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Restoring metrological quantum advantage of measurement precision in a noisy scenario
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We show that in presence of a local and uncorrelated dephasing noise, quantum advantage can be obtained in
the Fisher information-based lower bound of the minimum uncertainty in estimating parameters of the system
Hamiltonian. The quantum advantage refers here to the benefit of initiating with a maximally entangled state
instead of a product one. This quantum advantage was known to vanish in the same noisy scenario for a frequency
estimation protocol. Restoration of the better precision in frequency estimation with maximally entangled probes
can be obtained by incorporating an interaction between the system particles. The interaction examined here is
Ising in nature, and is considered with or without a transverse magnetic field. There are instances, e.g., where
frequency estimation in presence of a transverse field is considered and quantum advantage is not restored. A
quantum advantage can also be obtained while estimating the strength of the introduced magnetic field along the
transverse direction, whereas for the instances considered, using uncorrelated probes is better in measuring the
coupling parameter of the Ising interaction. We also investigate the dependence of measurement precision on
the entanglement content, which is not necessarily maximal, of the initial state. The precision in estimation of
coupling constant decreases monotonically with the increase of entanglement content of the initial state, while
the same for frequency estimation is independent of the entanglement content of the inputs.

DOI: 10.1103/PhysRevA.109.052626

I. INTRODUCTION

Quantum metrology, which deals with the enhancement,
with respect to classical means, in the sensitivity of mea-
surement of a physical quantity [1–3], has been extensively
studied in the last two decades and is facilitated by quantum
resources [4–7] such as entanglement [8–11]. The develop-
ments in the field have far-reaching consequences in various
arenas of physics such as gravitational wave detection [12],
optical imaging under high resolution [13–15], quantum ther-
mometries [16,17], magnetometers [18,19], etc. Entanglement
is widely used as a resource to improve the metrology preci-
sion [2,4,5]. It has been observed that quantum entanglement
can be utilized to overcome the so-called shot-noise limit
[4,20–25] obtained without quantum resources, often referred
to as the classical limit. The classical limit sets the lower
bound of the uncertainty of measuring a physical observable
in an experiment, without quantum resources, attainable in the
asymptotic limit, and proportional to the inverse square root of
the number of measurements.

In any measurement process, the origin of the errors can be
of two different types. One of them arises fundamentally from
the Heisenberg uncertainty principle, while the other is due
to lack of control over the system or the probes. These errors
can be minimized using certain quantumnesses incorporated
into the system in the form of entanglement or squeezing [26].
For example, it has been shown that the classical bound, the
shot-noise limit, can be overcome by utilizing the quantum
nature of entangled photons [27–32]. The relevant measure-
ments can be executed using different interferometers [33,34]
such as the Ramsey spectroscope, the Mach-Zehnder inter-
ferometer [35–37], etc. Particularly, in some interferometric
experiments, which detect the changes in state population,

the signal-to-noise ratio can be improved by using quantum
effects using spin squeezed states [38]. The frequency estima-
tion has been generalized in Ref. [39], where probe generation
rate and evolution time were considered as resources.

A certain lower bound in evaluating the variance of a
parameter classically, commonly known as the Cramér-Rao
bound, was obtained by using a quantity, called the Fisher
information, which provides a way of measuring the amount
of information that a random variable contains about an un-
known parameter, on which the probability distribution of the
random variable depends [40]. The quantum version of the
Cramér-Rao bound can be obtained by utilizing the quantum
Fisher information (QFI) [41–48], where a maximization over
all possible measurements is involved.

In presence of decoherence during time evolution, the
metrological performance of a system generally deterio-
rates and is considered to be one of the main hurdles in
entanglement-enhanced sensing [4,49], but sometimes deco-
herence shows some benefits. It was shown that under suitable
conditions, a decoherence effect, specifically the effect of
a Markovian collective dephasing channel [50], can be uti-
lized to enhance the sensitivity of measurement. Recently,
non-Markovian effects have also been used to attain high
precision in quantum optical metrology under locally dissi-
pative environments [51]. It is known that the metrological
error gradually surges up in the long-encoding-time regime
under the influence of decoherence, caused by environments
[52–60]. This circumstance is called the no-go theorem of
noisy quantum metrology [56–59,61] and is a major barrier in
attaining high-precision quantum metrology in practice. How-
ever, it has been revealed that a non-Markovian calculation
can obtain a qualitatively distinct dynamical behavior and it
helps to surpass the no-go theorem [62–68]. Estimation of
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channel parameters of a noisy quantum channel [69] is another
domain of work in metrology. See also Ref. [70] for state
estimation and Ref. [71] for channel identification problems.

Several strategies have been introduced to exceed the
shot-noise limit and achieve better precision. These include
the use of nonlinearity in the system [72–79], squeezing of
the vacuum [80–84], optimization of the probing time [85],
controlling the environment [86,87] and non-Markovian evo-
lutions [61,64]. However, for every quantum resource, there is
a nontrivial bound to the corresponding quantum advantage. A
bound can also be derived in postselected metrology [88], set-
ting up an interrelation with weak value optimization, where
the latter can be realized in terms of a geometric phase [89].
The scaling in the variance of the estimated parameter in terms
of the quantum Fisher information in the asymptotic limit
in many-body open quantum systems has also been studied
[90,91].

An important point to be noted here is that the interaction
incorporated into the Hamiltonian of the system can have
a crucial impact on the precision limit, as demonstrated in
Ref. [72]. They have shown that the metrological precision
scaling that can be obtained by using a probe, described by
the Hamiltonian H = J 2

z , with Jz = ∑N
i=1 σ z

i is the same as
that can be achieved by doing it with H = NJz. Here, N
represents the number of qubits in each probe. This provides
crucial insight about the response of interaction terms on
metrological precision. A difference between their approach
and ours is that unlike in their approach, the interactions here
can be continuously reduced to the case of no interactions.
Also, we have analyzed the response of transverse fields on
the precision.

In this work, we consider probes of two parties throughout
the analysis, and we focus on two measurement schemes
for the parameter estimation, viz. the strategy in which the
measurements are locally carried out at the two parties and
the optimal measurement strategy. The former involves mea-
suring onto a biorthogonal product basis while the latter is
in general a measurement onto a more general basis, possi-
bly involving entangled states, and involves consideration of
a symmetric logarithmic derivative (SLD). We will refer to
these strategies as local orthogonal (LO) and SLD strategies,
or as Schemes I and II, respectively, for brevity. We will
analyze estimation of frequency, or coupling strength of an
interaction between the probe parties, or a transverse field on
the parties. We consider both noiseless and noisy scenarios,
with the noise being of dephasing type. For a depiction of the
tree corresponding to the different cases considered, refer to
Fig. 1.

Let us first try to be precise about what is meant in this
paper by quantum advantage. If there is an enhancement in
the precision of estimation of a certain parameter using max-
imally entangled initial probe states instead of unentangled
ones, keeping all other aspects of the setup as unchanged, we
refer to it as quantum advantage.

For LO measurements, metrological advantage in fre-
quency estimation increases by using maximally entangled
initial states instead of unentangled ones in the noiseless sce-
nario, but the effect of decoherence hinders the performance
of measurement by decreasing its sensitivity. See Ref. [4] in
this regard.

Without/with 
interactions

LO/SLD 
measurement

Noiseless/ 
noisy setup

Product /
maximally 
entangled 

probe

FIG. 1. Schematic to depict the different situations considered in
estimating the minimum deviations of the relevant parameters. So, in
particular, the third dot from the top in the rightmost column refers
to the case where the probes are encoded via a noninteracting Hamil-
tonian, the probe is initially in a product state, the setup is noisy,
and the measurement is of the LO variety. The circles correspond to
the situations where the encoding mechanism is via a noninteracting
Hamiltonian. The squares on the other hand correspond to those for
which the encoding Hamiltonian is interacting. In every bifurcation,
the top line is blue dotted and the bottom one is red solid. Corre-
spondingly, in the option at the top of every column, the first one is
blue and the second is red.

LO measurements with interaction. Let us first consider
the noisy case. For frequency estimation, quantum advan-
tage is regained in the noisy case by incorporating an Ising
coupling in the encoding Hamiltonian with or without a trans-
verse field for LO measurements. For estimating the coupling
strength, however, using a product probe is better. Estimation
of the transverse field provides quantum advantage again,
in presence of the interaction between the two parties of
the probe. In the noiseless situation, a maximally entangled
probe provides a better precision for frequency estimation in
presence of interaction, with or without a transverse field, in
the encoding Hamiltonian. The precision of estimating the
coupling strength in the noiseless case is immune to whether
frequency and transverse field terms are present in the encod-
ing Hamiltonian. Quantum advantage is, however, regained in
the noiseless setup for transverse field estimation in presence
of interaction.

