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Perturbative gadgets are a tool to encode part of a Hamiltonian, usually the low-energy subspace, into a dif-
ferent Hamiltonian with favorable properties, for instance, reduced locality. Many constructions of perturbative
gadgets have been proposed over the years. Still, all of them are restricted in some ways: Either they apply to
some specific classes of Hamiltonians, they involve recursion to reduce locality, or they are limited to studying
time evolution under the gadget Hamiltonian, e.g., in the context of adiabatic quantum computing, and thus
involve subspace restrictions. In this work, we fill the gap by introducing a versatile universal, nonrecursive,
nonadiabatic perturbative gadget construction without subspace restrictions, that encodes an arbitrary many-body
Hamiltonian into the low-energy subspace of a three-body Hamiltonian and is therefore applicable to gate-based
quantum computing. Our construction requires rk additional qubits for a k-body Hamiltonian comprising r terms.
Besides a specific gadget construction, we also provide a recipe for constructing similar gadgets, which can be
tailored to different properties, which we discuss.
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I. INTRODUCTION

The study of many-body Hamiltonians is a well-researched
field in condensed-matter physics and quantum information
theory. While the presence of Hamiltonian terms acting on
many qubits simultaneously can result in exciting phenomena,
in many situations, it also carries additional difficulties. Be
it due to the hardness of generating them experimentally or
other limitations, local Hamiltonians are usually simpler to
deal with.

Born in the context of complexity theory for proving the
QMA-completeness of the local Hamiltonian problem [1,2],
a problem located at the interface of the theory of quantum
many-body physics and Hamiltonian complexity, so-called
perturbative gadgets can be used to reduce the locality of a
given many-body Hamiltonian. This is done by embedding it
in the low-energy subspace of a tailored, local, i.e., few-body,
Hamiltonian acting on a larger Hilbert space [3,4]. Among the
best-known constructions is the subdivision gadget proposed
by Oliveira and Terhal [4]. It employs mediator qubits to halve
the support of a given Hamiltonian term and can be recur-
sively applied to construct an at best three-body Hamiltonian
mimicking the original k-body Hamiltonian. As is typical for
perturbative gadgets, such a procedure, unfortunately, leads
to an exponential increase of the interaction strengths re-
quired for the gadget Hamiltonian to accurately mimic the
low-energy subspace of the original Hamiltonian.

A different gadget, proposed by Jordan and Farhi [5], can
avoid the need for recursion and offers a direct reduction from
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k-body to two-body Hamiltonians, albeit with an exponential
suppression of energies. However, their direct construction is
only applicable when one can restrict the evolution of chosen
initial states to predefined subspaces of the Hilbert space, as
can be done in adiabatic quantum computing, where commu-
tation relations guarantee the system remains in the initialized
subspace.

Since such a limitation restricts the applicability of this
direct k-to-two-local gadget, the question arises whether there
exists a direct, nonrecursive k-to-k′-local gadget without such
restrictions and whether such a gadget could have any appli-
cations besides being a tool for proving complexity theoretic
results. After all, perturbative gadgets have so far mostly
found their application in proving hardness results for the
general local Hamiltonian problem [3,4] or certain classes
of Hamiltonians [6–10] equipped with further constraints and
properties.

In this work, we address these questions by proposing
a direct k-to-3-local gadget without the need for subspace
restrictions, that is inspired by Ref. [5] but that avoids initial-
ization and commutation properties from adiabatic quantum
computing to achieve the same locality reduction as the re-
peated subdivision procedure [4], without requiring recursive
applications.

As expected of gadget constructions [11], our construc-
tion is also not free from unfavorable energy scalings, but
we still explore the use of such a gadget within gate-
based quantum computing and, in particular, as a method
for reducing the locality of the cost function in variational
quantum algorithms, a setting that does not comply with
the “adiabatic” restriction, or the grouping of measurement
terms.
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FIG. 1. Sketch of the main idea behind perturbative gadgets.
Starting from an unperturbed Hamiltonian H (0) with gap γ and
degenerate ground space, add a perturbation V such that the lowest
energy states resulting from the perturbation of the ground space
mimic the target Hamiltonian H target.

While most likely unfavorable for situations where the
locality of a Hamiltonian scales with the system size, there
are plenty of situations where the locality is constant but
still high enough to cause problems. Examples include mea-
surement noise scaling with the locality of the measurement
operator influencing noise-induced barren plateaus [12] or
time evolution and quantum phase estimation for restricted
hardware settings. The proposed methods do not rely on sub-
space restrictions and can thus be implemented in gate-based
quantum computing. By providing a more general recipe for
constructing perturbative gadgets with similar performance
guarantees and suggesting plausible heuristics, we hope to
start a discussion about how the trade-offs of perturbative
gadgets could still be used for practical problems.

We begin by introducing the main ideas and a historical
overview of perturbative gadgets in Sec. II, before focusing
on a specific k-to-3-local gadget and discussing guarantees on
its performance in Sec. III. We then generalize the gadget con-
struction to provide a recipe for creating custom perturbative
gadgets in Sec. IV and discuss the nuances of applying such
gadgets in gate-based quantum computing in Sec. V, before
concluding with some remarks and open questions in Sec. VI.

II. PERTURBATIVE GADGETS IN A NUTSHELL

Perturbative gadgets [3–5,20] encode the low-energy sub-
space of a many-body Hamiltonian into the low-energy
subspace of a fewer-body Hamiltonian. They make use of
perturbation theory in the opposite direction than what is more
common: instead of considering the effect of some pertur-
bation λV on a well-understood Hamiltonian H according
to H ′ = H + λV , perturbative gadgets provide a suitable H
and perturbation V such that H ′ is a few-body Hamiltonian
that approximates the low-energy subspace of a given, target
Hamiltonian H target, as visualized in Fig. 1. They are often
accompanied by an increase in the number of required qubits
and either suppress the energy of the desired low-energy sub-
space or an increase in the norm of H ′ compared with H target.

In most cases, a local and simple Hamiltonian with de-
generate ground space is used as the so-called “unperturbed
Hamiltonian” H . The degeneracy is chosen to correspond to
the dimension of the space acted upon by the target Hamilto-
nian. Then, a perturbation is designed to split said degeneracy
in a way that the resulting low-energy subspace emulates the
target spectrum, so roughly

�H ′� ∼ H target, (1)

where � denotes a projector on the low-energy subspace. This
statement will later be made formal in Theorem 1.

To be explicit and clear, we use interaction weight to refer
to the number of particles acted upon by a given operator and
interaction strength to refer to the coefficient of that operator.
When talking about qubits and expanding operators in the
Pauli basis, the weight of a Pauli string (a tensor product
of Pauli operators) is defined as the number of nontrivial
Pauli operations in the string. Throughout this work, we use
“locality” to refer to the maximum weight of all terms in a
Hamiltonian, independently of geometry. We use the term lo-
cal for Hamiltonians with fixed small weights, that is weights
that do not scale with problem size, while global is reserved
for Hamiltonians with all-to-all interactions.

An overview of works related to perturbative gadgets is
presented in Table I. Historically, perturbative gadgets were
developed to prove the QMA-hardness of the local Hamilto-
nian problem. The 3-local Hamiltonian problem is known to
be QMA-complete [2] and Kempe, Kitaev, and Regev have
shown that so is the 2-local problem by proposing the first
perturbative gadget, which reduces the locality from 3 to 2
[3]. Oliviera and Terhal have added to this by showing that
the 2-local Hamiltonian problem is still QMA-complete when
restricting the interaction to a two-dimensional (2D) square
lattice, and in doing so introduced a new perturbative gad-
get. This subdivision gadget reduces the locality of a k-local
Hamiltonian to (�k/2� + 1)-local interactions by introducing
a single auxiliary qubit per interaction term. These kinds of
gadgets have also been considered to be used outside of the
world of complexity-theoretic analysis, but they are inherently
not practical, as discussed further in Sec. V.

Furthermore, the recursive use of gadgets to arrive at
two-local Hamiltonians can be avoided by a single gadget
introduced by Jordan and Farhi in Ref. [5], which encodes
k-local Hamiltonians in kth order of perturbation theory of a
two-local gadget Hamiltonian. However, just like the three-to-
two local gadget, their construction relies on certain properties
of the evolution under a Hamiltonian where the state is re-
stricted to a predetermined subspace, such as provided in the
adiabatic setting.

In the following years, several works proposed improve-
ments in resource requirements, convergence bounds, or
coupling strengths [15–17,19], as well as introduced highly
specialized gadget constructions for restricted classes of
Hamiltonians, such as for topological quantum codes and
for realizing certain parent Hamiltonians featuring intrinsic
topological order [20,21].

There are two important things to note at this point: While
all of these gadget constructions rely on perturbation theory,
they use different techniques, ranging from perturbative ex-
pansion due to Bloch [22], which underlies the Jordan-Farhi
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TABLE I. Overview of some relevant works related to perturbative gadgets. Not included are those that apply only to a restricted subset of
Hamiltonians, such as topological Hamiltonians.

Authors Main statement

Kempe, Kitaev, Regev (KKR) [3] 3- to 2-local gadget to prove QMA completeness of the local Hamiltonian problem. Requires
restriction of the state evolution to a subspace of the Hilbert space.

Oliveira, Terhal (OT) [4] Subdivision gadget (k- to k/2-local) and proof of QMA completeness of the Hamiltonian problem
on a square grid. Has to be applied recursively resulting in exponential coupling strengths.

Biamonte, Love [13] “Realizable Hamiltonians” with a focus on using gadgets for adiabatic computing and adapting to
hardware restrictions, not targeting a reduction of locality.

Bravyi, DiVicenzo, Loss, Terhal [14] Improvements on the OT gadget through extension to non-converging perturbative expansion, thus
reducing the gap in coupling strengths

Jordan, Farhi [5] Direct k- to 2-local gadget through higher-order perturbation theory. Requires restriction of the state
evolution to a subspace of the Hilbert space.

Cao, Babbush, Biamonte, Kais [15] Resource requirement improvements of some of the OT and KKR previous gadgets.
Cao [16] Overview of existing gadgets and improvements of the OT and KKR gadgets.
Cao, Kais [17] Improvement of the convergence bound for the JF gadget.
Subasi, Jarzynski [18] Nonperturbative gadgets for adiabatic Hamiltonian evolution.
Bausch [19] Augmentation of other gadget constructions and changes their energy scales by (potentially)

increasing their locality by one.
Harley, Datta, Klausen, Bluhm,
França, Werner, Christandl [11]

A general framework for analog quantum simulation and unavoidable unfavorable size-dependent
scalings of gadget constructions.

