. 4. Comparison between our analytical results (lines) for the
photon indistinguishability V assuming the TOD is zero [Eqs. (21)
and (26)] and results obtained through numerical integration assum-
ing a nonzero TOD (markers). The temporal photon length is used as
the x axis, as measured by the standard deviation of |φ(x = 0, t )|2.
The results assume �L = 40 km, a GVD of β2 ≈ −21.7 ps2/km,
and a TOD parameter of β3 ≈ 0.127 ps3/km [corresponding to a
dispersion coefficient of 17 ps/(nm km) and a dispersion slope of
0.056 ps/(nm2 km), which are typical values for single-mode optical
fiber at 1550 nm [47]]. Other sources of noise are not included, that
is, δt = δω = 0. Error bars for the numerical results are smaller than
the marker size.

in the placement of the midpoint station, as is the focus of
this section. Furthermore, we note that it may sometimes be
desirable to use frequency conversion to convert photons to
frequencies that incur less attenuation losses in fiber. This
opens up the possibility of correcting any frequency mismatch
and bringing δω close to zero [46].

3. Requirements for indistinguishable photons

The results above describe how the indistinguishability V
is diminished through the effect of chromatic dispersion in the
case of asymmetric midpoint placement. From these results,
it becomes clear that how badly V is reduced depends on
the characteristics of the photon. In particular, for Gaussian
photons it depends on the parameter σ , while for Lorentzian
photons it depends on the parameter τ . As expected, for both
photons the effect of dispersion is increased as the width
of the frequency distribution is increased or, equivalently, as
the length of the time distribution is decreased. In Fig. 3 we
investigate how much indistinguishability is lost as a function
of the length of the photon wave packet, assuming the photons
are otherwise perfectly indistinguishable. Here we make the
simplifying assumption that there is no TOD, thereby enabling
the use of the exact analytical results obtained above. This
simplification is motivated by the fact that comparing our
analytical results in the case when the TOD is zero with results
obtained through numerical integration for a typical value of
the TOD in single-mode optical fiber suggests that the TOD
has only a negligible effect in this case, as shown in Fig. 4.
Unsurprisingly, we see in Fig. 3 that Lorentzian photons with
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their long tails in frequency are affected (much) worse by
chromatic dispersion than Gaussian photons with the same
length. However, even for Lorentzian photons we see that (for
standard single-mode fiber and �L = 40 km) the decrease in
V is only of the order 10−2 when the length of the wave packet
is of the order of nanoseconds.

In the case when the photon length and �L are such
that the decrease in photon indistinguishability can be sig-
nificant, it is clear that it is better if the photons are closer
in shape to a Gaussian than a Lorentzian. This strengthens
the case for Gaussian photons made in Ref. [42], where it
was found that Gaussian photons protect favorably against
alignment mismatch. However, some sources naturally emit
photons that are more Lorentzian than Gaussian. Potentially,
photon-shaping techniques could be used to convert such
photons to a more Gaussian waveform [56–60]. A simpler
solution could be to send Lorentzian photons through a filter
to remove the long tails of their frequency distribution. While
this would introduce extra losses, the spread in frequency
could be greatly reduced, resulting in a much more Gaussian
photon.

Finally, we point out that there are various methods for
reducing the drop in indistinguishability in the case of asym-
metric midpoint placement irrespective of photon shape. The
telecom C band (1530–1565 nm) is the band conventionally
used to transmit signals as it minimizes attenuation losses (a
typical value of 0.275 dB/km in standard single-mode fiber
[47]). In contrast, the telecom O band (1260–1360 nm) incurs
much heavier attenuation losses (typically 0.5 dB/km [47]),
but as it is centered around the zero-dispersion wavelength
(1310 nm) of standard single-mode optical fiber it minimizes
dispersive effects. By using the O band instead of the C
band one can lessen the effects of chromatic dispersion at
the cost of incurring extra losses. This strategy is utilized
in, e.g., Ref. [61]. An investigation in Ref. [43] based on
Gaussian photons suggests that using the O band may only
be worth it for photons shorter than approximately 100 ps. A
second potential solution is the use of dispersion-shifted fiber.
Such fiber has its zero-dispersion wavelength in the telecom
C band and provides simultaneously small dispersion and
small attenuation loss [62]. However, such fiber is not widely
deployed [43,63] and hence not suitable when using existing
fiber infrastructure to build a quantum network [26]. Finally,
one can use dispersion-compensating modules to reduce the
effects of chromatic dispersion at the cost of incurring extra
losses [63].

III. ASYMMETRY IN REPEATER CHAINS

Now we turn our attention away from the placement of
midpoint stations and instead consider the placement of re-
peater nodes in a quantum-repeater chain. First, in Sec. III A
we discuss the specific type of quantum-repeater chains we
consider here. Then we pose two research questions about
asymmetry in such repeater chains in Sec. III B. These ques-
tions are made more precise in Secs. III C–III E. This allows us
to address the research questions using numerical simulations
in Sec. III F. Finally, we reflect on the numerical results in
Sec. III G.

A. SWAP-ASAP repeaters with parallel entanglement
generation

While there exist many types of quantum repeaters [14,15],
here we focus on one specific type, namely, the processing-
node quantum repeater. Such quantum repeaters are capable of
generating and storing entanglement with neighboring nodes
and of executing quantum gates. These gates allow processing
nodes to perform deterministic entanglement swapping, which
is an operation such that if one qubit is entangled with some
qubit A and the other qubit is entangled with some qubit
B, performing entanglement swapping on those two qubits
will result in qubits A and B being entangled [64]. Various
proposed repeater platforms are processing nodes, such as
trapped ions [65–68], color centers in diamond [21,30,69],
and neutral atoms [17,70].