LO measurements without interaction. As above, we begin
with the noisy case. There is no quantum advantage in the
noisy case for frequency estimation, irrespective of whether
we use a transverse field, in absence of an interaction term,
when LO measurements are utilized. However, quantum ad-
vantage is regained for transverse field estimation. In the
noiseless case, frequency as well as transverse field estimation
possess quantum advantage.
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Before proceeding further, let us note here that for
frequency estimation in the noisy case using the best mea-
surement strategy (i.e., the SLD strategy), quantum advantage
is already present even without any interaction between the
parties of the probe or any transverse field.

SLD measurements with interaction. In this case, quan-
tum advantage is present in the noisy situation for frequency
estimation in presence of an Ising coupling for SLD strate-
gies. This remains so even for an additional transverse field
in the encoding Hamiltonian. For estimating the coupling in
the same scenario, product and maximally entangled probes
lead to identical precision. Quantum advantage is regained,
however, for estimating the transverse field. The results are
similar in nature for the noiseless scenario.

SLD measurements without interaction. In the noisy case,
quantum advantage prevails both in presence and absence of
the transverse magnetic field, while estimating the frequency
and also in the estimation of interaction strength. Similar are
the behaviors for the noiseless situations.

Furthermore, we observe that the measurement precision
monotonically decreases with the increase of entanglement
content of the initial state for certain field strength estimation
protocols, whereas for frequency estimation, the measurement
precision is independent of the entanglement content of the
initial state.

The remainder of the paper is arranged as follows. The
relevant information from previous literature is discussed in
Sec. II. This includes the methods and the results of measuring
the minimum uncertainty of estimating system parameters,
which are to be measured in presence and absence of noise,
both for the product and maximally entangled initial states.
Section III constitutes the significant part of our paper, where
we present the results of the minimum uncertainties obtained
while measuring different system parameters in presence of
fields and two-qubit interactions for probes that are product
or maximally entangled states initially. In Sec. IV, we draw
a comparison between the results obtained in Sec. III and
the optimal measurement protocol of quantum metrology. In
Sec. V, we investigate the dependence of the minimum uncer-
tainty of the system parameters on the entanglement content of
the initial state. Concluding remarks are presented in Sec. VI.

II. QUANTUM METROLOGY AND FREQUENCY
ESTIMATION PROTOCOL

Metrology pertains to the estimation of unknown physical
parameters of the system [1,2,33]. Whenever a procedure
using quantum resources outperforms a similar classical pro-
cess, i.e., the one without the quantum resource, it is said that
a quantum advantage has been achieved. The term quantum
metrology is used when the estimations are improved in pres-
ence of quantum resources [5–7] such as entanglement. There
are various methods of estimating a parameter accurately in
the asymptotic limit using the concept of quantum metrology.
One of them is based on the Cramér-Rao bound as proposed
in Ref. [5].

We begin with a situation where we want to estimate a
system parameter θ , which is encoded in a physical state,
ρ(θ ), of the system. To achieve this goal, a measurement of
elements {�x} is performed on the system. Let the probability

distribution for the measurement outcome x for a given
measurement strategy be given by f (x|θ ). In a single mea-
surement, let us assume that the outcome is x1. Based on
this end result, we have to speculate the value of θ , which
is represented by an estimator function given by g(x1). For a
fixed θ , our estimation is correct on an average if we repeat
the experiment for large number of times:

〈g(x)〉θ =
∫

dx f (x|θ )g(x) = θ. (1)

Such an estimator g(x), whose average is given by the true
value of the estimated parameter is called an unbiased esti-
mator [92,93]. Given a θ , we therefore have a distribution of
the estimate g(x) with probability f (x|θ ). The mean of this
distribution is given by the middle term of Eq. (1). We now
deal with the variance of the distribution in the case when the
estimator is unbiased.

A lower bound on the variance of the estimator function
is given by the Cramér-Rao bound [5,40,94]. For an unbiased
estimator, the classical Cramér-Rao bound is given by [using
the customary notation �2θ for �2g(x)|θ , the variance of the
distribution of the estimate g(x)]

�2θ � 1

F (θ )
, (2)

where F (θ ) is the Fisher information (FI) [93], defined as

F (θ ) =
∫

dx f (x|θ )

[
∂

∂θ
ln f (x|θ )

]2

. (3)

The integration here is over the measurement outcomes for a
given measurement strategy. For ν runs of the measurement
{�x} on the system [with state ρ(θ )] with the measurement
outcomes x = {x1, x2, · · · , xν}, the Fisher information, F ν (θ ),
takes the following form,

F ν (θ ) =
∫

dx1 . . . dxν f (x1|θ ) . . . f (xν |θ )

×
[

∂

∂θ
ln( f (x1|θ ) . . . f (xν |θ ))

]2

. (4)

It is assumed here that the ν measurements are independent of
each other with the fixed initial conditions.

An important property of the Fisher information is its
additivity. So, if the measurement is repeated ν times, then
F ν (θ ) = νF (θ ) and in Eq. (2) attains the form,

�2θ � 1

νF (θ )
, (5)

which is the general form of the Cramér-Rao bound.
The Cramér-Rao bound depends on the measurement strat-

egy that we choose. To make it independent of such a choice,
the Fisher information needs to be maximized with respect
to all possible measurements in order to get the minimum
value for the bound, given in terms of the quantum Fisher
information FQ(θ ). Therefore, we have

�θ � 1√
ν
[

max�x F (θ )
] = 1√

νFQ(θ )
. (6)
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This inequality is usually referred to as the quantum Cramér-
Rao bound. Here f (x|θ ) = Tr[�xρ(θ )], with {�x} being a
positive operator valued measurement, and ρ(θ ) is a quantum
state. FQ(θ ) is known as the quantum Fisher information,
which can be expressed as

FQ(θ ) = Tr[ρ(θ )Ls[ρ(θ )]2], (7)

with Ls[ρ(θ )] being the symmetric logarithmic derivative
(SLD) [43,95] and is defined through the expression,

∂ρ(θ )

∂θ
= 1

2
[Ls[ρ(θ )]ρ(θ ) + ρ(θ )Ls[ρ(θ )]]. (8)

If the eigenspectrum of ρ(θ ) = ∑
i λi(θ )|ei(θ )〉〈ei(θ )|, then

the SLD can be evaluated as

Ls[ρ(θ )] =
∑
i, j

2〈ei(θ )| ∂ρ(θ )
∂θ

|e j (θ )〉
λi(θ ) + λ j (θ )

|ei(θ )〉〈e j (θ )|, (9)

where the sum is over pairs (i, j) for which λi(θ ) + λ j (θ ) �= 0
[43,95]. The maximum in (6) is attained, for example, for the
projective measurement in the eigenbasis of SLD [43,92,95].

In this entire formulation, the initial state, ρ⊗ν
0 , is kept fixed

and optimization is made only over the measurement strategy.
But one can also consider the best input state. In such a two-
step optimization procedure [5], the result obtained from (6)
is minimized with respect to the input state parameters and we
denote

�θopt = min
ρ⊗ν

0

1√
νFQ(θ )

, (10)

and refer to it as the optimum �θ .
If the parameter to be estimated is encoded in a pure state

|ψ (θ )〉, then Eq. (7) reduces to

FQ(θ ) = 4[〈ψ̇ (θ )|ψ̇ (θ )〉 − |〈ψ̇ (θ )|ψ (θ )〉|2], (11)

where the dots represent derivatives with respect to θ . Suppose
now that there are ν copies of the input state, where each copy
is the N-party entangled state, |ψ (N )

0 〉, and this input unitar-

ily evolves through the equation |ψ (N )
θ 〉⊗ν = U (θ )|ψ (N )

0 〉⊗ν
,

where U (θ ) is a unitary operator given by U (θ ) = e−iH̃θ , with
H̃ being the generator of the unitary having the unit of θ−1.