This work Direct k- to 3-local gadget without restriction to some subspace of the Hilbert space.

gadget, the Feynman-Dyson series employed in Ref. [6], to the
Schrieffer-Wolf transformation [23], discussed in Ref. [17].
Furthermore, except for the so-called subdivision gadget due
to Oliveira and Terhal [4], the other gadgets are restricted to
the setting of time evolution under the Hamiltonian, which
guarantees the evolution to remain in the initialized subspaces,
rendering them inapplicable for gate-based quantum com-
puting. A nonrecursive k-to-two-local gadget without these
restrictions is currently unknown.

III. A DIRECT k-TO-THREE-BODY GADGET WITHOUT
SUBSPACE RESTRICTION

One of the main results of this work is the proposal of a
direct, i.e., nonrecursive, three-body gadget Hamiltonian Hgad

derived from an arbitrary k-body Hamiltonian H target that does
not require any restrictions to a subspace of the Hilbert space,
inspired by the work of Jordan and Farhi [5]. We then find
that the low-energy subspace of Hgad mimics the low-energy
subspace of H target (Theorem 1), implying a guarantee on the
closeness of their ground states (Corollary 1).

We start by defining the specific gadget Hamiltonian that is
the focus of our study.

Definition 1 (gadget Hamiltonian). Let H target be a k-body
Hamiltonian acting on n qubits, given by

H target :=
r∑

s=1

cshs, with hs = σs,1 ⊗ σs,2 ⊗ · · · ⊗ σs,k, (2)

where each term is a tensor product of at most k � n
single qubit operators, with σs, j = nX X + nY Y + nZZ and
(nX , nY , nZ ) ∈ R3 a unit vector. We define the three-body
gadget Hamiltonian Hgad corresponding to H target, acting on

n + rk qubits, as

Hgad :=
r∑

s=1

H aux
s + λ

r∑
s=1

Vs, (3)

where

H aux
s :=

k∑
j=1

1

2

(
1s, j − Zaux

s, j

) =
k∑

j=1

|1〉〈1|aux
s, j , (4)

Vs :=
k∑

j=1

c̃s, jσ
target
s, j ⊗ X aux

s, j ⊗ X aux
s,( j+1) mod k, (5)

and c̃s, j = −(−1)kcs if j = 1 or c̃s, j = 1 otherwise. We refer
to the n qubits on which H target acts as target qubits, and the
rk additional qubits as auxiliary qubits.

In our gadget Hamiltonian, each term H aux
s acts only on

the sth group of auxiliary qubits, while each term Vs acts on
a target qubit and the sth group of auxiliary qubits; see Fig. 2
for a graphical depiction for a toy model.

The proposed gadget is heavily inspired by the gadget in-
troduced by Jordan and Farhi in Ref. [5], in which they rely on
properties of adiabatic quantum computing. Both their gadget
and ours take advantage of a larger Hilbert space to encode
the low-energy subspace of the target Hamiltonian, so the di-
mension of the ground space of the unperturbed Hamiltonian
must be the same as the space on which the target Hamiltonian
acts. This point is made more explicit in Appendix B. Jordan
and Farhi start from a larger ground space of the unperturbed
Hamiltonian and reduce the dimension by restricting the re-
gion of the Hilbert space that can be explored by initializing
the system in a fixed subspace. Remaining in this chosen
subspace is then ensured by using properties of adiabatic
evolution, something that cannot be done straightforwardly
outside of the regime of adiabatic quantum computing. This
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FIG. 2. Representation of a target Hamiltonian (left) and its as-
sociated gadget Hamiltonian, as defined in Eq. (3), for the case of
n = 8, k = 4, and r = 3. Qubits that interact according to the terms
of the Hamiltonian are placed in the same colored region. Shown
in the central and right-hand panels are the contributions to the
gadget Hamiltonian from two of the three four-body terms, with the
auxiliary qubits in gray and the target qubits in black.

requirement, therefore, places a strong limitation on the appli-
cability of their construction. On the other hand, our gadget
construction does not require such a restriction to a subspace,
therefore avoids this limitation, and can be applied even in the
context of digital, gate-based quantum computing. We refer
to Appendix F for a more detailed discussion of why a direct
application of the gadget introduced by Jordan and Farhi is
not possible in the realm of nonadiabatic quantum computing.

Similar to the results of Jordan and Farhi, we can show
that the subspace of the 2n lowest energy eigenstates of our
three-body gadget Hamiltonian in Eq. (3) mimics that of the
k-body target Hamiltonian. For the formal statement, we de-
fine the following notation: Let H be a Hamiltonian acting on
n qubits, with spectral decomposition H = ∑2n−1

j=0 Ej |ψ j〉〈ψ j |
such that E0 � E1 � · · · � E2n−1, we define Heff(H, d ) =∑d−1

j=0 Ej |ψ j〉〈ψ j | to be the effective Hamiltonian correspond-
ing to the d lowest eigenvalues of H .

Theorem 1 (main result). Let H target and Hgad be as in
Definition 1, and let λ � λmax, with λmax = 1

4 [
∑r

s=1 |cs| +
r(k − 1)]−1. Then, there exists an f (λ) = O(poly λ) and � =
O(poly k) such that

Heff(H
gad, 2n) = λk

�
H target ⊗ (|0〉〈0|)⊗rk

+ f (λ)� + O(λk+1), (6)

where � is the projector onto the support of Heff(Hgad, 2n).
Furthermore, we can provide a guarantee on the closeness

of the ground states of the target and gadget Hamiltonians.
Corollary 1 (guarantees on the closeness of the ground

states). Let H target and Hgad be as in Theorem 1. Then, there
exists a perturbation strength λ∗, with

λ∗ � λmax and λ∗ � E target
1 − E target

0

�‖Oerr‖ , (7)

such that for all λ � λ∗ it holds that

‖ψ0 − Traux[φ0]‖2 � O(λ), (8)

where ψ0 = |ψ0〉〈ψ0| and φ0 = |φ0〉〈φ0| are in the ground
spaces of H target and Hgad, respectively.

In Fig. 3, we provide a visualization of the main steps in the
proof of Theorem 1, focusing on the main ideas behind these
results and referring the mathematically interested reader to
the Appendixes. Specifically, after a recap in Appendix A
of the perturbation theory on which our results are based,
we prove Theorem 1 in Appendix B and Corollary 1 in
Appendix C.

For clarity, the construction is stated for target Hamilto-
nians where each term has the same Pauli weight, and for
the maximal reduction: to a 3-local gadget Hamiltonian. This
gadget can be generalized in both of these aspects and we
show how to construct a gadget for mixed Pauli weights in
Appendix D 1 and also how to trade off target locality for
reduced resources in Appendix D 2.

IV. A RECIPE FOR CREATING YOUR OWN
PERTURBATIVE GADGET

In the previous section, we presented a specific perturba-
tive gadget construction. However, that construction is by no
means unique, because there is some freedom in designing
such gadgets. For instance, the choice of Pauli operators in
the unperturbed Hamiltonian acting on the auxiliary qubits or
in the perturbation could have been different. More generally,
the general construction of the penalization in H aux

s and of
the perturbation Vs leaves many knobs to tweak. Especially
for practical implementations, it might be interesting to derive
slightly different gadgets, which result in similar low-energy
spectra but are constructed from a different set of operators,
for instance, some that are easier to implement on the hard-
ware of choice.

Here, we present a more general framework for the con-
struction of nonrecursive, nonadiabatic perturbative gadgets
based on higher-order perturbation theory that all lead to
similar results as Theorem 1, with the only notable difference
being the exact form of � in Eq. (6).

The core idea is again to start from a well-known, unper-
turbed Hamiltonian H aux and to perturb it with a perturbation
λV , such that we recover the original, k-body target Hamil-
tonian at kth order in perturbation theory. Since the kth order
in perturbation theory comes with k-fold applications of the
perturbation V , we engineer the perturbation such that only
cross terms leading to the desired result contribute. That is
if the target Hamiltonian has been cut into k pieces Otarget =
O1 ⊗ · · · ⊗ Ok , we ensure that only the correct k-fold products
of V survive.

To construct a perturbative gadget following a similar
recipe as the one presented in this work, we require a penaliza-
tion Hamiltonian H and a perturbation operator A, both acting
on a single auxiliary register of k qubits. Although those are
not the unperturbed Hamiltonian H aux and the perturbation
V directly, they are closely related. H aux will be built using
instances of H , while the perturbation operator will be a
key component in the construction of the perturbation V . We
further require H aux to be composed of few-body terms and to
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FIG. 3. Visualization of the key steps in the proof of Theorem 1. (a) For illustrative purposes, we take as the k-body target Hamiltonian
H target = ⊗5

j=1 σ j , where σ j ∈ {X,Y, Z} are Pauli operators, so that k = 5. (b) The unperturbed auxiliary Hamiltonian, given in Eq. (4), acts
only on the auxiliary qubits. (c) Acting with the perturbation V in Eq. (5), at second order, one term could result in flipping the second and
last auxiliary qubits, hence ejecting the state out of the ground space and not contributing to the perturbative expansion. (d) At kth order in
perturbation theory, we obtain a nontrivial contribution acting on all target qubits simultaneously, mimicking the target Hamiltonian, while
acting trivially on the auxiliary qubits.

have a nondegenerate ground space to avoid the limitations of
prior gadget constructions [3,5,18]. That is, we need

H =
∑

i

hi, (9)

for some finite sum of operators hi, each of which is few-body,
such that H has a unique ground-state vector, which we denote
by |GS〉. We note that the restriction on few-body terms is
not strictly required for the construction to yield the desired
low-energy subspace, but for decreasing the locality of the
Hamiltonian.

Let us now argue that the operator A should exhibit a
product form of k operators a1, a2, . . . , ak , such that

A =
k∏

j=1

a j, (10)

with the following properties:

A|GS〉 ∝ |GS〉, (11)

〈GS|
m∏

	=1

a j	 |GS〉 = 0 ∀ m < k ∀ { j	} ⊂ {1, 2, . . . , k}, (12)

a2
j = 1 ∀ j ∈ {1, 2, . . . , k}. (13)

The first condition states that the ground state of H should also
be an eigenstate of A, while the second enforces that any par-
tial application of the operators aj results in a state orthogonal
to |GS〉. These are vital to ensure that at orders lower than k
in perturbation theory, the perturbation will always expel the
state out of the ground space. The final property ensures that
when the same perturbation is applied twice, it results in a
constant energy shift.

With the above properties, we can construct H aux and V as

H aux
s = 1⊗n︸︷︷︸

target register

⊗1⊗(s−1)k ⊗ H ⊗ 1⊗(r−s)k︸ ︷︷ ︸
auxiliary registers

, (14)

Vs =
k∑

j=1

c̃s, jσs, j ⊗ 1⊗(s−1)k ⊗ a j ⊗ 1⊗(r−s)k, (15)

where the definition of the coefficients c̃s, j provides another
knob to tweak. They could be defined similarly to Definition
1 or in an arbitrary fashion, as long as

k∏
j=1

c̃s, j = −(−1)kcs (16)

still holds. Given these conditions, similar results as in Theo-
rem 1 will hold due to the arguments laid out in Appendix B.
Indeed, the gadget we propose is simply a special case of

hi = 1
2 (1 − Zi ) = |1〉〈1|i, i ∈ {1, 2, . . . , k}, (17)

a j = Xj ⊗ X( j+1) mod k, j ∈ {1, 2, . . . , k}. (18)

Note that the Hamiltonian in Eq. (14) has a nondegenerate
ground space when considering only the auxiliary registers
but has a 2n degenerate ground space when additionally con-
sidering the target qubits which it acts trivially upon.