We assume here that each repeater has exactly two qubits,
each of which can be used in parallel to perform heralded
entanglement generation (as discussed in Sec. II) with a
different neighboring node. (Note that there exist also pro-
posed repeater systems that can only generate entanglement
with one neighboring node at a time [20,30,35].) A chain of
such repeaters can then create end-to-end entanglement by
combining heralded entanglement generation and entangle-
ment swapping. How these are combined exactly, as well as
what additional operations are performed, is dictated by the
protocol that the repeaters execute. Examples of additional
operations that could be included are discarding entangled
states when they have been stored in memory for too long
[20,28,71–73] and entanglement distillation [74–76], both of
which can help mitigate the effects of noise. Optimizing re-
peater protocols is by no means an easy matter, and what
protocols perform well depends on both the specific hardware
used and the performance metric employed [24,28,71,73,77–
79]. Here we consider the SWAP-ASAP protocol, in which
no additional operations are included. In the SWAP-ASAP
protocol, each pair of neighboring nodes performs entangle-
ment generation whenever this is possible, that is, whenever
at each node the qubit that is reserved for entanglement gen-
eration along that specific link is free. As soon as both qubits
at a repeater node are entangled it performs entanglement
swapping (thereby freeing both qubits up again). We have
chosen to study this protocol as it is relatively simple both
to understand and to study numerically. Moreover, it has been
found that the SWAP-ASAP protocol outperforms schemes
that include entanglement distillation for near-term hardware
quality, as measured by both the fidelity of end-to-end en-
tangled states and the generation duration [27]. Additionally,
for the case when entanglement swapping is deterministic and
entanglement is never discarded, it was found that the SWAP-
ASAP protocol results in an optimal generation duration
[28,73]. Throughout the rest of this paper, it will be assumed
that quantum repeaters can generate entanglement with two
neighbors in parallel and that they execute the SWAP-ASAP
protocol.

B. Research questions

Asymmetric node placement will result in some fiber links
between repeaters being shorter while others are longer. As
attenuation losses grow exponentially with the fiber length,
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the longer links generate entanglement at a slower rate and
the shorter links at a faster rate. In other words, the entan-
gling rates along the chain become uneven due to asymmetric
repeater placement. The slower links could then potentially
become bottlenecks. This is expected to increase not only the
amount of time required to distribute end-to-end entangle-
ment, but also the amount of time entangled states need to
be stored in the SWAP-ASAP quantum repeaters until entan-
glement swapping takes place. The result of this would be an
increased amount of noise due to memory decoherence.

The above observation motivates posing the following re-
search question: What is the effect of uneven entangling
rates in a SWAP-ASAP repeater chain in which repeaters can
generate entanglement with both neighboring nodes simul-
taneously, as caused by the asymmetric distribution of the
repeater nodes, on the performance of that chain? A partic-
ularly simple method that could perhaps be used to mitigate
any negative effects of asymmetric node placement is what
we here refer to as the extended-fiber method. In this method,
spooled fiber is used at the repeater nodes to make the shorter
links as long as the longer ones, thereby effectively making the
repeater chain symmetric again. However, rather than making
the bottlenecks faster, this method just makes the faster links
slower. It seems perhaps unlikely that such a strategy can lead
to any improvement. Therefore, we pose a second research
question: Is the extended-fiber method effective at improv-
ing the performance of asymmetric SWAP-ASAP repeater
chains in which repeaters can generate entanglement with
both neighboring nodes simultaneously? In order to address
these questions, they need to be made more precise. To that
end, we first quantify how well a repeater chain performs in
Sec. III C. Then we quantify how asymmetrical a repeater
chain is and how we can systematically vary the amount of
asymmetry in Sec. III D. Finally, we introduce a simplified
model for repeater chains in Sec. III E.

C. Quantifying repeater performance

We quantify the performance of a repeater chain in terms
of how capable it is at supporting quantum key distribution.
Specifically, we consider the rate at which a secret key can be
obtained when executing an entanglement-based implemen-
tation of the BB84 protocol [2,80] in the asymptotic limit.
The end nodes realize this protocol by keeping entangled
quantum states stored in memory until they learn that all
required entanglement swaps have been performed and hence
end-to-end entanglement has been created. At that time, they
each measure their qubit in either the Pauli X or Z basis. The
corresponding asymptotic secret-key rate RBB84 is given by
[81]

RBB84 = 1

T
max[1 − 2h(Q), 0]. (27)

Here T is the generation duration, i.e., the average time
required to distribute an end-to-end entangled state, Q is
the quantum-bit error rate (QBER), and h(x) = −x log2(x) −
(1 − x) log2(1 − x) is the binary entropy function. The QBER
is defined as the probability that, if both end nodes measure
their qubits in the same basis, the parity between the outcomes
is different than would be expected for the maximally entan-

gled target state. Therefore, the QBER can be considered a
measure for the amount of noise. Note that, in general, the
QBER can take a different value for measurements in the
X basis than in the Z basis. However, as we will be using
a depolarizing noise model (see Sec. III E below), the two
values will coincide. Our choice for the secret-key rate as
a performance metric is motivated not only by the fact that
it has a clear operational interpretation, but also because it
combines information about how quickly and how noisily
entanglement is distributed into a single convenient number.
While the secret-key rate is the primary performance metric
considered here, the generation duration and QBER from
which the secret-key rate is calculated can help provide a more
detailed understanding of a repeater chain’s performance.