As H̃ is independent of θ , the quantum Fisher information
comes out to be independent of θ as FQ(θ ) = 4�2H̃ . Hence,
the Cramér-Rao bound turns out to be

�2θ � 1

4ν�2H̃
. (12)

This inequality tells us that �2θ can be minimized by maxi-
mizing �2H̃ . It can be shown that the maximum of �2H̃ can
be obtained by choosing the initial state as∣∣ψ (N )

0

〉 = (∣∣λ(N )
max

〉 + ∣∣λ(N )
min

〉)
/
√

2, (13)

where |λ(N )
max〉 and |λ(N )

min〉 are the respective eigenvectors associ-
ated with the highest and lowest eigenvalues of the generator
H̃ . Now, let us consider the unitary to be of the form
U (θ, φ) = e−i(H̃1θ+H̃2φ) and [H̃1, H̃2] = 0. For this situation,
while estimating θ and φ separately, the Cramér-Rao bounds
for the two parameters are �2θ � 1

4ν�2H̃1
and �2φ � 1

4ν�2H̃2
,

respectively. Here again, the choice of the best input states

are same as in Eq. (13), with |λ(N )
max〉 and |λ(N )

min〉 being the
eigenvectors respectively associated with the highest and low-
est eigenvalues of the generator H̃1 for estimating θ , and the
same of H̃2 for estimating φ. The situation is more involved
when H̃1 and H̃2 do not commute. Then, one cannot write the
Cramér-Rao bound in terms of the variance of the generator
of the unitary and in such a situation, the best choice of input
states cannot be obtained using the prescription in (13).

The phase or the frequency estimation protocol using
quantum metrology has been studied in Refs. [4,5]. They
considered a situation where the objective is to measure an un-
known frequency ω. It comes out as a relative phase φ(= ωt )
taken up by two orthogonal states |0〉 and |1〉 when their linear
superposition is acted upon by the Hamiltonian,

H0 = −h̄ω|1〉〈1|. (14)

In the noiseless scenario, a single particle with the initial state
1√
2
(|0〉 + |1〉) undergoes a time evolution governed by the

Hamiltonian H0, and finally the probability p of obtaining the
initial state in the final state, after the time evolution, is mea-
sured. This probability p, for a single-particle measurement is
given by

p = [1 + cos(ωt )]/2. (15)

For n uncorrelated qubits, the system evolves by an n-qubit
Hamiltonian of the form,

Hn = H0 ⊗ I2 ⊗ I3 · · · ⊗ In + I1 ⊗ H0 ⊗ I3 · · · ⊗ In

+ · · · + I1 ⊗ I2 · · · ⊗ In−1 ⊗ H0, (16)

where each of the qubits is evolving by H0 and Ik is the
identity operator on the kth qubit space. After the evolution,
the same measurement as in the single-qubit case is made on
each of the qubits independently, after tracing out the others. If
the total time of the experiment is T and if every step consists
of an evolution for time t and an instantaneous measurement,
the total number of measurements will be ν = n T

t . So, for
n copies of uncorrelated single qubits, we can obtain the
deviation in the estimation of the frequency ω as

�ωp = 1√
ntT

, (17)

when ν is large. This is often referred to as the shot-noise
limit in the literature [4]. In the maximally entangled in-
put case, where among n qubits, clusters of N qubits are
bunched into maximally entangled groups, having the initial
state (|0〉⊗N + |1〉⊗N )/

√
2, the number of measurements for n

qubits is ν = n
N

T
t . Note that we are calling the Greenberger-

Horne-Zeilinger state [96,97] as the maximally entangled
state. The uncertainty in measuring ω in this case for large
ν is found to be

�ωe = 1√
ntT N

. (18)

Now, comparing Eqs. (17) and (18) we can see that a quantum
advantage of 1√

N
is attained for the estimation of ω in the

maximally entangled case over the classical one.
Next, the same situation is considered but in presence

of noise [4,5], which is inevitably present in any realistic
scenario. In presence of dephasing noise, for a single-qubit
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density matrix ρ the dynamical equation can be described
by the Gorini-Kossakowski-Sudarshan-Lindblad master
equation given by

ρ̇ = − i

h̄
[H0, ρ] + γ

2
(σzρσz − ρ), (19)

where γ is the decay constant of the dephasing channel having
the unit of 1

t . Solving Eq. (19) for the single-qubit case, and
generalizing for n qubits, the expression for minimum �ω

can be obtained [4]. For the noisy case, it is observed that,
for large ν, the minimum values of �ω, viz. �ωpNoise and
�ωeNoise , obtained in the product and maximally entangled
scenarios respectively, are the same and hence, both of these
settings obtain the same precision in measuring the frequency
ω in presence of decoherence. Thus, while there is an ad-
vantage in the maximally entangled initial state in absence
of noise, it disappears when a dephasing channel is applied.
An important point to be noted here is that while extending
from a single-qubit scenario to an n-qubit configuration, an
underlying assumption is made regarding the qubits’ evo-
lution. They evolve through distinct and uncorrelated local
dephasing channels, which remain unchanged even in the
presence of interactions between the system particles. This
assumption underpins the presentation of the total dissipative
term within the Lindblad master equation as a summation of
independent dissipative terms, originating from the individual
qubits experiencing local dephasing channels. This particu-
lar circumstance also finds relevance in the context of some
setups of thermal devices, where qubits locally interact with
thermal reservoirs [98,99]. In such cases, the Lindblad master
equation governing the dynamics of the reduced system en-
compasses a dissipative term that is, essentially, the sum of
dissipative terms corresponding to each individual qubit. All
of these considerations remain consistent within the frame-
work of the Born-Markov assumptions [100–103]. Within the
context of this paper, we rigorously investigate scenarios that
adhere to these principles. here exist alternate ways of gen-
eralizing to multiple qubits [104–109], but we do not discuss
those scenarios.

We adhere to two types of measurement schemes in this
paper. These are as follows.

Scheme I. The first measurement scheme is a prod-
uct measurement having four outcomes. The measure-
ment operators of this four-outcome measurement belong
to a set of biorthogonal states, viz. {|�1〉 ⊗ |�2〉, |�1〉 ⊗
|�2〉⊥, |�1〉⊥ ⊗ |�2〉, |�1〉⊥ ⊗ |�2〉⊥}. We perform a rank-
one projective measurement on the encoded state with the
four outcomes corresponding to the projectors onto the
biorthogonal vectors. Let the probability of each of the four
measurement outcomes after the measurement be denoted by
pi, where i = 1–4 and

∑4
i=1 pi = 1. Once we get the proba-

bilities, we calculate the Fisher information corresponding to
the encoded state, using Eq. (3). Finally we optimize over the
measurement operators to obtain the best possible metrolog-
ical precision under this measurement scheme, for the given
encoded state. The significance of this type of measurement
is that it is locally implementable, and is therefore easier to
perform in a realistic situation. We employ the same mea-
surement strategy for both correlated and uncorrelated input
probes, in noiseless as well as noisy scenarios, separately for

Table
Number

Measurement
strategy

Encoding Hamiltonian

Table I Scheme I Without interaction without field

Table II Scheme I With Interaction

Table III Scheme I Without interaction with field

Table IV Scheme II Without interaction without field

Table V Scheme II With Interaction

Table VII Scheme II Without interaction with field

FIG. 2. We present here a summary of the cases considered in the
different tables in this paper. Table VI is not included in the above
summary, and involves a scaling analysis for a minimum uncertainty
for frequency estimation within Scheme II.

noninteracting and interacting encoding Hamiltonians. The
results corresponding to this measurement scheme are pre-
sented in Sec. III.

Scheme II. This measurement scheme is the optimal mea-
surement scheme for a specified encoded state, optimized
over arbitrary measurement schemes. This involves a four-
outcome projective measurement onto the eigenbasis of SLD
of the relevant encoded state. We evaluate the quantum Fisher
information in this case using Eq. (7). This measurement
strategy is utilized both for uncorrelated and correlated in-
puts, in noiseless as well as noisy situations, and separately
for noninteracting and interacting encoding Hamiltonians. We
discuss the results with this measurement in Sec. IV.

An important consideration of our work is that in noisy
scenarios, we assume an exact knowledge of the noise and
have the freedom to choose the optimal input state accord-
ingly. Hence in the noisy and noiseless scenarios, we execute
the measurements on different input states, but both of them
are optimal in the relevant situations.

The results are presented in several tables in the two
succeeding sections. Figure 2 presents a gist of the cases
considered therein.