Furthermore, we would like to stress that any gadget con-
structed in this fashion will be accompanied by a suppression
of the target Hamiltonian in the low-energy subspace by a
factor of λk , therefore not avoiding a blow-up in resource
costs exponential in the reduction in the locality. Since the
perturbative expansions only hold as long as the perturbation
parameter λ � 1

4 [
∑r

s=1 |cs| + r(k − 1)], this trade-off is in-
grained into the construction and cannot be circumvented by
rescaling the coefficients cs or similar.

V. ON THE TRADE-OFFS IN USING PERTURBATIVE
GADGETS FOR PRACTICAL APPLICATIONS

Perturbative gadgets have been a useful tool in complexity
theory, in particular in the study of the QMA-completeness of
the local Hamiltonian problem [3,4]. These successes and the
locality-reducing property encourage us to look for practical
applications of these kinds of gadgets outside of the world
of complexity-theoretic analyses. The first candidate is adia-
batic computing and analog quantum simulation [6,11,13,14].
Due to the limitations of experimental setups to implement
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few-body couplings, these simulations could benefit from the
locality reduction to effectively study many-body Hamilto-
nians while physically implementing few-body interactions.
Unfortunately, the large differences in coupling strengths pose
a challenge for experimental realizations [11,14,19]. Having
lifted the restriction to subspaces in the gadget construc-
tion limiting previous proposals, we can now turn towards
gate-based quantum computing in the search for potential ap-
plications, an area that was previously not readily accessible.
In the following, we look at four specific settings that could
benefit from perturbative gadgets and discuss the accompany-
ing trade-offs, which are usually unfavorable. While we set
the stage for the potential application of our gadgets to these
settings, we leave the detailed study of these applications to
future work.

We start with variational quantum algorithms and discuss
the issue of cost-function-dependent barren plateaus and the
readout problem, before noting the impact of the locality of
the measurement operator on measurement noise. Afterward,
we discuss possible applications in phase estimation and time
evolution for restricted hardware settings.

Cost-function-dependent barren plateaus. Variational
quantum algorithms (VQAs) [24–26] are strong in the run to
find useful applications of quantum computers in the noisy
intermediate scale quantum (NISQ) era [27] and are being
intensively studied. These algorithms rely on parametrized
quantum circuits (PQCs) to evaluate a parameter-dependent
cost function related to the expectation value of a set of ob-
servables. An optimization algorithm, e.g., gradient descent,
implemented on a classical device is used to optimize the pa-
rameters of the PQC to find the minimum of the cost function.

Two of the most prominent examples of VQAs might be
the variational quantum eigensolver [28], aimed at finding
energies of Hamiltonians, and the quantum approximate op-
timization algorithm [29]. One hurdle to overcome for such
algorithms to become useful is the so-called barren plateau
issue [12,30–33]. This refers to the phenomenon where the
cost-function landscape becomes essentially flat, rendering
optimization algorithms ineffective due to the lack of effi-
ciently measurable gradients. Many strategies for mitigating
barren plateaus have been proposed [32,34–43], but the ob-
servation most appealing to us is the fact that, given two
cost functions with the same minimum but different locali-
ties, the one with reduced locality performs better [44–46].
This dependence of the emergence of barren plateaus on the
locality of the cost function was formalized for some ansätze
in Refs. [47,48].

Looking back at the results from Sec. III, our gadget en-
ables a generic procedure for any cost function written as
the expectation value of a Hamiltonian to find an equivalent
3-local cost function. This new cost function has the same
minimum (Corollary 1) as the target cost function and has
provably nonvanishing gradients (due to Ref. [48, Theorem
2]).

Upon first inspection, the problem of cost-function-
locality-dependent barren plateaus seems to be solved, but one
needs to take a step back and remember the original problem.
Barren plateaus are an issue because exponentially vanishing
gradients require an exponential number of measurements on
a quantum device to resolve the gradients. This experimental

cost means that such procedures are not scalable. Although on
the surface our proposal produces gradients that can be com-
puted efficiently, finding the minimum of the effective gadget
Hamiltonian might become hard. Indeed, let us consider the
extreme case of a global cost function, i.e., an n-local cost
function. In this setting, from Theorem 1, the contribution
of the target Hamiltonian is suppressed as λn. In the end,
the features of interest from the target Hamiltonian might
become exponentially small. Consequently, although the true
minimum of the gadget cost function coincides with the min-
imum of the target cost function, the actual optimization may
converge very close to the minimum of the gadget, but owing
to the exponential suppression the energy of the target may
still be very high.

Not all is lost, and we show some successful simulations
in Appendix G. Our gadget-induced cost function could be
used as an initialization strategy. Indeed, even if the target
Hamiltonian is exponentially suppressed in the effective low-
energy subspace, each of the terms of the perturbation in
gadget Hamiltonian contains some part of the target Hamil-
tonian. It could be that using our gadget provides a useful
path to reach a region of the target cost function that is out-
side of the regime plagued by barren plateaus. Furthermore,
previous works on perturbative gadgets argue that restricting
to the regime where the perturbative expansion converges is
not necessarily justified [14]. In our case, that means that it
could be beneficial to choose a perturbation parameter λ larger
than the bound for which our analytical results hold, thus
increasing the contribution of the target Hamiltonian. This
idea is supported by the results of our numerical simulations.
Interpreting this perturbation factor as a hyperparameter of
the model, one could take inspiration from classical machine
learning and implement a schedule of slowly decreasing λ,
having strong contributions at the beginning and high pre-
cision at the end. These heuristics will however need to be
confirmed by larger experiments than those we could perform
or by further theoretical studies. An extensive description of
the problem of cost-function-dependent barren plateaus and
of the attempt to use perturbative gadgets, complemented with
numerical simulations, can be found in Appendix E.

Reducing measurement bases for readout. Another, albeit
more pessimistic example of possible trade-offs using per-
turbative gadgets is the construction of a gadget aimed at
exploiting the commutation structure of the gadget Hamilto-
nian.

As for the gadget introduced in Eq. (3), by first measur-
ing all auxiliary qubits in the Pauli-Z basis, we can estimate
H aux. Then, consecutively measuring all auxiliary qubits in
the Pauli-X basis and simultaneously all target qubits in one
of the three Pauli bases, we can estimate all of the Vs terms.
Consequently, only four different measurements are required
to obtain an unbiased estimator of the energy of the gadget
Hamiltonian.

Going one step further, we could design a new gad-
get that decomposes each term of the Hamiltonian into its
Pauli-X , Pauli-Y , and Pauli-Z parts and use each part in a
single perturbation term. That would lead to a gadget that
reconstructs the original term in the third order of pertur-
bation theory and thereby reduces the complexity of the
gadget.
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In case the locality is of no importance, we can also reduce
the number of terms in the gadget Hamiltonian and the qubit
overhead. Through a different definition of the part of the per-
turbation in the gadget Hamiltonian that acts on the auxiliary
register, we can achieve only a logarithmic qubit overhead, as
shown in more detail in Appendix H.

However, we still end up facing the same challenge as
before: While we can efficiently estimate the energy of the
gadget Hamiltonian, that is not the quantity we are interested
in. Instead, we want to measure the energy of the target
Hamiltonian, which is suppressed by λ3 and will, due to the
implicit dependence of λ on the number of terms in the target
Hamiltonian, lead to an unfavorable scheme compared with
simply measuring each term of the Hamiltonian by itself. The
only potential use case for such a gadget would then be a
setting where it is excessively more expensive to change the
measurement setting than to evaluate the circuit.

Measurement noise. Another setting in which the locality
of certain operators can noticeably impact the performance
of a gate-based quantum computer is measurement noise. As
shown in the context of noise-induced barren plateaus [12],
measurement noise scales directly with the locality of the
measurement operator. Therefore, even when the locality of
the cost function is constant in the number of qubits, even
constant reductions in locality might improve the performance
of the (variational) algorithm. It is important to note that this
reduction will still be accompanied by energy suppression, so
whether such a trade-off is favorable again highly dependent
on the actual setting. However, it is an application within
gate-based quantum computing, that could previously not be
addressed by perturbative gadgets due to the subspace re-
strictions of previous constructions or their recursive nature
overcomplicating implementation.

Phase estimation. The final example of a situation that
could benefit from reductions in locality is that of quan-
tum phase estimation. There, controlled time evolutions for
some Hamiltonian H are combined with the quantum Fourier
transform to estimate the energies of quantum states. Since
approximating the time evolution, e.g., by product formu-
las requires the application of quantum gates whose locality
scales with the locality of the Hamiltonian, the feasibility
of such algorithms depends on the used hardware platform.
Appropriate perturbative gadgets could then be used to cir-
cumvent limitations in hardware connectivity or reduce the
number of required entangling gates. While the accompanying
trade-off in the energy scale would result in improved required
accuracy of its readout and consequently larger circuit depths
and auxiliary qubit counts, they might be favorable in certain
settings. Also, since quantum phase estimation requires the
preparation of an initial state with a large overlap of the true
ground state (if the goal is to estimate the ground-state en-
ergy), using perturbative gadgets does not introduce additional
complications, because the previous initial state can just be
extended by initializing all auxiliary qubits of the gadget in
the zero state.

VI. SUMMARY AND OUTLOOK

Perturbative gadgets are a powerful tool that can be used
to show equivalences between Hamiltonians of different

localities. They have led to advances in quantum complex-
ity theory, addressing problems that originate from studies
of quantum many-body systems in rigorous condensed-
matter theory, and have been considered tools to facilitate
feasible implementations in experimental settings. They
have also been explored as tools to devise schemes of
quantum simulations of systems that are natively too dif-
ficult to tackle, say, quantum systems featuring certain
kinds of intrinsic topological order [20,49]. At the same
time, perturbative gadgets are quite often accompanied
by unfavorable trade-offs in interaction strengths, recur-
sions, or limitations to settings allowing for subspace
restrictions, bringing into question their use for practical
applications [11].

In this work, we have proposed a perturbative gadget that
jointly lifts the requirements on subspace restrictions and
recursions but cannot circumvent the problem of impractical
interaction strengths. It achieves the same locality reduction
as the subdivision gadget from Oliveira and Terhal [4] but has
a direct formulation in higher-orders of perturbation theory as
does the gadget from Jordan and Farhi [5], without requiring
to restrict the evolution of the system to a subspace of the
Hilbert space. In doing so, we observe that each of these
constructions is a special case and demonstrate how to gen-
eralize our construction to a larger class of gadgets applicable
to gate-based quantum computing.