D. Quantifying chain asymmetry

Now we first discuss how asymmetry in a repeater chain
can be quantified. We then use that to introduce a specific
method for placing repeaters in a chain in such a way that the
amount of asymmetry can be varied. Let R be the set of all
repeater nodes in the chain of interest. Then, for every n ∈ R,
the node asymmetry parameter is defined by

An = |Lleft of n − Lright of n|
Lleft of n + Lright of n

(28)

and the node asymmetry sign is defined by

Sn = sgn(Lleft of n − Lright of n). (29)

Here Lleft of n (Lright of n) is the fiber distance between node n
and its neighboring node to the left (right) and sgn is the sign
function. We note that An is equivalent to �L/Ltot and Sn to
sgn(�L), where �L and Ltot are defined for that specific node
as in Eq. (3). While �L proved convenient to describe the
effects of asymmetry in the placement of midpoint stations,
we find the node asymmetry parameter more convenient in the
context of repeater chains. This is because the value of Ltot can
vary between different nodes in the chain, making it hard to
understand just how asymmetrically a node is placed between
its neighboring nodes from only �L. The node asymmetry
parameters and node asymmetry signs of all repeater nodes
together provide a complete parametrization of the locations
of the nodes in the chain. Now we define the chain asymme-
try parameter Achain to be the average value of An over all
repeaters,

Achain = 1

|R|
∑
n∈R

An. (30)

While the node asymmetry parameter An quantifies how
asymmetrically one specific node is placed between its neigh-
boring nodes, the chain asymmetry parameter Achain aims to
capture how asymmetric the chain is as whole.

We aim to address the research questions posed in
Sec. III B by investigating how the repeater-chain perfor-
mance varies as a function of Achain. However, for a repeater
chain with a given total length and given number of nodes,
there are many different possible repeater placements for
which the chain asymmetry parameter takes the same value.
Therefore, in order to avoid ambiguity, we introduce here
a specific class of repeater chains for which the parameter
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FIG. 5. Locations of nodes in a chain with seven repeaters for
which An = Achain is the same for all nodes and Sn alternates
between nodes [see definitions in Eqs. (28)–(30)]. The chain asym-
metry parameter Achain then quantifies the amount of asymmetry

Achain (together with the total length and number of nodes)
uniquely defines the locations of all the repeaters. These are
repeater chains for which An is the same for every repeater
in the chain and Sn alternates between nodes (such that no
two neighboring repeaters have the same sign). It then holds
that Achain = An for all n ∈ R. See Fig. 5 for an example of
what such a repeater chain looks like for different values of
Achain. Our reason for choosing this class of chains is that the
chains are relatively regular and easy to understand, while at
the same time increasing Achain clearly increases the disparity
between long and short links, allowing us to study the effect
of different entangling rates between different nodes as we set
out to do.

E. Model for repeater chain

We consider a simplified model for the repeater nodes as
well as for heralded entanglement generation between neigh-
boring nodes. In this model, the midpoint stations studied in
Sec. II are abstracted away such that we can focus on the
placement of the repeater nodes only. We then take the cycle
time for performing one attempt at generating an entangled
state between two neighboring nodes to be given by

Tcycle = L

c
, (31)

where L is the distance between the neighboring nodes and c
is again the speed of light in fiber (here taken to be 200 000
km/s). We note that this is equivalent to the cycle time when
entanglement between neighboring nodes is generated using
a symmetrically placed midpoint [see Eq. (4)]. We model the
success probability of each attempt as

Psucc = e−L/Latt , (32)

where Latt ≈ 22 km is the attenuation length corresponding
to attenuation losses of 0.2 dB/km. This model has been
chosen both for simplicity and for not being overly specific to
one particular protocol for heralded entanglement generation.
It reflects the exponential scaling of the success probability
common to both the double-click and single-click protocols
and also to protocols based on the direct transmission of pho-
tons between neighboring nodes [16,82,83] (assuming dark
counts do not contribute significantly). Therefore, it is ex-
pected to adequately capture, at least on a qualitative level,
how uneven entangling rates arise due to asymmetric node
placement in repeater chains based on heralded entanglement
generation.

We model the states created by heralded entanglement gen-
eration to be noiseless. More precisely, whenever an attempt
is successful, a pure Bell state 1√

2
(|00〉 + |11〉) is created. We

consider the repeater nodes to be largely perfect devices at
which entanglement swapping can be performed noiselessly
and deterministically. The only imperfection modeled at both
repeater nodes and end nodes is that while qubits are stored
in quantum memory, they undergo memory decoherence. For
simplicity, we model memory decoherence as depolarizing
noise according to

ρ → e−t/Tcohρ + (1 − e−t/Tcoh )
1

2
. (33)

Here t is the storage time and Tcoh the coherence time, which
we take to be 1 s here (as demonstrated with nitrogen-vacancy
centers in Ref. [84]). Given these assumptions, noise in end-
to-end entangled states produced by the repeater chain has
only two sources. The first of these is repeaters storing entan-
gled states in quantum memory until entanglement swapping
takes place. The second is end nodes storing entangled states
until all entanglement swaps have been completed and the
measurements required by the BB84 protocol are performed.
These are exactly the sources of noise that may be affected by
uneven entangling rates in a repeater chain.