III. PARAMETER ESTIMATION USING LO
MEASUREMENTS (SCHEME I)

In this section, we consider the Hamiltonian H2, along
with some modifications in it, and minimize the error in the
estimation of a certain parameter of the relevant Hamiltonian.
We restrict to two types of two-qubit pure input probes: ar-
bitrary product and arbitrary maximally entangled ones. The
parameter that we want to estimate is encoded onto the input
probe via the Hamiltonian. The evolution of the probes is
governed by the same Hamiltonian with or without a noisy
background. The noise is modeled by a dephasing channel,
and is uncorrelated, so that it acts locally on the two subsys-
tems. Throughout the paper, we refer to the unitary case as the
noiseless scenario, and the case when dephasing is active as
the noisy one. After the encoding, a suitable measurement is
performed on the encoded state. Then we calculate the Fisher
information from the measurement outcomes, using Eq. (3).
Finally to achieve the best possible accuracy in the relevant
setting, we maximize the Fisher information over the choice
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of input states and measurements. In the rest of the paper,
we will call the Fisher information-based lower bound of the
minimum deviations of any estimated parameter ε as �ε̃.
The evaluation of �ε̃ follows exactly the same method as for
obtaining �θopt, but for finite ν. The minimum of �ε̃ over
the evolution time is presented as �ε̃min. In the optimization
processes, the arbitrary initial states chosen for product and
maximally entangled cases, as denoted by the subscripts p and
e, respectively, are given by

|ψp〉 = |φ1〉 ⊗ |φ2〉 and

|ψe〉 = UA ⊗ UB
1√
2

(|00〉 + |11〉), (20)

where |φ j〉 = cos θ j

2 |0〉 + eiδ j sin θ j

2 |1〉 for j = 1, 2 and
UA,UB ∈ SU (2) are unitaries acting on the local subsystems.
The general form of such a single-qubit unitary is given by

Uk =
(

ei(αk+βk )/2 cos γk

2 e−i(αk−βk )/2 sin γk

2

−ei(αk−βk )/2 sin γk

2 e−i(αk+βk )/2 cos γk

2

)
, (21)

for k = A and B. Since UA and UB act locally, they can not
change the entanglement content of the maximally entan-
gled state chosen. They can at best transform one maximally
entangled state into another and one product state into an-
other. Hence, we can optimize over all possible product and,
separately, overall maximally entangled states by optimizing
over θ j and δ j in the product input cases for j = 1, 2, and
the parameters of the unitaries UA and UB for the maximally
entangled input cases, to obtain the best choice of initial states
for achieving minimum uncertainty of the parameter to be
estimated.

An optimization over the relevant measurements is also
required. As elaborated earlier, this paper encompasses two
distinct measurement settings. In this section, we deal with
the LO measurement performed on two parties. The measure-
ment operators, as discussed previously are described by a set
of biorthogonal states, {|�1〉 ⊗ |�2〉, |�1〉 ⊗ |�2〉⊥, |�1〉⊥ ⊗
|�2〉, |�1〉⊥ ⊗ |�2〉⊥}. The explicit forms of {|�i〉 and {|�i〉⊥
are given by

|�i〉 = |φk〉 and

|�i〉⊥ = sin
θk

2
|0〉 − eiδk cos

θk

2
|1〉, (22)

where k = i + 2 and i = 1, 2. So we optimize over the param-
eters θk and δk to obtain the optimal measurement under this
type of scenario.

We do the two-step optimizations, viz., of probes and
measurement operators, simultaneously. Whenever numerical
optimization is required, we do so using the algorithms of
NLOPT [110]. In all further discussions regarding precision
measurements of parameters, these two optimizations, one
over the initial states and the other over the measurements,
are taken into account.

A. Frequency estimation in absence of field and interactions

We begin by considering the encoding Hamiltonian given
in Eq. (14), where the parameter, ω, is to be estimated. The
Fisher information-based lower bound is evaluated in the es-

timation of ω. In Table I, the dimensionless quantity T̃ �ω̃min,
is given, which is being measured by optimizing the initial
states, measurement and the dimensionless time, t/T̃ . Here T̃
is a constant having the unit of time. The investigations are
done for n = 2. From Table I, we find that there is an ad-
vantage of using an initial maximally entangled state over the
initial product state in estimating the frequency in noiseless
scenario. This advantage vanishes in presence of uncorrelated
local dephasing noise. These results presented in Table I, both
in the noiseless and noisy cases, pertain to the measurement
scheme I as mentioned previously. A similar observation was
given in Ref. [4]. However, the measurement strategy em-
ployed by them is different from ours. Let us briefly state
their measurement scheme. Suppose that a single copy of the
initial probes is |ψ0〉. They construct a set of measurement
elements containing two rank-one projectors for uncorrelated
(qubit) inputs, and a rank-one projector and a rank-(2N − 1)
projector for copies of an N-qubit GHZ state as inputs, viz.
{|ψ0〉〈ψ0|, I − |ψ0〉〈ψ0|}, and perform projective measure-
ments on each of the encoded states using this strategy, where
I is the identity operator on the Hilbert space of a single copy
of the probes. This furnishes the probability of getting, or
not, the initial state at the output. They have considered this
measurement strategy in noiseless scenario with the initial
state being either a product state or, separately, a maximally
entangled (GHZ) state. In the noisy situation, they repeat the
same projective measurement on the same initial probes |ψ0〉,
as in the noiseless case. This is, e.g., the useful choice when
the presence of noise is unknown to the observers.

In practical applications, therefore, the prevalence of noise
in natural systems limits the quantum advantage of employing
a maximally entangled initial state for frequency estimation.
Notably, this limitation is particularly pronounced in scenar-
ios involving uncorrelated local dephasing noise, whereas the
implications for generic dephasing channels remain subject
to further study. We now aim to find whether any quan-
tum advantage can be achieved in estimating some system
parameters by altering the system Hamiltonian, possibly by
incorporating transverse fields or/and interactions between
the particles involved. To fulfill this goal, we consider sev-
eral single-qubit fields and two-qubit interactions between the
system particles and evaluate the minimum uncertainty in esti-
mating the frequency and other field and coupling parameters
by utilizing optimum initial states and optimal measurement
strategies. For the measurement strategy, we, however, pertain
to optimum LO measurement given by Scheme I.

B. Ising coupling incorporation for restoration
of quantum metrological advantage

In this section, we investigate whether the advantage of
using maximally entangled initial states in the noiseless case
remains also in a noisy environment in presence of two-qubit
interactions between the system particles in presence and/or
absence of transverse fields. In Table II, we have presented the
optimum lower bounds of the deviations of estimated parame-
ters, which are being measured by optimizing the initial states,
measurement, and the evolution time, in the cases where the
Hamiltonian possesses such a coupling term.
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TABLE I. Minimum uncertainty obtained from Fisher information-based lower bound T̃ �ω̃min for the estimated parameter ω for the ideal
Hamiltonian H2. Here the optimization is over initial states, measurement strategies within Scheme I, and evolution time, for N = 2, n = 2,
T/T̃ = 2.0, T̃ ω = 0.5 × π × 10. The numerical values are correct up to the second decimal place. All T̃ �ω̃min are obtained for the time
interval 0 to 2T̃ . All numbers in the table are for dimensionless quantities.

Hamiltonian Product Maximally entangled Product Maximally entangled
(Estimated parameters) (noiseless) (noiseless) (noisy) (noisy)

H2 (ω) 0.35 0.25 0.82 0.82

1. Estimation of frequency

The minimum error in estimation of the frequency, ω,
present in the encoding interacting Hamiltonians, is given
in this section. At first, we modify the ideal Hamiltonian
H2 by introducing an Ising interaction between the particles
involved. The total Hamiltonian of the system therefore looks
like

H1 = H2 + h̄J
(
σ 1

z ⊗ σ 2
z

)
, (23)

with J being a coupling constant having the unit of time−1.
Let us look into the calculation of the Fisher information-

based lower bound from the joint probability distributions
of each outcome obtained after measurement using Scheme
I. We consider the situation of initiating with product input
probes, and where the evolution is considered in the presence
of a noisy environment. The initial state, |ψp〉〈ψp|, evolves to
some final state, say ρ f , in presence of local dephasing noise.
A four-outcome LO measurement is performed on the evolved
state, and the probability of obtaining each outcome after the
measurement, denoted by pi for i = 1–4, is given by

p1 = 〈�1�2|ρ f |�1�2〉
p2 = 〈�1�

⊥
2 |ρ f |�1�

⊥
2 〉

p3 = 〈�⊥
1 �2|ρ f |�⊥

1 �2〉
p4 = 〈�⊥

1 �⊥
2 |ρ f |�⊥

1 �⊥
2 〉. (24)

The expressions of pi, for i = 1–4 are given in Appendix.
Using these probabilities, we evaluate the Fisher information
according to Eq. (3), to obtain the deviations in the estimations
of frequency. The deviations, thus obtained, are optimized
over the choice of input state, measurement strategy under
Scheme I and the evolution time, whereby we reach the quan-
tity, �ω̃min.