Furthermore, we turn towards the setting of variational
quantum algorithms, where the locality of cost functions can
be of great interest and thus benefit from generic proce-
dures producing Hamiltonians with the same ground states
but reduced locality. Also for fault-tolerant quantum algo-
rithms, reductions in locality could help alleviate hardware
constraints or impact measurement noise.

We note that locality versus energy scale trade-offs in
using perturbative gadgets may still be impractical outside
of theoretical considerations and therefore leave the question
of their practicality wide open. Circumventing the need for
subspace restrictions and recursions does, however, broaden
their scope and therefore opens up new directions of explo-
ration for finding practical applications. It might be interesting
to consider the question of how imposing restrictions on the
target Hamiltonian might allow us to improve the resource
requirements of our gadget construction. In the same flavor
as gadgets for topological quantum codes, there might be
classes of Hamiltonians for which the effective Hamiltonian
can be retrieved at a lower perturbation order. Such a devel-
opment would trade off universality for performance, an idea
established in the area of variational quantum algorithms and
beyond.

The numerical simulations were performed using the cross-
platform Python library for differentiable programming of
quantum computers PennyLane [50] and the code is available
online [51].
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APPENDIX A: REVIEW OF PERTURBATION THEORY

The appendices are organized as follows: We begin re-
viewing the relevant results from perturbation theory in
Appendix A. Then, we present the proof of Theorem 1 in
Appendix B, discussing useful properties, the case of a sim-
plified target Hamiltonian as well as the general case, before
proving Corollary 1 in Appendix C. Appendix D focuses on
extending the locality gadget to settings with mixed Pauli
weights and for the reduction to an arbitrary target locality
k′ > 3. In Appendix E, we discuss whether perturbative gad-
gets can address the barren plateau problem in variational
algorithms, while Appendix F outlines why the original gad-
get from Jordan and Farhi (Ref. [5]) is inapplicable in this
setting. Numerical simulations are presented and discussed
in Appendix G. Finally, we conclude by presenting another
gadget construction inspired by the recipe, aimed at reducing
the number of required measurement bases in the Hamiltonian
readout problem in Appendix H.

In Appendix A, we briefly summarize relevant results from
perturbation theory. In particular, we closely follow the pre-
sentation in Ref. [22] for obtaining a general perturbative
expansion, which we need for the proof of Theorem 1 in
Appendix B.

1. Definitions

The goal of perturbation theory is to calculate the effect
of a small perturbation V of strength λ � 0 on a known,
unperturbed Hamiltonian H (0). In particular, the goal is to
study the Hamiltonian

H = H (0) + λV (A1)

and to determine its low-energy eigenvalues and correspond-
ing eigenvectors as a function of λ. To this end, suppose that
H (0) and V act on a D-dimensional Hilbert space. Let E (0)

0 be
the lowest eigenenergy of H (0), and let

E(0) := span
{|ϕ〉 ∈ CD : H (0)|ϕ〉 = E (0)

0 |ϕ〉} (A2)

be the corresponding d-dimensional (degenerate) ground
space of H (0), d � D. We let {| j〉 ∈ CD}d

j=1 denote an or-
thonormal basis for E(0). We also let |ψ1〉, |ψ2〉, . . . , |ψd〉 ∈
CD be the perturbed orthonormal eigenvector (i.e., the eigen-
vectors of H) corresponding to the d-dimensional subspace
E(0), such that

H |ψ j〉 = Ẽ j |ψ j〉 ∀ j ∈ {1, 2, . . . , d}, (A3)

where Ẽ j are the energies corresponding to |ψ j〉. For the rest
of this section, we are concerned with the shifted energies

Ej := Ẽ j − E (0)
0 . We also let

E := span{|ψ j〉 ∈ CD : j ∈ {1, 2, . . . , d}} (A4)

be the d-dimensional subspace spanned by the vectors
|ψ1〉, |ψ2〉, . . . , |ψd〉. We assume throughout that the sub-
spaces E(0) and E are not orthogonal, meaning that there does
not exist a vector in E(0) that is orthogonal to all vectors in
E, and vice versa. This condition can be guaranteed if the
perturbation strength is not too high [22].

Our specific goal in this section is to determine a perturba-
tive expansion of H in the d-dimensional subspace E, i.e., we
seek a perturbative expansion of the effective Hamiltonian

Heff(H, d ) :=
d∑

j=1

Ej |ψ j〉〈ψ j |. (A5)

Note that this is nothing more than the projection of the
Hamiltonian H onto the subspace E, followed by a constant
shift of E (0)

0 .
Let P0 be the projector onto E(0). We can thus write H (0) as

H (0) = E (0)
0 P0 + Q, (A6)

where Q satisfies P0Q = QP0 = 0. Let us also define |α j〉 to be
the (non-normalized) state vectors reflecting the projections of
the perturbed eigenstates onto the subspace E(0), i.e.,

|α j〉 := P0|ψ j〉. (A7)

Note that these vectors are not necessarily orthonormal. But
they are linearly independent, as we now prove.

Lemma 1 (linear independence). Under the assumption
that the vector spaces E(0) and E are not orthogonal, the
vectors defined in Eq. (A7) are linearly independent. Conse-
quently, there exist vectors |̃α j〉, j ∈ {1, 2, . . . , d}, such that
〈α j |̃α j′ 〉 = δ j, j′ for all j, j′ ∈ {1, 2, . . . , d} and

P0 =
d∑

j=1

|α j〉〈̃α j | =
d∑

j=1

|̃α j〉〈α j |. (A8)

Proof. Consider the equation c1|α1〉 + c2|α2〉 + · · · +
cd |αd〉 = 0, where c1, c2, . . . , cd ∈ C. Using the definition of
|α j〉, we obtain

P0(c1|ψ1〉 + c2|ψ2〉 + · · · + cd |ψd〉) = 0. (A9)

Now, because E(0) and E are nonorthogonal, it follows that the
vector c1|ψ1〉 + c2|ψ2〉 + · · · + cd |ψd〉 is not in the orthogo-
nal complement of E(0), which means that it must be equal to
the zero vector. Consequently, because the vectors |ψ j〉 are
linearly independent, we have that c1 = c2 = · · · = cd = 0.
Hence, because the numbers c1, c2, . . . , cd were arbitrary, we
conclude that the vectors |α j〉 are linearly independent.

Now, consider the operator T := ∑d
j=1 |α j〉〈 j|, which can

be thought of as a matrix whose columns are equal to the
vectors |α j〉. In particular, note that |α j〉 = T | j〉 for all j ∈
{1, 2, . . . , d}. Linear independence of the vectors |α j〉 implies
that T is invertible. (Here, and throughout this section, by
inverse we mean the Moore–Penrose pseudo-inverse, which is
the inverse on the support of a linear operator.) Hence, letting

|̃α j〉 := (T −1)†| j〉 ∀ j ∈ {1, 2, . . . , d}, (A10)
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we find that

〈α j |̃α j′ 〉 = 〈 j|T †(T −1)†| j′〉
= 〈 j| j′〉 = δ j, j′ ∀ j, j′ ∈ {1, 2, . . . , d}, (A11)

as required.
Finally, using Eq. (A10) and the fact that T | j〉 = |α j〉 for

all j ∈ {1, 2, . . . , d}, we find that both
∑d

j=1 |α j〉〈̃α j | and∑d
j=1 |̃α j〉〈α j | are equal to the identity operator for the sub-

space E(0), which is precisely equal to the projection P0. This
completes the proof. �

Lemma 2 (invertibility). Consider the two linear operators

U :=
d∑

j=1

|ψ j〉〈̃α j |, (A12)

A := λP0VU. (A13)

The operatorU is invertible on the subspace E, and

UAU−1 = Heff(H, d ) =
d∑

j=1

Ej |ψ j〉〈ψ j |. (A14)

Proof. First of all, note that

U|α j〉 = |ψ j〉 ∀ j ∈ {1, 2, . . . , d}, (A15)

which holds due to Lemma A 1. Next, using Eq. (A10),
we find that U = ∑d

j=1 |ψ j〉〈 j|T −1 = ST −1, where S :=∑d
j=1 |ψ j〉〈 j|. Since the vectors |ψ j〉 are linearly independent,

the operator S is invertible. Furthermore, because the vectors
|ψ j〉 are orthonormal, S−1 = S† = ∑d

j=1 | j〉〈ψ j |. Therefore,
the inverse of U exists and is equal to U−1 = T S†. Next,
using Eq. (A6), we have that

P0(λV ) = P0
(
H − E (0)

0 P0 − Q
) = P0H − E (0)

0 P0, (A16)

so that

A = P0HU− E (0)
0 P0U. (A17)

However, using Eq. (A8), we find that P0U = P0, which
means that

A = P0HU− E (0)
0 P0. (A18)

For this reason, becauseUU−1 is equal to the projection onto
the subspace E, we obtain

UAU−1 = UP0HUU−1 − E (0)
0 UP0U−1

= UP0

d∑
j=1

Ẽ j |ψ j〉〈ψ j | − E (0)
0 UP0U−1

=
d∑

j=1

Ẽ j |ψ j〉〈ψ j | − E (0)
0 UP0U−1. (A19)

Finally, using Eq. (A8), along with Eq. (A15) and the fact that
〈̃α j |U−1 = 〈 j|T −1T S† = 〈ψ j |, we find that

UP0U−1 =
d∑

j=1

U|α j〉〈̃α j |U−1 =
d∑

j=1

|ψ j〉〈ψ j |. (A20)

Therefore,

UAU−1 =
d∑

j=1

(
Ẽ j − E (0)

0

)|ψ j〉〈ψ j | =
d∑

j=1

Ej |ψ j〉〈ψ j |, (A21)

as required. �

2. Perturbative expansion ofU
We now derive a perturbative expansion forU, from which

we obtain an expansion for A, which will allow us to ob-
tain a perturbative expansion for the effective Hamiltonian
Heff(H, d ) via Eq. (A14). Crucial to obtaining the perturbative
expansion ofU is the following fact:

Lemma 3 (towards a perturbative expansion). The linear
operatorU defined in Eq. (A12) satisfies

U = P0 + A−1Q0λ(VU−UVU), (A22)

where Q0 := 1 − P0 and A := E (0)
0 1 − H (0).