F. Numerical results

Now we are ready to address the research questions out-
lined in Sec. III B. For concreteness, we consider a repeater
chain with a length of 1000 km that contains 21 nodes (in-
cluding two end nodes). The nodes are thus, in the symmetric
case, spaced 50 km apart. A distance of 1000 km can be
thought of as a typical pan-continental one, corresponding to,
e.g., roughly the distance between Paris and Berlin. In order to
estimate the values of the generation duration and the QBER,
we employ numerical simulations using the quantum-network
simulator NetSquid [27]. These simulations are based on the
code introduced in Ref. [35] and make use of a number of
open-source libraries [85–91]. All simulation code and data
can be found in our repository [92]. After the generation
duration and QBER have been estimated, an estimate for the
secret-key rate is computed using Eq. (27). The simulations
are performed for different values of the chain asymmetry
parameter Achain and for both asymmetric chains and chains
that have been symmetrized again using the extended-fiber
method. The results of these simulations are shown in Fig. 6.
It can be directly seen that using the extended-fiber method
does not improve the performance of the repeater chain, but
instead reduces it significantly. Simulation results demon-
strating that the same conclusion holds for other numbers
of repeaters, other chain lengths, and other coherence times
can be found in our repository [92]. This suggests that the
question whether the extended-fiber method can be used to
mitigate the adverse effects of uneven entangling rates due
to asymmetric repeater placement must be answered in the
negative.

It can be observed that the performance of the repeater
chain exhibits some resilience against small amounts of
asymmetry. At Achain = 0.1 the secret-key rate has only
fallen by about 10%. At Achain = 0.20, corresponding

052627-9



AVIS, KNEGJENS, SØRENSEN, AND WEHNER PHYSICAL REVIEW A 109, 052627 (2024)

FIG. 6. Effect of the chain asymmetry parameter Achain in a
repeater chain of the type illustrated in Fig. 5 on the asymp-
totic secret-key rate of entanglement-based BB84. Additionally, the
QBER and average entanglement-generation duration are shown,
from which the secret-key rate is derived according to Eq. (27).
When using the extended-fiber method, spooled fiber is deployed to
make all links in the network equally long, resulting in an effectively
symmetric network with an increased total fiber length. The total
length of the repeater chain considered here is 1000 km and it
contains 21 nodes (including 2 end nodes). Depolarizing memory
decoherence [see Eq. (33)] with a coherence time of Tcoh = 1s is
the only source of noise included. Error bars represent the stan-
dard error in the estimates and are smaller than the marker size.
Each data point is based on 20 000 simulated end-to-end entangled
states.

approximately to Deutsche Telekom’s planned trusted-node
chain between Bonn and Berlin [93], it has only fallen by
about 50%. For the specific repeater chain we consider, this
corresponds to all the even nodes in the chain being displaced

by 5 and 10 km, respectively, as compared to their position in
a symmetric chain, while the odd nodes remain in place (see
also Fig. 5). This resilience seems to be a consequence of the
fact that both the generation duration and the QBER have a
vanishing first derivative at Achain = 0 in Fig. 6, in contrast
to what is observed for the extended-fiber method. We note
furthermore that the first derivatives appear to vanish not only
for the parameters considered in Fig. 6, but also for different
numbers of nodes, chain lengths, and coherence times, as
demonstrated by data that can be found in our repository [92].

G. Reflection on numerical results

It may be surprising that the first derivatives in Fig. 6
appear to vanish. After all, when An is nonzero, the resultant
longer links may be expected to form bottlenecks. However,
we need to take into account that while the longer links
become slower at generating entanglement, the shorter links
become faster. It would appear that for small values of An the
negative effect of the slower links is mostly compensated by
the positive effect of the faster links. We note that the same
is not true when using the extended-fiber method, as in that
case all links become slower due to asymmetry, and indeed
the derivative does not appear to vanish at zero asymmetry
in that case. To foster an intuitive understanding, let us intro-
duce the following hand-waving argument that reinforces the
interpretation that first-order effects on the fast and slow links
cancel each other. Consider a single repeater node n ∈ R. This
repeater is connected to its two neighbors by fibers of lengths
1
2 Ltot(1 ± An), where Ltot is the sum of the two lengths. There-
fore, from combining Eqs. (1), (31), and (32), we find that the
average rates at which entanglement is generated with the two
different neighbors are

R± = c exp
[− Ltot

2Latt
(1 ± An)

]
Ltot(1 ± An)

= ce−Ltot/2Latt

Ltot

[
1 ∓

(
Ltot

2Latt
+ 1

)
An

]
+ O

(
A2

n

)
. (34)

Initially, entanglement generation is continuously attempted
with both neighbors simultaneously. This can be thought of as
entanglement being created on one side with rate R+ and with
rate R− on the other side, resulting in a total rate at which
entanglement is produced at this node of

Rsum = R+ + R− = 2
ce−Ltot/2Latt

Ltot
+ O

(
A2

n

)
. (35)

Abusively treating the time required to generate entanglement
on either side as being exponentially distributed (while they
are really geometrically distributed), we then have that the
time required until the first entangled state is created takes
time 1/Rsum. This time is invariant with respect to the node
asymmetry parameter at first order.