A similar analysis is carried out for maximally entangled
initial probes. The expressions of the corresponding proba-
bilities in this case are not explicitly presented in the paper,
as they are long, and as they can be calculated in the same
manner as for the product input case. For all the other sce-
narios considered in the paper, the minimum deviations in
the estimations of the relevant parameters have been com-
puted analogously, for product and maximally entangled input
probes.

The minimum error in the estimation of ω, given by
T̃ �ω̃min, is depicted in Table II. We observe that in the
noiseless scenario, the situation is similar to the case without
interactions, i.e., optimum maximally entangled probes are
advantageous over optimum product ones. However, in the
noisy scenario, there is a restoration of metrological advantage
by using optimal maximally entangled input over optimal
product ones, in the estimation of the minimum error in ω.
If we look at the time dynamics of T̃ �ω̃ depicted in Fig. 3(a)
for H1, we observe that, in noiseless scenarios, the quantity,
T̃ �ω̃, is hyperbolic in nature for both product and maximally
entangled inputs in the noiseless case. In contrast, under noisy
scenarios, T̃ �ω̃ is oscillatory for both product and maximally
entangled inputs.

The noise strength of the dephasing channels, denoted by
γ [see Eq. (19)], can have significant impacts on the measure-
ment precision of the parameters. To investigate the effects
of the noise strength on the minimum error of the estimated
parameters, we take an instance of measuring frequency using
Scheme I for the Hamiltonian H1 [see Eq. (23)]. In Fig. 4,
the behavior of the quantity T̃ �ω̃min is depicted as the noise
strength γ increases from 0 to 1. It is evident from the fig-
ure that the minimum error of the estimation of frequency
increases monotonically with the increase of noise strength
for both product and maximally entangled optimum initial

TABLE II. Minimum uncertainty obtained from Fisher information-based lower bound T̃ �ε̃min for an estimated parameter ε for various
Hamiltonians observed by incorporating two-body interaction terms in the ideal Hamiltonian H2. Here the optimization is over initial states,
measurement strategies within Scheme I, and evolution time, for T̃ J = 0.5, T̃ h = 0.5, and T̃ γ = 0.5. The numerical values are correct up to
the second decimal place. All numbers in the table are for dimensionless quantities.

Hamiltonian Product Maximally entangled Product Maximally entangled
(Estimated parameters) (noiseless) (noiseless) (noisy) (noisy)

H1 (ω) 0.35 0.25 0.95 0.82
H2 (ω) 0.35 0.25 0.95 0.82
H1 (J) 0.25 0.25 0.48 0.54
H2 (J) 0.25 0.25 0.48 0.54
H3 (J) 0.25 0.25 0.48 0.54
H2 (h) 0.80 0.58 0.79 0.58
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FIG. 3. Fisher information-based lower bound of the minimum uncertainty in frequency measurement. Here we have depicted the time
dynamics of T̃ �ω̃ for both product and maximally entangled initial states under the evolution of the Hamiltonian H1 and H2 in (a) and (b),
respectively, while considering measurement scheme I. The figures correspond to noiseless situations and insets depict the noisy scenarios. All
other considerations are the same as in Table II. The solid orange curves correspond to the optimal choice of maximally entangled initial state
and the dotted-dashed green curves represent the same for the product initial state. All quantities plotted are dimensionless.

states. This trend indicates a degradation in the precision of
estimated frequency as noise strength increases. Additionally,
the figure illustrates that across the range 0 � T̃ γ � 1, the
measurement precision associated with maximally entangled
inputs consistently outperforms that of product inputs, high-
lighting the advantage of employing maximally entangled
initial states.

We now introduce a field term, applied in the direction
perpendicular to that in the ideal Hamiltonian H2. Here we
consider both the transverse field and the Ising interaction
terms together, while still evaluating the minimum deviation
in the estimation of ω. Therefore, the Hamiltonian of the
system takes the form

H2 = H2 + h̄J
(
σ 1

z ⊗ σ 2
z

) + h̄h
(
σ 1

x + σ 2
x

)
. (25)
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FIG. 4. Variation of the Fisher information-based lower bound
of the minimum uncertainty in the estimation of frequency with
the noise strength γ . Here we depict the quantity T̃ �ω̃min with the
increase of the noise strength γ for the Hamiltonian H1. The opti-
mization is over initial states, measurement strategy using Scheme I
and evolution time. The purple circles depict the case of optimum
maximally entangled inputs and the green triangles depict that of
the optimum product inputs. All the other parameters are chosen
same as in Fig. 3. The quantities plotted along both the axes are
dimensionless.

The combined effect of the Ising interaction and transverse
field is qualitatively the same as that of the Ising interaction
alone, i.e., optimal maximally entangled probe proves to be
beneficial over optimal product ones, both in absence and
presence of noise. This result is depicted in the second row
of Table II. If we see the time dynamics of T̃ �ω̃ given in
Fig. 3(b) for H2, we find that, in noiseless scenarios, the
quantity, T̃ �ω̃, shows a hyperbolic behavior for maximally
entangled inputs, while it exhibits oscillatory behavior for
product inputs. In contrast, under noisy conditions, the be-
havior of T̃ �ω̃ is oscillatory for both product and maximally
entangled inputs. The advantage of using optimal maximally
entangled input over the product input in both noiseless and
noisy scenarios is also evident from the plot.

The reason behind the restoration of quantum advantages
by introducing an interaction in the Hamiltonian of the system
can be comprehended as follows. In quantum metrology, the
initial entanglement of the probes plays a crucial role, giving
quantum systems an advantage over classical ones, especially
in noiseless situations [4]. Hence, generating entanglement
between the initial probes, may be helpful to achieve better
precision in estimating system parameters. Also, noninter-
acting entangled inputs experience entanglement decay over
time, and noninteracting initial product inputs remain unen-
tangled throughout. We introduce interactions between system
particles in the system’s Hamiltonian, as it can lead to en-
tanglement growth over time in certain cases, which in turn
can potentially enhance the measurement precision of system
parameters.

2. Estimation of coupling constant

Now we consider the estimation of the coupling constant.
In contrast to the previous sections, estimating the coupling
constant J reveals some significant differences in the Fisher
information-based lower bound of measurement precision.
We analyze the quantity, T̃ �J̃min, to estimate the precision
in measuring the coupling constant, J . From the third row of
Table II, we observe a stark contrast in the results, compared
to the preceding sections, for the Hamiltonians H1 and H2.
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FIG. 5. Fisher information-based lower bound of the minimum uncertainty in frequency measurement. Here we have depicted the time
dynamics of T̃ �J̃ and T̃ �h̃ for both product and maximally entangled initial states under the evolution of the Hamiltonian H1 and H2,
respectively in (a) and (b). The measurement strategies pertain to Scheme I. The figures represent the noiseless cases and insets depict the
respective noisy scenarios. All other considerations are the same as in Table II. The solid orange curves correspond to the optimal choice of
maximally entangled initial state and the dotted-dashed green curves represent the same for the product initial state. All quantities plotted are
dimensionless.

In the noiseless scenario, the minimum error in estimating J
remains the same for both product and maximally entangled
inputs. However, there is an advantage observed for optimal
product inputs over optimal maximally entangled inputs over
in the noisy scenario.

For the Hamiltonian H1, the nature of T̃ �J̃ vs t/T̃ in
the noiseless scenario looks completely different from the
corresponding curves for the case of frequency estimation
discussed above. In the time dynamics of T̃ �J̃ , there occur
oscillations for maximally entangled inputs whose amplitude
decreases with time and for product inputs, the same quantity
depicts a hyperbolic behavior. The profile of T̃ �J̃ in the noisy
situation exhibits oscillations for both product and maximally
entangled initial probes. The product initial state achieves
exactly the same precision as that of the maximally entan-
gled one in noiseless scenario. In contrast, in the noisy case,
the optimal product probe provides better precision. Refer to
Fig. 5(a).

We now investigate another Hamiltonian H3 to see whether
similar features in the estimation of J , which appears in case
of H1 and H2, are also prevalent if we consider H3. The
Hamiltonian H3 is given by

H3 = h̄J
(
σ 1

z ⊗ σ 2
z

)
. (26)

For this Hamiltonian also, as we can observe from the fifth
row of Table II that the optimal product input probes outper-
form the precision obtainable by optimal maximally entangled
initial probes. So there exists a general trend that product
initial states give equal or better precision as that of the max-
imally entangled inputs in the case of estimation of J , in the
noiseless and noisy settings, respectively, unlike the case of
estimation ω. For frequency estimation, on the other hand,
there is always a quantum advantage, both in the noiseless
and noisy scenarios.