Proof. From Eq. (A3), we have that(
H − E (0)

0 1
)|ψ j〉 = Ej |ψ j〉 ∀ j ∈ {1, 2, . . . , d}. (A23)

Multiplying both sides of this equation from the left by P0

gives us

P0
(
H − E (0)

0 1
)|ψ j〉 = P0Ej |ψ j〉, (A24)

⇒ P0
(
H (0) + λV − E (0)

0 1
)|ψ j〉 = Ej |α j〉, (A25)

⇒ λP0V |ψ j〉 = Ej |α j〉, (A26)

for all j ∈ {1, 2, . . . , d}, where to obtain the right-hand side
of the second line we used Eq. (A7). Now, multiplying both
sides of the last line byU gives us

λUP0V |ψ j〉 = EjU|α j〉, (A27)

⇒ λUV |ψ j〉 = Ej |ψ j〉, (A28)

for all j ∈ {1, 2, . . . , d}, where to obtain the left-hand side
of the last line we used the fact that UP0 = U, which can be
straightforwardly verified using Eq. (A8). For the right-hand
side of the last line, we used Eq. (A15) the fact that U|α j〉 =
|ψ j〉 for all j ∈ {1, 2, . . . , d}. Using Eq. (A23), we find that
Eq. (A28) can be written as

λUV |ψ j〉 = (
H (0) − E (0)

0 1
)|ψ j〉, (A29)

⇒ (
H − E (0)

0 1 − λUV
)|ψ j〉 = 0, (A30)

for all j ∈ {1, 2, . . . , d}. Multiplying the last line by 〈̃α j | from
the right leads to(

H − E (0)
0 1 − λUV

)|ψ j〉〈̃α j | = 0 ∀ j ∈ {1, 2, . . . , d}.
(A31)

Summing over all j ∈ {1, 2, . . . , d} therefore leads to(
H − E (0)

0 1 − λUV
)
U = 0, (A32)

which is equivalent to(
E (0)

0 1 − H (0))U = λVU− λUVU. (A33)

Letting Q0 := 1 − P0 be the projector onto the span of the
excited states of H (0), we have

U = P0U+ Q0U, (A34)
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which means that(
E (0)

0 1 − H (0))U = (
E (0)

0 1 − H (0))(P0U+ Q0U)

= 0 + (
E (0)

0 1 − H (0))Q0U, (A35)

leading to(
E (0)

0 1 − H (0))Q0U = λVU− λUVU. (A36)

Next, using the fact that P0U = P0, we obtain

Q0(VU−UVU) = (1 − P0)(VU−UVU)

= VU−UVU+ P0(UVU− VU)

= VU−UVU. (A37)

Then, because H (0) − E (0)
0 1 has a well-defined inverse on

E(0)⊥, we can write

Q0U = (
E (0)

0 1 − H (0))−1
Q0λ(VU−UVU). (A38)

Inserting this result into Eq. (A34) yields

U = P0U+ (
E (0)

0 1 − H (0))−1
Q0λ(VU−UVU), (A39)

which simplifies to

U = P0 + (
E (0)

0 1 − H (0))−1
Q0λ(VU−UVU), (A40)

as required. �
We have, therefore, obtained the governing equation forU.

This equation is well suited for expansion in powers of λ and
can be expanded as

U =
∞∑

m=0

U(m), (A41)

with U(m) being the mth-order term. Substituting U into
Eq. (A22) gives the recurrence relations

U(0) = P0, (A42)

U(m) = A−1Q0λ

⎛⎝VU(m−1) −
m−1∑
p=1

U(p)VU(m−p−1)

⎞⎠,

(A43)

with A = E (0)
0 1 − H (0). Let

S	 :=
{−P0 if 	 = 0

A−	Q0 if 	 > 0.
(A44)

Then,

U(m) = λm
∑′

S	1V S	2V · · ·V S	nV P0, (A45)

where the sum is over all sets of indices {	i}m
i=1 that fulfill the

following conditions [22]:

	i � 0 ∀ i ∈ {1, . . . , m}, (A46)

	1 + · · · + 	m−1 = m, (A47)

	1 + · · · + 	p � p ∀ p ∈ {1, . . . , m − 1}. (A48)

These conditions can be understood as all the possible paths
on a square lattice of length m that go from the bottom left
corner to the top right one and lie above the diagonal, as
represented in Fig. 4.

FIG. 4. Visual representation of the allowed set of indices in the
expansion of U as proposed by Bloch in Ref. [22]. All allowed
diagrams are shown for m ∈ {1, 2, 3} and additionally, one not con-
tributing diagram for m = 2 since it goes below the diagonal [it does
not fulfill the third property in Eq. (A46)].

Lemma 4 (explicit form of terms). For 	 > 0, the terms S	

defined in Eq. (A44) are given by

S	 =
∑
j �=0

(
E (0)

0 − E (0)
j

)−	
Pj (	 > 0), (A49)

where Pj is the spectral projection of H (0) corresponding to
the energy E (0)

j .
Proof. To obtain this result, we use the fact that

H (0) = E (0)
0 P0 +

∑
j �=0

E (0)
j Pj, P0 +

∑
j �=0

Pj = 1. (A50)

This implies that

E (0)
0 1 − H (0) =

∑
j �=0

(
E (0)

0 − E (0)
j

)
Pj, (A51)

which in turn implies that

A−	 = (
E (0)

0 1 − H (0))−	 =
∑
j �=0

(
E (0)

0 − E (0)
j

)−	
Pj, (A52)

and because this is supported entirely on the orthogonal com-
plement of the ground space of H (0), we have that A−	Q0 =
A−	, proving the desired result. �

From the expansion ofU, we can write the expansion ofA
as

A =
∞∑

m=1

A(m), (A53)

with

A(m) = λm
∑′′

P0V S	1V S	2V · · ·V S	m−1V P0, (A54)

with the sum over all sets of m − 1 indices {	i}m−1
i=1 such that

	i � 0 ∀ i ∈ {1, 2, . . . , m − 1}, (A55)

	1 + · · · + 	m−1 = m − 1 � 0, (A56)

	1 + · · · + 	p � p ∀ p ∈ {1, . . . , m − 2}. (A57)
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Finally, using Eq. (A14), the perturbative expansion of
Heff(H, d ), up to mth order in perturbation theory, is

Heff(H, d ) = UA(�m)U−1 + O(λm+1)A(�m) :=
m∑

j=1

A( j).

(A58)
As shown in Ref. [22] (see also Ref. [5, Appendix B]), the
following condition is sufficient to guarantee convergence of
this perturbative expansion:

‖λV ‖ <
γ

4
, (A59)

where γ is the gap between E (0)
0 and the energy of the first-

excited state of H (0). We note that this bound is not tight [17]
and that significantly larger λ might still lead to similar results,
even outside of the regime in which the perturbative expansion
converges [14,19].

APPENDIX B: PROOF OF THEOREM 1

In this section, we show how to get from Definition 1
to Theorem 1 using the expansion presented in the previous
section. In particular, we analyze what the formulas obtained
in Appendix A imply for the construction of the perturbative
gadget introduced in Definition 1, and thereby prove Theorem
1. The proof also serves as the groundwork for the extensions
presented in Appendix D and the generalization in Sec. IV.

For convenience, let us recall the definition of our gad-
get Hamiltonian from Definition 1. Given a k-body target
Hamiltonian H target acting on a Hilbert space Htarget with
dim(Htarget ) = 2n, the associated gadget Hamiltonian is

Hgad :=
r∑

s=1

H aux
s + λ

r∑
s=1

Vs, (B1)

where

H aux
s :=

k∑
j=1

1

2

(
1s, j − Zaux

s, j

) =
k∑

j=1

|1〉〈1|aux
s, j , (B2)

Vs :=
k∑

j=1

c̃s, jσ
target
s, j ⊗ X aux

s, j ⊗ X aux
s,( j+1) mod k, (B3)

and c̃s, j = −(−1)kcs if j = 1 or c̃s, j = 1 otherwise. We con-
sider σs, j ∈ {n̂ · σ : n̂ ∈ R3, n̂ · n̂ = 1, σ = (X,Y, Z )}. We
refer to the Hilbert spaces of each of the auxiliary registers
as Haux

s , where dim(Haux
s ) = 2k . The complete Hilbert space

acted upon by our gadget Hamiltonian is thus

Htotal � Htarget ⊗Haux
1 ⊗ · · · ⊗Haux

r . (B4)

For an illustration of the different registers in the case of a
toy example, see Fig. 5. Our goal in this section is to use
the perturbative expansion of the previous section, by taking
H (0) ≡ ∑r

s=1 H aux
s and V ≡ ∑r

s=1 Vs, and showing that

Heff(H
gad, 2n) = aH target ⊗ |φ0〉〈φ0| + b� + Oerr, (B5)

where � is the projector onto the low-energy subspace of
Hgad, |φ0〉 ∈ Haux is a state vector, a is a scaling factor, and
b is a shift on the whole subspace of interest. We remark that
the above equation is in accordance with [19, Definition 11],
which provides a general definition of what it means for one

FIG. 5. Illustration of the different relevant qubit registers in the
construction of the gadget Hamiltonian for the case of n = 5, k = 4,
and r = 2. Shown in panel (a) are the two target Hamiltonian terms
h1 and h2 on the five-qubit target register with the corresponding
single-qubit operators σs, j . Panel (b) shows the two four-qubit aux-
iliary registers, and two of the a(s)

j operators displayed on each.
As displayed for σ2,3, the indices (s, j) for operators on the target
register should always be understood by referring to hs. Indeed, σ2,3

acts on qubit 4. On the other hand, the indices for operators on the
auxiliary qubits are more straightforward: X2,3 is a Pauli X on the
third qubit of the second register.

Hamiltonian to mimic another Hamiltonian in its low-energy
subspace.

1. Useful properties

For illustrative purposes, and to help in some coming steps
of the derivation, let us write down the lowest-order terms of
the expansion ofA from Eq. (A54) explicitly. This is

A(1) = λP0V P0, (B6)

A(2) = λ2P0V S1V P0, (B7)

A(3) = λ3P0V S1V S1V P0 + λ3P0V S2V S0V P0. (B8)

Let us consider a few properties of the construction defined
in Definition 1, which we use below. First of all, note that
the gadget Hamiltonian is three-body by construction. Then,
the unperturbed Hamiltonian acting solely on the auxiliary
registers can be rewritten as

H aux =
r∑

s=1

k∑
j=1

|1〉〈1|s, j (B9)

and its ground state is the computational basis state
vector |0〉⊗rk with corresponding eigenvalue 0. Conse-
quently, the ground space of the unperturbed Hamiltonian is
given by

E(0) = span{|ϕ〉 ⊗ |0〉⊗rk : |ϕ〉 ∈ H target}, (B10)

with the corresponding projector

P0 = 1⊗n ⊗ (|0〉〈0|)⊗rk, (B11)

whose support is 2n-dimensional, as for the original target
Hamiltonian. Furthermore, the energy of any state in the
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computational basis is given by the Hamming weight of the
state with respect to the auxiliary register. Lastly, let us define

a(s)
j := X aux

s, j ⊗ X aux
s,( j+1) mod k (B12)

as the parts of the perturbation from Eq. (B3) acting on the
auxiliary registers. Then, these operators fulfill the useful
relations[

a(s)
i , a(p)

j

] = 0 ∀ i, j, s, p,
k∏

j=1

a(s)
j =

k⊗
j=1

X 2
s, j = 1⊗k ∀ s.