Before entanglement swapping can take place, the second
entangled state still needs to be generated. Now entangling at-
tempts are only made on one side and therefore the total rate is
no longer Rsum but only R+ or R−, depending on with which of
the two neighbors entanglement has already been established.
The probability that the longer link is generated first (once
more treating the times required to generate entanglement as
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being exponentially distributed) is given by R+/Rsum, in which
case it on average still takes a time 1/R− to generate the
second entangled state. Similarly, with probability R−/Rsum

it still takes a time 1/R+. Therefore, the average time until
entanglement is swapped at repeater n is

Tswap = 1

Rsum

(
1 + R+

R−
+ R−

R+

)

= 3

2

ce−Ltot/2Latt

Ltot
+ O

(
A2

n

)
, (36)

which is just the well-known three-over-two approximation
for symmetric repeaters [94,95]. Furthermore, the average
time during which the first entangled state is stored in quan-
tum memory is then given by Tswap − 1/Rsum, which also does
not contain any linear terms in An. This is consistent with the
fact that not only the generation duration of the repeater chain
appears to be independent of the chain asymmetry parameter
to linear order, but also the QBER.

While the above argument can help explain why the per-
formance of the repeater chain studied here has a vanishing
first derivative with respect to the asymmetry parameter, we
stress that it is not a complete or accurate treatment. For
one, we have approximated geometrically distributed random
variables as being exponentially distributed. Moreover, we
neglected the fact that in order to calculate the QBER we
would need to calculate the expected value of the exponen-
tial function occurring in Eq. (33), which is not the same
as the exponential function evaluated at the expected value.
However, perhaps most importantly, the different repeaters
cannot be considered in isolation. After the repeater has per-
formed entanglement swapping, it can only start entanglement
generation again with neighbors that have themselves also
performed entanglement swapping (otherwise their qubit is
still occupied). This complex interdependence is one of the
main reasons why we have turned to numerical simulations
here.

IV. CONCLUSION

We have investigated how the asymmetric placement of
nodes in a quantum network can affect network performance.
Specifically, we have studied the effect of asymmetric mid-
point placement on heralded entanglement generation and
of asymmetric repeater placement on SWAP-ASAP repeater
chains in which repeaters can generate entanglement with
both neighboring nodes in parallel. In both cases we have
observed a remarkable resilience against small amounts of
asymmetry, even though performance can be expected to de-
grade significantly as asymmetry is increased further. While
for the midpoint placement the cycle time will be directly af-
fected when asymmetry is introduced, the success probability
and fidelity have vanishing first derivatives. Similarly, for re-
peater chains, both the generation duration and QBER appear
to have vanishing first derivatives with respect to asymmetry
in repeater placement. Whether the first derivatives also vanish
for repeater chains in which parallel entanglement generation
is not possible remains an open question. The same is true for
repeater chains that do not execute a SWAP-ASAP protocol
but instead, for example, execute a protocol that includes

entanglement distillation. Furthermore, we have assumed a
specific form of asymmetric node placement (see Fig. 5). An
interesting direction for further research is to compare these
chains to real-world fiber infrastructure and investigate if our
conclusions still hold when asymmetric chains are generated
through different means, e.g., randomly.

Our results suggest that extending fiber segments to sym-
metrize repeater placement is not an effective method for
mitigating the effects of asymmetry. An open question then
is whether such methods exist. One strategy, reminiscent of
the extended-fiber method, could be to reduce the difference
in the expected completion times of longer and shorter links
by delaying entanglement generation on the short links. How-
ever, as geometric distributions are memoryless, starting the
shorter links at a delayed time when the longer links have
not yet finished will result in the same waiting time as when
the shorter link would have been started immediately. Yet,
if the longer links had already finished at the delayed time,
it would have been better if the shorter link had started at
an earlier time. Therefore, we expect that fixed delays are
not very effective, but dynamic delays where the shorter
links are started depending on which links have succeeded
already could work better and pose an interesting scheduling
problem. Another option is the use of cutoffs [20,28,71–73].
When using cutoffs, entangled qubits that have been stored
in memory for too long are discarded to bound noise lev-
els. As cutoffs do not waste potentially useful resources by
keeping links idle, we expect them to be more effective than
delays. Quantifying how well these various strategies mitigate
the effects of asymmetry is an interesting avenue for further
research.

We have observed that asymmetry in midpoint placement
can significantly affect the indistinguishability of photons
used in heralded entanglement generation because of chro-
matic dispersion. Chromatic dispersion can potentially cause
bad fidelity even for small amounts of asymmetry. The size
of the effect, however, depends on the temporal length of the
photons, and we have found that as long as the photons are
long enough (on the order of nanoseconds) the effect of chro-
matic dispersion can be negligible even for large asymmetries
(percent level for an asymmetry of 40 km; see Fig. 3). We have
furthermore found that Gaussian wave packets are much more
resilient against chromatic dispersion than Lorentzian wave
packets which have long tails in their frequency distribution.
By making the shape of a wave packet to be more Gaussian
than Lorentzian (e.g., by filtering out long tails), the effects of
chromatic dispersion can be mitigated.

From all this we conclude that while asymmetry de-
grades quantum-network performance and should therefore
be avoided where possible, small amounts of asymmetry are
not expected to have a large effect. This may alleviate some
of the pressure in selecting the perfect locations for nodes
in a quantum network and suggests that at least those fiber
networks that are only slightly asymmetric can provide fertile
ground for a future quantum internet.