3. Estimation of transverse field strength

We now estimate and analyze the Fisher information-
based lower bound of the uncertainty in measuring the field
strength h (�h̃) in the same manner as in the previous case of

measuring ω and J . For the system Hamiltonians H2, the
estimation results, T̃ �h̃min, is given in the sixth row of Table II
for Scheme I for certain instances of the system parameters. In
both the noiseless and noisy situations, there are quantum ad-
vantages if we initiate with the optimal maximally entangled
input instead of the optimal product input.

The behavior of T̃ �h̃ with respect to time t/T̃ for the sys-
tem Hamiltonian H2 for Scheme I is demonstrated in Fig. 5(b).
It is evident from the figure that there are quantum advantages
both in the noiseless and noisy cases, i.e., there is an enhance-
ment of metrological precision if we initiate with maximally
entangled states, whether or not noise is present. In both the
noiseless and noisy scenarios, T̃ �h̃ has an oscillatory nature
for product and maximally entangled cases, and the amplitude
of oscillation decays with the increase of time.

C. Can quantum metrological advantage be restored
in absence of interactions?

Here we alter the ideal Hamiltonian by adding a transverse
field of field strength, h. The total Hamiltonian of the system
is therefore

H4 = H2 + h̄h
(
σ 1

x + σ 2
x

)
, (27)

with h being in unit of time−1. In this section, we consider the
minimum deviations in the estimations of the parameters, ω or
h, present in the encoding Hamiltonian, H4, in absence of any
two-qubit interactions, while still adhering to measurement
scheme I. The results obtained in this case are depicted in
Table III. The quantity, T̃ �ω̃min, is presented in the first row
of the table. Referring to this, we find that it is beneficial to
consider optimal maximally entangled initial probes than opti-
mal product initial probes in the noiseless scenario. However,
in the noisy scenario, both optimal maximally entangled input
and optimal product input provides exactly the same precision
in the estimation of ω. Therefore, the quantum metrologi-
cal advantage cannot be restored in absence of interaction
terms in the encoding Hamiltonian with optimal maximally
entangled inputs in the noisy situation, while estimating the
frequency.
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TABLE III. Minimum uncertainty obtained from Fisher information-based lower bound T̃ �ε̃min for an estimated parameter ε for various
Hamiltonians observed in absence of interaction terms in the ideal Hamiltonian H2. Measurement scheme I is considered here. The numerical
values are correct up to the second decimal place. All numbers in the table are for dimensionless quantities.

Hamiltonian Product Maximally entangled Product Maximally entangled
(Estimated parameters) (noiseless) (noiseless) (noisy) (noisy)

H4 (ω) 0.35 0.25 0.82 0.82
H4 (h) 0.82 0.58 0.82 0.58

Next we consider the estimation of the field strength, h,
for the same Hamiltonian, H4. Refer to the second row of
Table III, where the quantity, T̃ �h̃min, is presented. In this
situation, we find that the optimal maximally entangled probes
are advantageous over optimal product input probes, both in
the noiseless and noisy settings. An important observation
here is that the noise has practically no effect on the evaluation
of the minimum deviation in the estimation of the transverse
field strength.

IV. PARAMETER ESTIMATION WITH MEASUREMENT
IN THE EIGENBASIS OF SLD (SCHEME II)

Though the LO measurement scheme is easier to realize
physically, it is always useful to compare its precision with
the optimal measurement scheme, which is a projective mea-
surement in the eigenbasis of SLD. In this section, therefore,
we extend our analysis by comparing the outcomes of the
previous strategy (Scheme I) with those obtained using the
optimal measurement scheme, i.e., the measurement in
the eigenbasis of SLD (Scheme II). Here also, the initial
states for uncorrelated and maximally entangled probes, as
presented in Eq. (20), are employed. After the measurement
using Scheme II, we evaluate the quantum Cramér-Rao bound
utilizing the quantum Fisher information provided by Eq. (7).
In particular, our aim is to find whether any quantum metro-
logical advantage can be restored in the noisy scenario, which
vanished in the case of encoding Hamiltonian H2 while ad-
hering to measurement Scheme I, if we implement the optimal
measurement strategy.

A. Frequency estimation in absence of field and interactions

Let us begin by considering the ideal Hamiltonian H2.
The Fisher information-based lower bound is evaluated in
the estimation of ω. In Table IV, the dimensionless quantity
T̃ �ω̃min, is presented, which is being calculated by optimizing
over the initial states, measurement, and the dimensionless
time, t/T̃ . The investigations are done for n = 2. Upon ex-
amining Table IV, it is evident that a minor relative quantum

advantage is obtained in noisy scenarios when compared to
the ideal cases of the frequency estimation protocol detailed
in the Table I. So, it is intriguing to find that the optimal
measurement scheme itself, in absence of any field or inter-
action terms in the encoding Hamiltonian, favors the revival
of quantum advantage, which disappeared for measurement
scheme I. As previously mentioned, the SLD measurement
scheme represents the optimal approach, and we can see that
its application results in a notable reduction in the minimum
error for frequency estimation, particularly for optimal maxi-
mally entangled inputs as opposed to optimal product inputs
in the noisy scenario. Hence, there is restoration of quantum
advantage in frequency estimation for the ideal Hamiltonian
H2 in the noisy setting. Interestingly, in the ideal scenarios
with the same initial probes, both the measurement scheme
I, as well as the SLD measurement scheme, yield identical
minimum frequency estimation errors in noiseless situations.

B. Incorporation of Ising coupling to achieve metrological
precision in parameter estimation

In this section, we investigate whether the advantage of us-
ing maximally entangled initial states in both the noiseless and
noisy cases also persist in presence of two-qubit interactions
and/or transverse fields between the system particles.

1. Estimation of frequency

We here shift our focus to the modified Hamiltonians H1

and H2, where we assess the minimal error in frequency
estimation. The outcomes of this analysis are presented, re-
spectively, in the first and second rows of Table V. Notably,
the obtained values are quantitatively indistinguishable up
to the second decimal places when compared with the ideal
SLD measurement scenario detailed in Table IV. So, in this
scenario as well, the quantum advantages are visible both in
the noiseless and noisy scenarios. Thus, with both the ideal
Hamiltonian H2 and the modified Hamiltonian H1, it is plau-
sible to restore the quantum advantage in noisy scenarios by
using the SLD measurement scheme when compared to the

TABLE IV. Minimum uncertainty obtained from Fisher information-based lower bound T̃ �ω̃min for the estimated parameter ω for the
ideal Hamiltonian H2. Here the optimization is over initial states, measurement strategies within Scheme II, and evolution time, for N = 2,
n = 2, T/T̃ = 2.0, T̃ ω = 0.5 × π × 10. The numerical values are correct up to the second decimal place. All T̃ �ω̃min are obtained for the
time interval 0 to 2T̃ . All numbers in the table are for dimensionless quantities.

Hamiltonian Product Maximally entangled Product Maximally entangled
(Estimated parameters) (noiseless) (noiseless) (noisy) (noisy)

H2 (ω) 0.35 0.25 0.82 0.80
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TABLE V. Minimum uncertainty obtained from Fisher information-based lower bound T̃ �ε̃min for an estimated parameter ε for various
Hamiltonians observed by incorporating two-body interaction terms in the ideal Hamiltonian H2. The measurement strategy is according to
Scheme II. The numerical values are correct up to the second decimal place. All numbers in the table are for dimensionless quantities.

Hamiltonian Product Maximally entangled Product Maximally entangled
(Estimated parameters) (noiseless) (noiseless) (noisy) (noisy)

H1 (ω) 0.35 0.25 0.82 0.80
H2 (ω) 0.35 0.25 0.82 0.80
H1 (J) 0.25 0.25 0.47 0.47
H2 (J) 0.25 0.25 0.47 0.47
H3 (J) 0.25 0.25 0.47 0.47
H2 (h) 0.80 0.58 0.79 0.58

ideal case evaluated by using Scheme I, but the degree of
restoration is relatively small.