(B13)
The first is a direct consequence of having only Pauli-X oper-
ators in the construction of a(s)

j . The second is due to the fact

that the operators a(s)
j are constructed in a cyclic manner and

the fact that the Pauli-X operator squares to the identity.

2. Simplified target Hamiltonian

Now, let us first consider the simplified example of a target
Hamiltonian comprising only a single term with unit norm,
that is

H target = σ1σ2 · · · σk . (B14)

For this case, we can omit the subscript s. The corresponding
gadget Hamiltonian is then given by

Hgad = H aux + λV, (B15)

with

H aux =
k∑

j=1

1

2
(1 − Zj ), (B16)

and

V =
k∑

j=1

(−(−1)k )δ1 j σ j ⊗ Xj ⊗ X( j+1) mod k . (B17)

The 2k-dimensional unperturbed ground space is

E(0) = span{|ϕ〉target ⊗ |0〉⊗k : |ϕ〉 ∈ Htarget}. (B18)

The projector on the unperturbed ground space can conse-
quently be written as

P0 = 1⊗k ⊗ (|0〉〈0|)⊗k. (B19)

First, let us look at the auxiliary part of the Hamiltonian to
understand its effect. It can be interpreted as a penalization on
flipped qubits: each term has a zero contribution if the affected
qubit is in the |0〉 state but has a penalty of one if the qubit is
in the |1〉 state. The gap is then γ = 1 and taking into account
that ‖V ‖ = k, the convergence of the expansion in Eq. (A45)
is guaranteed for λ � 1/(4k).

Let us now study the first terms in the expansion ofA from
Eq. (A54), i.e.,

A(�2) = λP0V P0 + λ2P0V S1V P0. (B20)

Every term of this expansion is sandwiched between two
projectors P0. The only terms with a nontrivial contribution
are then those that take a state from E(0) and return it to E(0),
i.e., those that leave the auxiliary register in the all-zero state.
That is not the case for A(1) in which the application of a

single term of the perturbation V necessarily kicks the state
out of the ground space by flipping two auxiliary qubits. Con-
sequently,A(1) = 0. ForA(2), each term of the first V excites
the system to a state with two flipped auxiliary qubits. The
only contribution from S1 is then due to the projector on the
second excited subspace P2 with corresponding eigenenergy
E (0)

2 = 2. This gives the denominator in S1, resulting in

A(�2) = −λ2

2
P0V

2P0. (B21)

Now, let us examine V 2. This twofold application of the per-
turbation V has to act on the same two qubits, flipping them
back to their original state. All cross terms in

V 2 =
k∑

i, j=1

σiσ j ⊗ aia j

=
k∑

i, j=1

σiσ j ⊗ XiX(i+1) mod kXjX( j+1) mod k, (B22)

with i �= j, do not contribute since some of the Pauli-X op-
erators on auxiliary qubits survive and leave the state outside
of E(0). For visualization, we refer to Fig. 3(c). Additionally,
for i = j, and even on the target register, the terms that do
contribute are necessarily squared operators and thus only
identities:

k∑
j=1

σ 2
j ⊗ (XjX( j+1) mod k )2 =

k∑
j=1

1 = k1. (B23)

Altogether, we have that

A(�2) = −λ2k

2
P0. (B24)

Similarly, for the next orders in the perturbative expansion,
each pair of flipped auxiliary qubits has to be flipped back by
the same operator in order to result in a nonzero contribution.
For this to be true, m is only allowed to take even values,
and the perturbation is always applied as P0V mP0 ∝ P0. That
means that all contributions below order k are proportional to
P0 and thus

A(�k−1) =
(

k−1∑
m=0

αmλm

)
P0. (B25)

Here, αm is a coefficient depending on the number of com-
binations of m excitations returning a state to E(0), and the
corresponding energy penalties picked up along the way,
which is independent of λ. To strengthen the intuition on the
construction of αm we refer to Fig. 6, which displays a few
examples of terms that do and do not contribute.

A different behavior can be first observed at kth order in
perturbation theory. There, by Eq. (B13), we can construct
terms acting k times on the auxiliary register as

∏k
j=1 a j =

1⊗k . In other words, all qubits from the auxiliary register are
flipped twice and thus returned to E(0), while each qubit in the
target register is acted upon only once by the corresponding
σ j . This results in all elements from H target being applied to
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FIG. 6. Illustration of the interplay of V and S	 inA. Shown are some possible contributions to α4 in the case of seven qubits; see Eq. (B25).
Displayed are two choices of indices 	i fulfilling (A55) and some terms from V 4 that starting from a state in E(0) return to E(0) for each choice.
At each step of application of S	iV , the state is changed by V by flipping two qubits, and S	i weights the resulting state by a power of the
inverse of the energy or 0.

the target register, yielding

A(k) = −(−λ)k
∑

�

1

ξ�

P0(−(−1)kσ1σ2 · · · σk ⊗ 1⊗k )P0

= λk
∑

�

1

ξ�

P0(H target ⊗ 1⊗k )P0. (B26)

The sum over � is over all possible permutations in the ap-
plication order of the (σ j, a j ) pairs, while ξ� = ∏k

i=1 E	i is
the factor originating from the corresponding energy penalties
E	i = ‖H auxa	i · · · a	0 |0〉⊗k‖2. Defining

�−1 :=
∑

�

1

ξ�

, (B27)

the full expansion ofA up to kth order in perturbation theory
considering all possible combinations can then be written as

A(�k) = f (λ)P0 + λk

�
P0(H target ⊗ 1⊗k )P0

= f (λ)P0 + λk

�
H target ⊗ (|0〉〈0|)⊗k. (B28)

Applying these results to Eq. (A58) yields

Heff(H
gad, 2n) = U f (λ)P0U−1 +U

[
λk

�
H target ⊗ (|0〉〈0|)⊗k

+ O(λk+1)

]
U−1

= f (λ)� + λk

�
H target ⊗ (|0〉〈0|)⊗k + O(λk+1),

(B29)

where UP0U−1 = � is the projector onto the support of
Heff(Hgad, 2n). Similarly to Ref. [5], we used the fact that the

operators U on both sides leave the second term unaffected
up to errors of order O(λk+1).

3. General case

For the general case stated in Definition 1, the argument
is similar, with the exception that one has to bear in mind
that there are now r auxiliary registers of k qubits each. There
are then more cross terms in the powers of V and Eq. (B22)
becomes

V 2 =
r∑

s,p=1

k∑
i, j=1

c̃s,icp, jσs,iσp, j ⊗ Xs,iXs,i+1Xp, jXp, j+1. (B30)

Similarly, only terms with s = p and i = j contribute. More
contributions appear from all possible combinations of the
different terms in the powers of V , but in the end, Eq. (B25)
still holds: All nonzero contributions toA at orders lower than
k are proportional to P0.

At kth order in perturbation theory, the nontrivial terms
appear when acting k times on a single auxiliary register, since
Eq. (B13) only holds when all operators operate on the same
register s.

On the target register, it produces a contribution of the
form

∏k
j=1 c̃s, jσs,1σs,2 · · · σs,k = −(−1)kcshs. Considering all

possible cross terms of this kind emerging from V k leads to
similar terms for each auxiliary register, yielding

A(�k) = f (λ)P0 +
r∑

s=1

λk

�
P0
(
cshs ⊗ 1⊗k

s

)
P0

= f (λ)P0 + λk

�
P0

(
r∑

s=1

cshs ⊗ 1⊗k
s

)
P0

= f (λ)P0 + λk

�
P0(H target ⊗ 1⊗rk )P0. (B31)
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Applying these results to Eq. (A58) results in

Heff(H
gad, 2n) = U f (λ)P0U−1 +U

[
λk

�
P0(H target ⊗ 1⊗rk )P0

+ O(λk+1)

]
U−1

= f (λ)�+ λk

�
H target ⊗ (|0〉〈0|)⊗rk + O(λk+1),

(B32)

which is what we have been aiming for. Furthermore, by
Eq. (A59), we need to upper bound the perturbation strength
λ by γ /(4‖V ‖). For the presented gadget we have γ = 1 and
‖V ‖ � [

∑r
s=1 |cs| + r(k − 1)] by the triangle inequality and

the fact that the operator norm of Pauli operators is equal to
one. Although not tight, we can thus upper bound λ by

λ � 1

4
[∑r

s=1 |cs| + r(k − 1)
] , (B33)

concluding the proof of Theorem 1. �

APPENDIX C: PROOF OF COROLLARY 1

Corollary 1 results from a direct application of Eq. (6) for
sufficiently small λ. Since f (λ)� is a constant shift on the
whole subspace of interest, the eigenstates of Heff(Hgad, 2n)
and Heff(Hgad, 2n) − f (λ)� are identical, and all energy gaps
preserved. We can then rewrite Eq. (6) as

H̃eff(Hgad, 2n, f (λ)) = λk

�
H target ⊗ (|0〉〈0|)⊗rk + λk+1Oerr,

(C1)
with H̃eff(Hgad, 2n, f (λ)) := Heff(Hgad, 2n) − f (λ)� and
‖Oerr‖ ∈ O(1). Since the error shifts any eigenvalue by at
most ‖λk+1Oerr‖, choosing λ such that

‖λk+1Oerr‖ � λk
(
E target

1 − E target
0

)/
�, (C2)

where E target
0 and E target

1 are the ground and first-excited en-
ergies, respectively, of H target, ensures that the ground space
of the right-hand side of Eq. (C1) remains separated from the
first excited subspace. Considering that the spectrum of H target

is independent of λ, we are always able to find a sufficiently
small λ, whose upper bound is given by

λ � E target
1 − E target

0

�‖Oerr‖ , (C3)

concluding the proof. �

APPENDIX D: EXTENSIONS OF THE LOCALITY
GADGET CONSTRUCTION

1. Extension to mixed Pauli weights

The gadget presented in Definition 1 seems to be restricted
to the case in which all terms hs of the target Hamiltonian
act nontrivially on the same number of qubits, namely, that
they all act nontrivially on exactly k qubits. Here, we want
to argue that such a restriction, although useful to simplify
the derivations and formulas, is not necessary. We can also
consider the case of a Hamiltonian H target whose terms hs are

not all acting nontrivially on the same number of qubits, i.e.,

H target =
r∑

s=1

cshs with hs =
ks⊗

j=1

σs, j, (D1)

where ks and ks′ may differ. Let us, therefore, define k =
maxs ks. This means that all terms hs act nontrivially on at
most k qubits.