The code that was used to perform the simula-
tions and generate the plots in this paper is available
in [92].
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APPENDIX A: SINGLE-CLICK AND DOUBLE-CLICK
EXPRESSIONS

In this Appendix we derive the success probability and
fidelity of the single- and double-click protocols in terms
of the parameter �L (to first order). These derivations are
based on the expressions given in the Appendix of Ref. [35].
For both protocols, our derivation hinges on having a set of
probabilities {pi} and a set of states {ρi} such that

Psucc =
∑

i

pi (A1)

is the success probability and

ρ = 1

Psucc

∑
i

piρi (A2)

is the mixed state upon success. The fidelity can then be
written as

F = 1

Psucc

∑
i

piFi, (A3)

where Fi is the fidelity corresponding to ρi; pi and Fi depend
on Pleft and Pright, which we then rewrite in terms of Ptot =
PleftPright and Psum = Pleft + Pright [see Eq. (6)].

1. Double click

For the double-click protocol we have (taking both the
results and nomenclature from Ref. [35])

pT = 1
2 PtotV

(
1 − p2r

dc

)
,

pF1 = 1
2 Ptot(1 − V )

(
1 − p2r

dc

)
,

pF2 = 2 − r

2
Ptot(1 + V )pdc(1 − pdc)r+1, (A4)

pF3 = 2(Psum − 2Ptot )pdc(1 − pdc)r+1,

pF4 = 4(1 − Psum + Ptot )p2
dc(1 − pdc)2

such that we have the sets {pi}, {ρi}, and {Fi} with p1 = qem pT ,
ρ1 = |±〉〈±| [where |±〉 = 1√

2
(|01〉 ± |10〉) is the tar-

get Bell state, with the sign depending on which detector
clicked], F1 = 1, p2 = qem pF1 , ρ2 = 1

2 (|01〉〈01| + |10〉〈10|),
F2 = 1

2 , p3 = qem pF2 , ρ3 = 1
2 (|00〉〈00| + |11〉〈11|), F3 = 0,

p4 = (1 − qem)(pT + pF1 + pF2 ) + pF3 + pF4 , ρ4 = 1
4 , and

F4 = 1
4 . From this it follows that we can write

Psucc = a + bPsum,

F = c + 1
4 bPsum

a + bPsum
, (A5)

with

a = 1

2
Ptot(1 − pdc)2r + pdcPtot(1 − pdc)r+1

×
(

2 − r

2
(1 + V ) − 4

)
+ 4p2

dc(1 + Ptot )(1 − pdc)2,

b = 2pdc(1 − pdc)r+1 − 4p2
dc(1 − pdc)2,

c = 1

4
qemPtot(1 + V )(1 − pdc)2r + (1 − qem)

×
(

1

8
Ptot(1 − pdc)2r + 2 − r

8
pdc(1 − pdc)2Ptot(1+V )

)

− pdcPtot(1 − pdc)r+1 + p2
dc(1 + Ptot )(1 − pdc)2. (A6)

Taking a first-order expansion in pdc of the success probability
and the fidelity gives the double-click results presented in
Sec. II B.

2. Single click

For the single-click protocol we can rewrite the expressions
in Ref. [35] by substituting the bright-state parameters by q
[see Eq. (12)] such that we have the sets {pi}, {ρi}, and {Fi}
with

p1 = q2

Ptot
(1 − pdc)

[
2pdc + Ptot

(
− 2(1 − pdc)r−1 + 2pdc

+ 1

2
(2 − r)(1 + V )

)]

+ q2 Psum

Ptot
[(1 − pdc)r − 2pdc(1 − pdc)],

p2 = t1 + t2,

t1 = q

(
1 − q

Pleft

Ptot

)

×
[

(1 − pdc)r + 2

(
Pright

Ptot
− q

)
(1 − pdc)pdc

]
,

t2 = q

(
1 − q

Pright

Ptot

)

×
[

(1 − pdc)r + 2

(
Pleft

Ptot
− q

)
(1 − pdc)pdc

]
,

p3 = 2pdc(1 − pdc)

(
1 + q2

Ptot
− q

Psum

Ptot

)
, (A7)

ρ1 = |00〉〈00|, ρ3 = |11〉〈11|, F1 = F3 = 0,

ρ2 = 1

p2
[t1|01〉〈01| + t2|10〉〈10| ± √

V t1t2(|01〉〈01|

+ |10〉〈10|)],

F2 = 1

2
+

√
V

√
t1t2
p2

. (A8)
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We note that while Pleft and Pright cannot be eliminated in favor
of Psum and Ptot in the expressions for t1 and t2, they can be
eliminated in p2 = t1 + t2, giving

p2 = 2q(1 − pdc)r − 4qpdc(1 − pdc)

(
1 + q

Ptot

)

+ Psum

Ptot
q{2pdc(1 − pdc) − q[(1 − pdc)r

− 2(1 − pdc)pdc]}. (A9)

The success probability is then given by

Psucc = p1 + p2 + p3. (A10)

We refrain from explicitly writing out the exact success proba-
bility here, but note that it can be readily verified that the terms
proportional to Psum cancel out. Therefore, we conclude that
the success probability is independent of Psum, and hence the
asymmetry. To leading order we have p1 = 0, p2 = 2q, and
p3 = 2pdc, and by adding these up the leading-order result for
the success probability in Eqs. (13) is found.