We will now explore scenarios in which we consider a
single copy of initial probes, each represented as an N-qubit
state with N being an arbitrary integer. In these cases also,
we specifically focus on two-body interactions between the
qubits. Therefore, the Hamiltonian for a single N-qubit probe
can be expressed as

HN
1 = HN +

N∑
k=1

h̄J
(
σ k

z ⊗ σ k+1
z

)
, (28)

with periodic boundary conditions imposed. We will now
perform the same task as previously undertaken for two-qubit
initial probes, as discussed earlier, but this time with N-qubit
product and entangled inputs, and encoding by a two-body
interacting encoding Hamiltonian given in Eq. (28), followed
by the optimum (SLD) measurement on the encoded probe.
An arbitrary N-qubit product input state is given by∣∣χN

p

〉 = |φ1〉 ⊗ |φ2〉 . . . ⊗ |φN 〉. (29)

Here, to obtain the optimal input state, the optimization
is performed over all the parameters of |φ1〉, |φ2〉, · · · ,
φN . For N-qubit entangled inputs, we consider the N-qubit
Greenberger-Horne-Zeilinger (GHZ) states, which are rep-
resented as |GHZ〉 = 1√

2
(|0〉⊗N + |1〉⊗N ). Subsequently, we

apply local unitary transformations to all the qubits, to cover
the entire range of GHZ states expressed in different bases, as

∣∣χN
e

〉 = U1 ⊗ U2 ⊗ . . . ⊗ UN
1√
2

(|0〉⊗N + |1〉⊗N ). (30)

To attain the optimal input state in this scenario, the optimiza-
tion should encompass all the parameters of U1, U2, · · · , UN .

We estimate the parameter, ω, and find how the minimum
deviations in the estimation of ω scale with N for each of the
optimal product and maximally entangled cases. To do this, let
us consider N = Nk . The minimum error in the estimation of
ω corresponding to Nk parties is denoted by �ωk . Therefore,
�ωk ∝ 1/Nk

x, and the ratio of the two minimum deviations
corresponding to k and k + 1 is given by �ωk/�ωk+1 =
(Nk+1/NK )x, where we want to find the value of x. The value
of x can be obtained from the relation

x =
ln

(
�ωk

�ωk+1

)
ln

(Nk+1

Nk

) , (31)

where ln denotes the natural logarithm. We use this relation
to find how the quantity, T̃ �ω̃min, scales with N , for each
of product and maximally entangled scenarios. The minimum
standard deviations obtained in the estimations of frequencies,
corresponding to optimal product and maximally entangled
inputs, denoted respectively by T̃ �ω̃P

min and T̃ �ω̃E
min, for

different values of N , are provided in Table VI. Our findings
reveal that the minimum precision in the estimation of ω

scales as N−x with x = 0.5 when employing optimal prod-
uct inputs, and as 1/N−x with x = 0.57 when using optimal
GHZ inputs. Hence, the use of maximally entangled initial
probes proves to be more advantageous than the utilization
of product inputs, even in the context of N-qubit probes, for
enhancing measurement precision in frequency estimation.
Here, the multiqubit state is considered as having maximal
entanglement in the sense of possessing maximal generalized
geometric measure [111–116].

2. Estimation of coupling constant

Let us now turn our attention to the inclusion of interaction
terms in the encoding Hamiltonian, with or without transverse
fields, where we aim to estimate the strength of the coupling
constant denoted by J . The result is intriguing and distinct
from the others. We observe from the third, fourth, and fifth
rows of Table V that the optimal entangled input always gives
the same precision as the optimal product input, both in the
noiseless and noisy scenarios, hence offering no quantum
advantages. So, the presence of entanglement in the input
probe is not necessary to attain ultimate metrological preci-
sion in the estimation of the coupling constant, J , for encoding

TABLE VI. Minimum uncertainty obtained from Fisher
information-based lower bound, T̃ �ω̃P

min and T̃ �ω̃E
min, for the

estimated parameter ω corresponding to optimal product and
maximally entangled inputs respectively. Here the optimization is
over initial states, measurement strategies within Scheme II, and
time. N denotes the number of subsystems involved. All numbers in
the table are for dimensionless quantities.

N T̃ �ω̃P
min T̃ �ω̃E

min

2 0.907986 0.817733
3 0.742497 0.649712
4 0.643622 0.55072
5 0.575897 0.490527
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TABLE VII. Minimum uncertainty obtained from Fisher information-based lower bound T̃ �ε̃min for an estimated parameter ε for various
Hamiltonians observed by incorporating some interaction or field terms in the ideal Hamiltonian H2. The measurement corresponds to Scheme
II. The numerical values are correct up to the second decimal place. All numbers in the table are for dimensionless quantities.

Hamiltonian Product Maximally entangled Product Maximally entangled
(Estimated parameters) (noiseless) (noiseless) (noisy) (noisy)

H4 (ω) 0.35 0.25 0.82 0.80
H4 (h) 0.82 0.58 0.82 0.58

Hamiltonians, H1, H2, and H3. This trend is different from the
relevant situations where we considered measurement scheme
I.

3. Estimation of transverse field strength

In the last row of Table V, we consider the Hamiltonian
H2, and estimate the field strength h. Similar to the patterns
observed in the preceding section, the optimal maximally
entangled inputs yield better precision levels than the optimal
product inputs in both the noiseless and noisy situations, as
depicted in the last row of Table II. In fact, comparing the
results in the last rows of Tables II and V, we find that while
estimating the field strength, h, in presence of interactions, for
certain choice of parameters, the LO measurement given in
Scheme I can achieve the best metrological precision obtain-
able using the optimal measurement scheme.

C. Can quantum metrological advantage be restored
in absence of interactions?

Here we consider encoding Hamiltonian containing trans-
verse field term in addition to the ideal Hamiltonian.
Therefore, the total Hamiltonian of the system is

H4 = H2 + h̄h
(
σ 1

x + σ 2
x

)
. (32)

The values of the quantity, T̃ �ω̃, is presented in the first row
of Table VII in the noiseless and noisy scenarios. The effect
of the transverse field alone is quantitatively the same as that
of the transverse field and interaction considered together in
the estimation of ω, i.e., there are instances where optimal
maximally entangled probes are better than optimal product
ones both in the noiseless and noisy situations.

Next we consider the quantity, T̃ �h̃, which is given in
the last row of Table VII. The precision in estimating the
field strength, h, in absence of interactions, is better if we
initiate with an optimal maximally entangled probe instead of
optimal product probe, inflicted or not, by noisy environment.
Moreover, it is evident that noise has quantitatively no effect
in estimating the precision of the field strength, as the quantity,
T̃ �h̃, attains the same value both in presence and absence of
noise, separately for optimal maximally entangled state and
optimal product input state.

V. DEPENDENCE OF T̃�ε̃min ON ENTANGLEMENT
CONTENT OF INITIAL STATES

In the preceding sections, we have scrutinized the occur-
rence of metrological advantages in some particular situations
with respect to two extreme choices of the initial probes:
one was uncorrelated and the other was maximally entangled.

As the initial maximal entanglement helps in attaining better
measurement precision for some parameters over the ini-
tial uncorrelated inputs, while estimating frequency, one can
expect that the betterment of precision of estimation of param-
eters is not a discrete jump from the uncorrelated to maximally
entangled initial probes. Instead, a continuous relationship be-
tween measurement precision and the entanglement content of
the initial probes is anticipated. Hence, how the measurement
precision changes with respect to the entanglement content of
the initial state may reveal some interesting features. So, we
now investigate the behavior of �ε̃min for ε being ω, h, and J ,
with the increasing entanglement content of the initial states.
For this purpose, the input state is chosen to be

|ψ ′
p〉 = UA ⊗ UB[α|00〉 +

√
1 − α2|11〉]. (33)

Compare with Eq. (20). The entanglement content of the state
is encapsulated in the parameter α. The state is a product one
if α = 0 or 1, for α = 1√

2
the state is maximally entangled

and between 0 ( 1√
2
) to 1√

2
(1), it lies in the range between

the product (maximally entangled) and maximally entangled
(product) states, i.e., a partially entangled one. The local
unitaries UA and UB will transform one partially entangled
state to another without disturbing the entanglement content
of the state. In this manner, we get to scan the entire space
of partially entangled states for the best choice of the input
by optimizing the free parameters of UA and UB. Following
the prescription elaborated in the previous sections, we obtain
T̃ �ε̃min for an estimated parameter ε for different values of
α in presence of the dephasing noise considered before. We
pertain to measurement scheme I for the derivation of the
results in this section.

In contrast to our expectation, we have found that if we
concentrate on the estimation of ω for the Hamiltonian, H1,
then, there is no monotonic trend in the curve of T̃ �ω̃min vs.
α. Instead, in this case, we find that the value of T̃ �ω̃min is
almost constant at 0.82 for α = 0.1 to 0.5 in steps of 0.1.