First of all, one should note that no step of the derivation
in Appendix B actually relies on the fact that σs, j is a linear
combination of the Pauli operators X , Y , Z . What has been
leveraged, on the other hand, is that without loss of generality
and to simplify the derivation, we can assume the property
σ 2

s, j = 1. In other words, nothing prohibits us from extending
this definition to include identity terms, such that σs, j ∈ {n̂ ·
σ : n̂ ∈ R3, n̂ · n̂ = 1, σ = (X,Y, Z )}⋃{1}. We can there-
fore redefine the gadget from Eq. (3) such that H aux

s stays as
in Definition 1, but the perturbation changes to

Vs =
ks∑

j=1

c̃s, jσ
target
s, j ⊗ X aux

s, j ⊗ X aux
s,( j+1) mod k

+
k∑

j=ks+1

X aux
s, j ⊗ X aux

s,( j+1) mod k. (D2)

With this change, even terms with ks < k will only con-
tribute at kth order in perturbation theory, and we recover our
main result even for Hamiltonians of the form presented in
Eq. (D1).

2. Extension to arbitrary target locality

Having extended the use of our gadget to target Hamilto-
nians whose terms act nontrivially on different numbers of
qubits, we can also extend it for arbitrary target locality. For
now, let us assume again that all terms hs act nontrivially on
exactly k qubits. Reducing the locality to a value lower than
three is out of reach for our gadget construction. However,
we can construct gadget Hamiltonians with localities between
three and k that lead to the same overall result as Theorem 1.
Doing so might seem to be a counter-productive goal at first,
but such constructions will require fewer additional qubits and
might thus be useful when it comes to practical implementa-
tions. After all, the three-body perturbative gadget introduced
here requires rk additional qubits. We start by discussing the
simpler case in which k is divisible by k′ − 2, where k′ is the
target locality, and then extend the findings to the general case.

If, for instance, one chooses the target locality to be four
instead of three, Eq. (B3) can be changed to

Vs =
k/2∑
j=1

c̃s, jσ
target
s,2 j−1 ⊗ σ

target
s,2 j ⊗ X aux

s, j ⊗ X aux
s,( j+1) mod k/2. (D3)

Each perturbation term now acts on two target qubits instead
of one, halving the order in perturbation theory at which the
target Hamiltonian is recovered and would consequently only
require rk/2 auxiliary qubits to obtain a result equivalent to
Eq. (6).

In general, we can construct a gadget with an arbitrary
target locality between three and k by acting on more target
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qubits at once in each term of the perturbation. If the original
target Hamiltonian is k body and the target locality of Hgad

is k′, the resulting gadget construction requires k/(k′ − 2)
auxiliary qubits for each term of the target Hamiltonian. Two
of the k′ operators of the tensor product have to be the pair of
Pauli-X operators on the auxiliary register and the rest can be
populated with the corresponding Pauli operators from hs.

The statements above assume that k/(k′ − 2) is equal to an
integer; now let us look at the case where this is not the case.
Let us define k� = �k/(k′ − 2)� and k⊥ = �k/(k′ − 2)�. Us-
ing the insights from Appendix D 1, we can lift the divisibility
requirement and can construct a k′-body gadget Hamiltonian
with the perturbation given by

Vs =
k⊥∑
j=1

c̃s, j

k′−2⊗
	=1

σ
target
s,( j−1)(k′−2)+	

⊗ X aux
s, j ⊗ X aux

s,( j+1) mod k�

+ c̃s,k⊥+1

k⊗
m=(k⊥−1)(k′−2)+1

σ target
s,m ⊗ X aux

s,k⊥ ⊗ X aux
s,(k⊥+1) mod k� . (D4)

The last term may act on less than k′ − 2 target qubits but the
paired X operator ensures that the only contribution is the one
acting k times on the target register with ks Pauli operators
and k − ks identities.

When k⊥ = k/(k′ − 2), the final term does not contribute
and we recover the divisible case. Otherwise, the last term
implements the remaining operators of the target term hs.
For a target Hamiltonian whose terms act nontrivially on k
qubits simultaneously and a targeted locality of the gadget
Hamiltonian of k′, the number of required auxiliary qubits is
k�r.

APPENDIX E: CAN PERTURBATIVE GADGETS HELP
ADDRESS THE BARREN PLATEAU PROBLEM?

In this section, we provide an in-depth study of our re-
sults when applying perturbative gadgets in the context of
gate-based quantum computing, in particular in the context of
variational quantum algorithms. One might ask if and why one
would even need a perturbative gadget without constraints of
adiabaticity. After all, digital, gate-based quantum computing
is not restricted by existing couplings due to the design of
more intricate gate decompositions and the freedom of con-
structing arbitrary gates from universal gate sets. Although
finding practical uses in general gate-based computations is as
of yet an open problem, one fruitful application could be in the
context of variational quantum algorithms (VQAs) [24–26],
which are based upon measurements of a Hamiltonian ex-
panded in the Pauli basis and for which it was shown that the
Hamiltonian’s locality, both in the sense of geometric locality
and few-body terms, can play a role in their performance
[47,48].

VQAs rely upon parametrized quantum circuits (PQCs)
to evaluate a parameter-dependent cost function related to
the expectation value of a set of observables and are greatly
discussed in the setting of noisy intermediate scale quantum
(NISQ) devices [27]. The probably simplest setting is that of
the variational quantum eigensolver (VQE) [28], which refers
to the case where the cost function is equal to the expectation

value of a Hamiltonian H target, i.e.,

Ctarget(θ) = Tr[H targetU (θ)ρU (θ)†], (E1)

for some initial state ρ, e.g., one given by the state vec-
tor |00 · · · 0〉〈00 · · · 0|, and quantum circuit ansatz θ �→ U (θ).
Solving the problem corresponds to estimating the ground-
state energy and associated ground-state vector of H target by
classically optimizing the parameters θ and employing a quan-
tum device to evaluate the aforementioned cost function.

A significant obstacle in the successful optimization is
the presence of so-called barren plateaus, which reflect the
phenomenon that the variance of gradients of the cost function
with respect to the variational parameters decays exponen-
tially in the number of qubits of the PQC. First discussed
for the hardware-efficient ansatz with a polynomial number
of layers in Ref. [30], the emergence of barren plateaus has
been observed in other settings as well [12,31–33] and hinders
the optimization procedure due to the therefore exponential
number of required measurement samples. Scalable VQAs
thus rely on practical mitigation strategies.

Existing approaches build upon improving initialization
strategies [34], using correlated gates or restricted parameter
spaces [32,35], intermediate measurements [36], the trans-
ferability of smooth solutions [37], layer-wise learning [38],
pre-optimization [39,40], different types of ansatz [41], clas-
sical shadows [42], or alternative loss landscapes [43].

Furthermore, in Refs. [44–46], it has surprisingly been
found that for large system sizes and circuit depths a local
cost function, i.e., a cost function defined by a few-body
Hamiltonian, results in more effective optimization compared
with a global cost function, i.e., a cost function defined by a
many-body Hamiltonian, and that global cost functions ex-
hibit vanishing gradients for large system sizes already at
constant circuit depths. The concept of such cost-function-
dependent barren plateaus was formalized in Refs. [47,48], in
which it has been further shown that local cost functions can
still be optimized even for circuits of logarithmic depth.

Inspired by these findings, a natural question to ask
is whether we can localize any given cost function, and
thus avoid cost-function-dependent barren plateaus in the
corresponding optimization landscape. For the problems con-
sidered in Refs. [44–46], the local cost function corresponding
to the problem could be defined essentially by inspection
of the global cost function. However, this is not necessarily
possible in general and motivates us to open the discussion
on whether perturbative gadgets could help extend results on
the nonexistence of barren plateaus for local cost functions to
nonlocal ones.

1. A reduction from k-body to three-body cost functions

Applying the above-presented gadget to substitute cost
functions of the form in (E1), allows us to use Theorem 1
and Corollary 1 to conclude the following about VQAs: Given
a cost function as in Eq. (E1), we can replace the k-body
Hamiltonian H target with the three-body gadget Hamiltonian
Hgad from Definition 1, such that finding the minimum of
the gadget Hamiltonian will bring us close to the low-energy
subspace of the target Hamiltonian, and thus the minimum of
the original cost function.
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FIG. 7. Demonstration of the theoretical guarantee from Corollary 2. We take as our global cost function the one in Eq. (E1), defined by
the target Hamiltonian H target = ⊗n

i=1 Zi, and we use an alternating layered ansatz with different circuit depths. Shown is the variance of the
gradient of this global cost function (dark pink), the local cost function based on our three-body gadget Hamiltonian from Definition 1 (blue),
and a similar local cost function defined by a four-body gadget Hamiltonian (turquoise) presented in Appendix D.

Furthermore, by localizing the original cost function, we
obtain cost functions with provably nonvanishing gradients
as shown in Refs. [47,48]. Specifically, they prove that the
corresponding gradients decrease at most polynomially in the
number of qubits for the same ansatz of a logarithmic depth.
Thus, via Ref. [48, Theorem 2], we obtain the following result:

Corollary 2 (bound to the variance of the gradient of the
cost function). Consider the local cost function Cgad(θ) =
Tr[HgadU (θ)ρU (θ)†] defined by the gadget Hamiltonian in
Definition 1, where U (θ) is the unitary corresponding to an
alternating layered ansatz with L layers, with each block of
the ansatz drawn independently from a local unitary 2-design.
Then, the variance of the gradient of the cost function is
bounded from below by

Var

[
∂Cgad(θ)

∂θν

]
� �(poly(3−L )), (E2)

where ν denotes the subset of parameters the gradient is eval-
uated for. We are thus guaranteed nonvanishing gradients for
logarithmic circuit depths, i.e., for L = O(log n).

In Fig. 7, we present a proof-of-principle numerical
demonstration of nonvanishing gradients. At this point, we
would like to point out that simply having nonvanishing
gradients does not imply successful optimization, i.e., train-
ability. Although the converse is true, one should, in general,
be careful when implying trainability from the existence of
gradients. Take, for example, the Hamiltonian H = Hglobal ⊗
1 + 1⊗(n−1) ⊗ Z . The vanishing gradients of the first, global
term would effectively result in only the second term con-
tributing to the gradients. That is, if Hglobal is a prototypical
global observable afflicted by barren plateaus, it will barely
contribute to the magnitude of the gradients. Consequently,
the circuit will effectively be trained on the other, local, term
1⊗(n−1) ⊗ Z , which has measurable gradients. In the end, one
will successfully implement the gradient descent algorithm
to a minimum, but only of the local part, and not of the
full Hamiltonian. In other words, the total cost function has

measurable gradients, but these nonvanishing gradients do not
help with the actual optimization problem.