As both F1 and F3 are zero, the fidelity is given by

F = p2

Psucc
F2 = 1

2

p2

Psucc
+

√
V

√
t1t2

Psucc
. (A11)

The product t1t2 cannot be written in terms of solely Ptot and
Psum instead of Pleft and Pright. However, the troublesome terms
in this product are higher order. Therefore, we can eliminate
Pleft and Pright from F as long as we stick to leading order.
Here we consider both q and pdc to be of the same order,
i.e., pdc = O(q). We note that under realistic settings pdc < q
as otherwise more successes would be caused by dark counts
than by actual photons, which is a regime in which no useful
entanglement can be created. Evaluating F at leading order
requires evaluating p2, Psucc, and

√
t1t2 up to second order,

giving

p2 = 2q

[
1 − (2 + r)pdc + Psum

Ptot

(
pdc − 1

2
q

)]
+ O(q3),

Psucc = 2(q + pdc)

[
1 − q − pdc + q

q + pdc

×
(

1

4
(2 − r)(1 + V )q − 2pdc

)]
+ O(q3),

√
t1t2 = q

(
1 − (2 + r)pdc − 1

2
(q − 2pdc)

Psum

Ptot

)
+ O(q3).

(A12)

The leading-order expression for the fidelity given in Eqs. (13)
can now be obtained by substituting these quantities into the
equation for the fidelity above and disregarding higher-order
terms.

APPENDIX B: PHOTON INDISTINGUISHABILITY

In this Appendix we derive the formulas for indistinguisha-
bility of Gaussian and Lorentzian photons presented in the
main text.

1. Gaussian

For the Gaussian wave packets given in Eq. (20), μ as
defined in Eq. (19) becomes

μ = 1√
2π

e−(δω/σ )2
∫

dx exp

(
iδtσx − 1

2
(1 − i�Lβ2σ

2)x2

+ 1

6
i�Lβ3σ

3x3

)
. (B1)

By Taylor expanding in the TOD parameter β3 we can rewrite
this as

μ = 1√
2π

e−(δω/σ )2
∞∑

n=0

in(�Lβ3σ
3)n

n!6n

∫
dx x3n

× exp

(
iδtσx − 1

2
(1 − i�Lβ2σ

2)x2

)
. (B2)

This allows us to evaluate the indistinguishability at different
orders of �Lβ3σ

3 by evaluating the moments of a Gaussian
distribution. The n = 0 term, which corresponds to β3 = 0, is
a simple Gaussian integral for which it holds that

∫ ∞

−∞
e−ax2+bx+cdx = eb2/4a+c

√
π

a
. (B3)

Therefore,

μ|β3=0 = e−(δω/σ )2 1√
1 − i�Lβ2σ 2)

e−(σδt )2/2(1−i�Lβ2σ
2 ).

(B4)

The result in Eq. (21) is then obtained through

V |β3=0 = |μ|β3=0|2. (B5)

To evaluate higher-order terms one can use

∫ ∞

−∞
xne−ax2+bx+cdx = eb2/2a+c

√
π

a

×
⎡
⎣

(
b

2a

)n

+
�n/2�∑
j=1

(
2 j

n

)(
b

2a

)n−2 j (2 j − 1)!!

(2a) j

⎤
⎦. (B6)

In fact, this allows for determining the indistinguishability to
arbitrary order in the TOD. Here we only calculate the first
order. By recognizing that the expression before the square
brackets in the equation above is equal to the result of the
regular Gaussian integral, we can then write

μ = μ|β3=0(1 + iA�Lβ3σ
3) + O((�Lβ3σ

3)2), (B7)

with

A = (iδtσ )3 + 3iδtσ (1 − i�Lβ2σ
2)

6(1 − i�Lβ2σ 2)3
. (B8)

We then find

V = |μ|2 = V |β3=0[1 + 2�Lβ3σ
3Re(iA)] + O((�Lβ3σ

3)2).

(B9)
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Evaluating this expression yields

V =V |β3=0

[
1 − �Lβ3δtσ 4

(
1 + �L2β2

2σ 4
)2

(
1 − 3�L2β2

2σ 4

− δt2σ 2
(
1 − �L2β2

2σ 4
)2

3
(
1 + �L2β2

2σ 4
)

)]
+ O

(
�L2β2

3σ 6
)
. (B10)

Collecting the higher-order terms gives Eq. (23).

2. Lorentzian

Using the Lorentzian wave forms defined in Eq. (24) for
δω = δt = β3 = 0, we find

μ = 1

π

∫ ∞

−∞
dx

e±icx2

1 + x2
, (B11)

where ±c = 1
2�Lβ2τ

−2 and c > 0 is a real number (the sign
± is the sign of �Lβ2). We rewrite this as

μ = e±icI (±ic), (B12)

with

I (y) =
∫ ∞

−∞
dx

e−y(1+x2 )

1 + x2
. (B13)

We can evaluate this integral by first differentiating it and then
integrating it again. By the fundamental theorem of calculus,
it holds that

I (y) = I (0) +
∫ y

0

dI (z)

dz
dz. (B14)

Both terms are readily evaluated,

I (0) =
∫ ∞

−∞

dx

1 + x2
= arctan(x)|∞−∞ = π, (B15)

∫ y

0

dI (z)

dz
dz =

∫ y

0
dz

∫ ∞

−∞
−e−z(1+x2 )dx

=
∫ y

0
dzez

√
π

z

= − 2
√

π

∫ √
y

0
e−u2

du

= − π erf
√

y, (B16)

where erf is the error function. Here we have assumed
Re(z) � 0 so that we could use Eq. (B3) [which is equivalent
to assuming Re(y) � 0] and we made a change of variables
u = √

y, where
√

y is taken to mean the principal root of y.
Therefore, we have [for Re(y) � 0]

I (y) = π (1 − erf
√

y). (B17)

In order to evaluate μ we need to evaluate the error function
for a purely imaginary value. In that case we can rewrite

∫ √±ic

0
e−u2

du = √±i
∫ √

c

0
e∓iv2

dv

= 1√
2

[(1 ± i)C(
√

c) + (1 ∓ i)S(
√

c)].