Figure 6 depicts the behavior of the minimum uncertainty
in the estimation of coupling constant, for the Hamiltonian
H1. The optimization has been performed over the input probe
states, measurement strategies within Scheme I, and evolution
time. From this figure, it is visible that T̃ �J̃min increases
monotonically from α = 0.1, until it reaches a minimum for
the maximally entangled state corresponding to α = 1√

2
. After

that point, the values of T̃ �J̃min repeats the nature of the
profile and it reaches a maximum again at α = 1. So, the
depiction in this figure explicitly captures how T̃ �J̃min varies
in the regime in between the product and the maximally entan-
gled states, ultimately attaining a maximum for a maximally
entangled one.
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FIG. 6. Dependence of T̃ �ε̃min on the entanglement content of
the initial state. Here we depict T̃ �ω̃min vs. α for the noisy case of
the system described by the Hamiltonian H1. The measurement is
according to Scheme I. All quantities plotted along the horizontal
and vertical axes are dimensionless.

VI. CONCLUSION

It was familiar from previous studies that in absence of
noise, one can overcome the shot-noise limit by using a max-
imally entangled initial state instead of the uncorrelated ones.
But this quantum advantage can be lost if we apply a noise
to the system, say a local uncorrelated dephasing one. In this
paper, we emphasized that the benefit of using maximally
entangled probes in quantum metrology, which disappears
for frequency estimation in a noisy case, can be restored in
presence of two-qubit interactions, such as the Ising one, with
or without a transverse field, incorporated in the system parti-
cles. We note that there were instances, e.g., where frequency
estimation in presence of a transverse field was considered and
quantum advantage was not restored.

The absence of advantage in using maximally entangled
probes was previously reported for estimation of frequency in
presence of dephasing noise. We found that the inclusion of
field or interaction terms or both can resurrect the advantage,
while still estimating the frequency and while still being acted
on by the same dephasing noise.

We subsequently considered the estimation of the field and
interaction strengths, for different system Hamiltonians, and
found that while the maximally entangled probe can provide
advantage in certain situations, there are also instances where
optimal uncorrelated probes prove to be beneficial than maxi-
mally entangled ones.

Finally, we investigated the role of the amount of entangle-
ment of the probe states in quantum parameter estimation. We
found that while a monotonically decreasing behavior of the
uncertainty of estimation with respect to initial entanglement
in the probes is present in some cases, a constant behavior also
crops up in other instances.

ACKNOWLEDGMENTS

We acknowledge computations performed using Armadillo
[117,118], NLOPT [110] (ISRES [119]), and QIClib [120]
on the cluster computing facility of the Harish-Chandra Re-
search Institute, India. We also acknowledge partial support
from the Department of Science and Technology, Gov-
ernment of India through the QuEST grant (Grant No.
DST/ICPS/QUST/Theme-3/2019/120).

APPENDIX: JOINT PROBABILITIES OF THE
MEASUREMENT OUTCOMES FOR PRODUCT INPUT

PROBES, AND NOISY SETTING

The explicit forms of p1, p2, p3, and p4, defined in Eq. (24),
are given by

p1 = 1

4
e−iA1

{
cos2 θ1

2
cos2 θ3

2
eiA2

[
4 cos2 θ2

2
cos2 θ4

2
eiA3 + 4 sin2 θ2

2
sin2 θ4

2
eiA3

+ sin θ2 sin θ4(e2iA4 + e2iδ4 )

]
+ 1

4
e2it h̄J

{
4 cos2 θ2

2
cos2 θ4

2
eA5 4 sin2 θ1

2
sin2 θ3

2
eiA6 + sin θ1 sin θ3A13

+ eA7

[
sin θ1 sin θ3

(
4 sin2 θ2

2
sin2 θ4

2
A8eA9 + sin θ2 sin θ4A10

)
+ 4 sin2 θ1

2
sin2 θ3

2

(
4 sin2 θ2

2
sin2 θ4

2
A11

+ sin θ2 sin θ4A12

)]}}
, (A1)

p2 = 1

4
e−iA1

{
cos2 θ1

2
cos2 θ3

2
(−eiA2 )

(
− 4 sin2 θ2

2
cos2 θ4

2
eiA3 − 4 sin2 θ4

2
cos2 θ2

2
eiA3

+ sin θ2 sin θ4(e2iδ4 + e2iA4 )

)
+ 1

4
e2it h̄J

{
4 sin2 θ2

2
cos2 θ4

2
eA5

(
4 sin2 θ1

2
sin2 θ3

2
eiA6 + sin θ1 sin θ3A8

)

+ eA7

[
4 cos2 θ2

2

(
4 sin2 θ1

2
sin2 θ3

2
A11 sin θ1 sin θ3 + eA9 A13

)
sin2 θ4

2
− sin θ2

(
4 sin2 θ1

2
sin2 θ3

2
A12

+ sin θ1 sin θ3 A10

)
sin θ4

]}}
, (A2)
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p3 = 1

4
e−iA1

{
cos2 θ2

2
cos2 θ4

2
(−eiA14 )

(
−4 sin2 θ1

2
cos2 θ3

2
eiA15 − 4 sin2 θ3

2
cos2 θ1

2
eiA15

+ sin θ1 sin θ3A13

)
+ 1

4
e2it h̄J

{
4 sin2 θ1

2
cos2 θ3

2
A174 sin2 θ2

2
sin2 θ4

2
eiA3 + sin θ2 sin θ4C1

+ e3γ t+2it h̄ω

[
− sin θ1 sin θ3

(
4 sin2 θ2

2
sin2 θ4

2
eA9 A8 + sin(θ2) sin(θ4)A10

)

+ 4 cos2 θ1

2
sin2 θ3

2

(
4 sin2 θ2

2
sin2 θ4

2
A11 + sin θ2 sin θ4ei(δ1+δ3 )A16

)]}}
, (A3)

p4 = 1

4
e−iA1

{
sin2 θ1

2
cos2 θ3

2
(−eiA2 )

(
−4 sin2 θ2

2
cos2 θ4

2
eiA3 − 4 sin2 θ4

2
cos2 θ2

2
eiA3

+ sin θ2 sin θ4C1

)
+ 1

4
et2ih̄JeA7

{
− sin θ1 sin θ3

(
4 sin2 θ2

2
cos2 θ4

2
eA9 A8

+ 4 sin2 θ4

2
cos2 θ2

2
eA9 A13 − sin θ2 sin θ4A10

)
+ 4 cos2 θ1

2
sin2 θ3

2

[
4 sin2 θ2

2
cos2 θ4

2
A11

+ ei(δ1+δ3 )

(
4 sin2 θ4

2
cos2 θ2

2
eiA3 et (γ+ih̄ω) − sin θ2 sin θ4A16

)]}}
, (A4)

where A1 = (δ1 + δ2 + δ3 + δ4 − 5iγ t + 4t h̄J + 4t h̄ω), A2 = (δ1 + δ3 − 4iγ t + 2t h̄J + 3t h̄ω), A3 = (δ2 + δ4 − iγ t +
2t h̄J + t h̄ω), A4 = (δ2 + 2t h̄J + t h̄ω), A5 = i(δ2 + δ4) + t (4γ + 3ih̄ω), A6 = (δ1 + δ3 − iγ t + 2t h̄J + t h̄ω), A7 = 3γ t +
2it h̄ω, A8 = (e2i(δ3+2t h̄J) + e2i(δ1+t h̄ω) ), A9 = i(δ2 + δ4) + t (γ + ih̄ω), A10 = e2it h̄J(e2iδ3 + e2i(δ1+t h̄ω) )(e2i(δ2+t h̄ω) + e2iδ4 ),
A11 = ei(δ1+δ3 )ei(δ2−2iγ t+2t h̄J+2t h̄ω+δ4 ) A12 = ei(δ1+δ3 )et (γ+ih̄ω)(e2i(δ4+2t h̄J) + e2i(δ2+t h̄ω) ) = ei(δ1+δ3 )et (γ+ih̄ω)C1, A13 = (e2iδ3 +
e2i(δ1+2t h̄J+t h̄ω) ), A14 = (δ2 + δ4 − 4iγ t + 2t h̄J + 3t h̄ω), A15 = (δ1 + δ3 − iγ t + 2t h̄J + t h̄ω), A16 = et (γ+ih̄ω)(e2iδ4 +
e2i(δ2+2t h̄J+t h̄ω) ), and A17 = ei(δ1+δ3 )+t (4γ+3ih̄ω).
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