(B18)

Here we made the change of variable u = √±iv and we
have introduced the Fresnel integrals C(x) = ∫ x

0 cos(t2)dt and
S(x) = ∫ x

0 sin(t2)dt . Therefore, we have

I (±ic) = π −
√

2π [(1 ± i)C(
√

c) + (1 ∓ i)S(
√

c)]. (B19)

We can then find the indistinguishability as given in Eq. (26)
as

V = |μ|2 = |I (±ic)|2. (B20)
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[78] F. Rozpędek, T. Schiet, L. P. Thinh, D. Elkouss, A. C. Doherty,

and S. Wehner, Phys. Rev. A 97, 062333 (2018).

[79] S. Krastanov, V. V. Albert, and L. Jiang, Quantum 3, 123
(2019).

[80] C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett.
68, 557 (1992).

[81] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441
(2000).

[82] S. Langenfeld, S. Welte, L. Hartung, S. Daiss, P. Thomas, O.
Morin, E. Distante, and G. Rempe, Phys. Rev. Lett. 126, 130502
(2021).

[83] G. W. Lin, X. B. Zou, X. M. Lin, and G. C. Guo, Europhys.
Lett. 86, 30006 (2009).

[84] C. E. Bradley, S. W. de Bone, P. F. W. Möller, S. Baier, M. J.
Degen, S. J. H. Loenen, H. P. Bartling, M. Markham, D. J.
Twitchen, R. Hanson, D. Elkouss, and T. H. Taminiau, npj
Quantum Inf 8, 122 (2022).

[85] NetSquid-Magic, https://gitlab.com/softwarequtech/netsquid-
snippets/netsquid-magic (QuTech, Delft, 2022).

[86] NetSquid-NetConf, https://gitlab.com/softwarequtech/
netsquid-snippets/netsquid-netconf (QuTech, Delft, 2022).

[87] NetSquid-QRepChain, https://gitlab.com/softwarequtech/
netsquid-snippets/netsquid-qrepchain (QuTech, Delft, 2023).

[88] NetSquid-SimulationTools, https://gitlab.com/softwarequtech/
netsquid-snippets/netsquid-simulationtools (QuTech, Delft,
2022).

[89] NetSquid-Driver, https://gitlab.com/softwarequtech/netsquid-
snippets/netsquid-driver (QuTech, Delft, 2022).

[90] NetSquid-EntanglementTracker, https://gitlab.com/
softwarequtech/netsquid-snippets/netsquid-
entanglementtracker (QuTech, Delft, 2022).

[91] NetSquid-PhysLayer, https://gitlab.com/softwarequtech/
netsquid-snippets/netsquid-physlayer (QuTech, Delft, 2022).

[92] G. Avis, Reproduction code for asymmetric node
placement in fiber-based quantum networks, https:
//gitlab.com/GuusAvis/reproduction-code-for-asymmetric-
node-placement-in-fiber-based-quantum-networks.

[93] F. F. da Silva, G. Avis, J. A. Slater, and S. Wehner,
arXiv:2303.03234.

[94] T. Coopmans, S. Brand, and D. Elkouss, Phys. Rev. A 105,
012608 (2022).

[95] L. Jiang, J. M. Taylor, and M. D. Lukin, Phys. Rev. A 76,
012301 (2007).

052627-16

https://doi.org/10.1103/PhysRevLett.129.053603
https://doi.org/10.1103/PhysRevLett.123.133602
https://doi.org/10.1088/1367-2630/13/10/103036
https://doi.org/10.1063/5.0021755
https://www.itu.int/rec/T-REC-G.653-201007-I/en
https://doi.org/10.1140/epjd/e2004-00080-8
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.130.213601
https://doi.org/10.1103/PhysRevA.79.042340
https://doi.org/10.1088/1367-2630/ab2a45
https://doi.org/10.1103/PhysRevA.105.022623
https://doi.org/10.1063/5.0056534
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1109/TQE.2021.3099003
https://doi.org/10.22331/q-2021-09-07-537
https://doi.org/10.1103/PhysRevApplied.21.024041
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1088/0034-4885/70/8/R03
https://doi.org/10.1103/PhysRevA.103.032610
https://doi.org/10.1103/PhysRevA.97.062333
https://doi.org/10.22331/q-2019-02-18-123
https://doi.org/10.1103/PhysRevLett.68.557
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1103/PhysRevLett.126.130502
https://doi.org/10.1209/0295-5075/86/30006
https://doi.org/10.1038/s41534-022-00637-w
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-magic
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-netconf
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-qrepchain
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-simulationtools
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-driver
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-entanglementtracker
https://gitlab.com/softwarequtech/netsquid-snippets/netsquid-physlayer
https://gitlab.com/GuusAvis/reproduction-code-for-asymmetric-node-placement-in-fiber-based-quantum-networks
https://arxiv.org/abs/2303.03234
https://doi.org/10.1103/PhysRevA.105.012608
https://doi.org/10.1103/PhysRevA.76.012301