Our gadget has gradients that do not vanish exponentially
and a ground state that is close to the target solution. Unfortu-
nately, it is not enough to fully avoid the core issue behind
barren plateaus: the exponential increase in the number of
required measurements. For the extreme case of k = n, the
magnitude of the contribution of the target Hamiltonian in
the effective Hamiltonian, or in other words the degeneracy
splitting mentioned in Fig. 1, is suppressed exponentially by
λn. For the results from perturbation theory to hold, λ has to
be chosen to be small (see Theorem 1), further amplifying this
problem. As a result, when reaching the low-energy subspace
of the gadget Hamiltonian and therefore entering the regime
described by the effective Hamiltonian, one would in practice
need an exponentially increasing number of measurements to
resolve the nuances in the cost function and find the global
minimum. While we can guarantee a vanishing error in the
limit of λ → 0 and that all terms of the gadget Hamiltonian
contribute to the gradient, the main contributions to the gra-
dients would be essentially those corresponding to reaching
the unperturbed ground space, i.e., some state vector |ψ〉 =
|φ〉 ⊗ |0〉⊗rk . Therefore, actually finding the ground state of
the gadget Hamiltonian might be prohibitively hard. However,
this hardness can be present even for cost functions without
barren plateaus, as discussed in detail in Refs. [52,53]. More-
over, for numerical proof-of-principle demonstrations, we find
that leaving the strict regime of perturbation strengths corre-
sponding to theoretical guarantees can help the optimization
performance as shown in Appendix G.

For large λ we do not have such strong analytical guar-
antees but allow for larger contributions with respect to
the perturbative terms. Our training simulations reflect these
insights as we obtain different behaviors for different pertur-
bation strengths. These observations are aligned with previous
works on perturbative gadgets that have also found it benefi-
cial to increase the perturbation strength, including increasing
it to values outside the regime of convergence of perturbation
theory [14,19]. Practical implementations might thus benefit
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highly from treating the perturbation strength λ as a hyperpa-
rameter during optimization.

It is worth noting that while using the proposed gadget
Hamiltonian requires rk additional qubits and comprises 2rk
terms instead of r, there exists a simple, optimal measure-
ment scheme for estimating its expectation value, relying on
only four different measurement-basis settings, inspired by
Refs. [54,55]. First, by measuring all auxiliary qubits in the
Pauli-Z basis, we are able to estimate H aux. Then, consecu-
tively measuring all auxiliary qubits in the Pauli-X basis and
simultaneously all target qubits in one of the three Pauli bases,
we are able to estimate all terms Vs.

APPENDIX F: INAPPLICABILITY OF THE GADGET BY
JORDAN AND FARHI FOR VARIATIONAL ALGORITHMS

The perturbative gadget proposed by Jordan and Farhi [5]
relies strongly on the restriction of the allowed Hilbert space
in which the state of the system can evolve. To be specific,
in the language of Sec. IV, their gadget has a penalization
Hamiltonian, as in Eq. (9), of the form H = ∑

1�i1<i2�k hi1,i2 ,
with

hi1,i2 = 1
2

(
1 − Zi1 ⊗ Zi2

)
, (F1)

and the perturbation operator A in Eq. (10) is such that

a j = Xj, j ∈ {1, 2, . . . , k}. (F2)

However, since the ground space of their penalization Hamil-
tonian is two-dimensional and given by span{|0〉⊗k, |1〉⊗k},
they have to enforce that the state of the system re-
mains in the +1 eigenspace of the A = X ⊗k operator,
thereby reducing the system to a one-dimensional ground-
state vector |GS〉 = |GHZ〉 = (1/

√
2)(|0〉⊗k + |1〉⊗k ). With

this additional restriction, which can be fulfilled naturally
in adiabatic quantum computing by initializing the auxil-
iary registers in Greenberger-Horne-Zeilinger (GHZ) states,
it is easy to check that X ⊗k fulfills all properties stated in
Eq. (11). Unfortunately, this restriction is not possible out-
side of the adiabatic regime, and their gadget construction is
consequently not applicable to our problem at hand.

However, let us now consider what happens when one
cannot use initialization and adiabatic restriction to ensure
a reduction of the reachable Hilbert space. The unperturbed
ground space of their penalization Hamiltonian H in Eq. (F1)
is

E(0) = span

{
|ϕ〉target

r⊗
s=1

|φ〉aux
s : |ϕ〉 ∈ Htarget,

|φ〉 ∈ span{|0〉⊗k, |1〉⊗k}
}

, (F3)

and the corresponding projector is

P0 = 1 ⊗ (|0〉〈0|⊗k + |1〉〈1|⊗k )⊗r = 1 ⊗ �⊗r
0 . (F4)

The fact that the dimension of E(0) is not the same as the
dimension of the target Hilbert space makes a considerable
difference in Eq. (B31), where the shifted contributions be-

come

λk

�
P0

(
r∑

s=1

cshs ⊗ X ⊗k
s

)
P0. (F5)

Using the fact that

�0 = |GHZ+〉〈GHZ+| + |GHZ−〉〈GHZ−|, (F6)

with

|GHZ±〉 = 1√
2

(|0〉⊗k ± |1〉⊗k ), (F7)

results in

λk

�

r∑
s=1

cshs ⊗ �⊗s−1
0 ⊗ (|GHZ+〉〈GHZ+|

− |GHZ−〉〈GHZ−|) ⊗ �⊗r−s
0 . (F8)

In other words, the effective Hamiltonian on the low-energy
subspace of the gadget Hamiltonian is composed of a mixture
of positive and negative contributions from each term as ±hs

is associated with different projectors on the different auxil-
iary registers. This prevents us from recovering the desired
tensor-product structure between target and auxiliary registers
with H target required to use this construction in practice, for
our purposes; see also Ref. [19, Definition 11].

APPENDIX G: NUMERICAL SIMULATIONS OF THE
APPLICATION OF THE GADGET FOR VARIATIONAL

QUANTUM ALGORITHMS

To show how one can use the proposed gadget construc-
tion, we have studied its performance on the toy model
H target = Z1Z2 · · · Zn. This specific example has already been
used in the study of cost-function-dependent barren plateaus
[32]. Furthermore, a single global Pauli string is the simplest
example on which we can apply our gadget and that needs
the least amount of resources. Indeed, we require 2n qubits to
generate the corresponding cost function, while any additional
global Hamiltonian term would imply n additional qubits.
With this choice, having in mind the scaling of classical
simulations, we can show the functioning of the gadget for
the largest possible number of target qubits. The purpose of
our simulation is to demonstrate Theorem 1 and Corollary
1; therefore, we performed exact, state-vector simulations,
which are not subject to the considerations of exponential
circuit evaluations presented previously. We used a layered
ansatz as depicted in Fig. 8, as done in Refs. [30,32]. While
this ansatz does not fulfill the exact conditions of Corollary 2,
it allows a comparison with previous works on the topic.

1. Methods for gradient variance computations

As shown in Fig. 7, the variances of the gradients of the
energy for the target Hamiltonian decay exponentially, while
those of the gadget Hamiltonian seem to decay subexponen-
tially. The exponential scaling is more obvious when using
linear-log axes, but the current log-log choice puts emphasis
on the polynomial scaling of the curves for the gadget cost
functions. Indeed, with this choice of axes, a polynomial scal-
ing results in a straight line which seems to fit the data points
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FIG. 8. Circuit ansatz used for the PQC implemented in the simulations of the use of our perturbative gadget for VQE. Each layer is
composed of randomly chosen Pauli rotations on each qubit followed by controlled Pauli-Z gates in a chain pattern.

well. Although the presented regime does not show a clear
advantage, the visible trend hints towards a crossover at larger
qubit numbers that are out of reach for our classical simulator.

For these results, we have used the parameter on the nth
qubit of the first layer when evaluating the variances. For the
target Hamiltonian, this corresponds to the last qubit it acts
upon, while it corresponds to the last qubit of the target reg-
ister for the gadget Hamiltonian. Based on the asymmetry of
the gadget Hamiltonian with respect to the target and auxiliary
registers, choosing the parameter related to the last qubit of the
target register within the first layer guarantees a contribution
of all Hamiltonian terms at any depth. However, we stress that
the found trend is expected to be similar for all parameter
choices, as indicated by Corollary 2.

2. Training simulations

Additionally to the gradient variance simulations, we have
simulated gradient-based optimization of Hgad while moni-
toring the expectation value of H target for different values of

λ as shown in Fig. 9. From Theorem 1, we know that when
successfully reaching the global minimum of the expectation
value of the gadget Hamiltonian, we can expect the output
state to converge to a state close to the ground state of H target.
It has to be pointed out, however, that the subtleties of the low-
energy part of the spectrum are exponentially suppressed in λ,
which can result in slow optimizations or even exponential
requirements in the presence of noise. This can be seen in
our experiments as the optimization stagnates for perturbation
strengths within the range of validity of our theoretical results.
Nevertheless, we have successfully obtained minimizations
of the expectation value of the target Hamiltonian for large
values of λ > λmax within a reasonable number of iterations.
We thus propose using the interaction strength λ as an ad-
ditional hyperparameter and starting with larger values and
reducing it later on for improved accuracy and faster training.
Furthermore, we note that the qubit ordering has an impact
on the practical performance and that a different ordering has
been employed for the variances and training plots. Further
details are discussed in Appendix G 3.

FIG. 9. Training simulations using the gadget construction Hgad introduced in Definition 1 as cost to optimize the global Hamiltonian
H target = Z⊗5. Each of the 30 runs is plotted in a light color while the more dark lines are the average over all runs. We employ an alternating
layered ansatz on ten layers that is trained on Hgad (blue). Furthermore, we evaluate the energy of H target ⊗ 1 (red) by measuring the expectation
value of the target Hamiltonian for the output state of the circuit trained on the gadget Hamiltonian, hence tracing out the auxiliary part. While
the theoretical guarantees of Theorem 1 only hold for λ � λmax, this bound is not tight and we observe improved training for larger values. We
thus propose treating λ as an additional hyperparameter.
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FIG. 10. Two possible qubit orderings and the resulting simulations for the case of n = 5, k = 4, and r = 2 (as in Fig. 5). Panel (a) is the
corresponding simulation to Fig. 9 but using the basic ordering. Panels (b) and (c) show said ordering (used in Fig. 7) and the improved one
(used in Fig. 9), respectively. For each, first is the distribution of the 13 qubits into the three registers (left), then the terms from the target
Hamiltonian and the qubits they act on (center), and finally a selection of the terms composing the gadget Hamiltonian (right). In contrast with
Fig. 5, we abandoned the circular layout and use a linear one to match the usual representation of the qubit register in a quantum computing
circuit.

Note that these training simulations are to be seen as proof-
of-principle demonstrations, since, in the simulated regime,
even the original, global Hamiltonian can be optimized. Also,
since the proposed gadget requires several times the num-
ber of qubits that the global Hamiltonian would, we quickly
escape the realm of system sizes that can be efficiently simu-
lated classically. Still, the scalings of our gadget construction
remain compatible with the NISQ regime and could be a
tool added to the arsenal of techniques for optimizing cost
functions on near-term devices that are otherwise plagued by
the barren plateau phenomenon.

3. Performance improvements through qubit reordering

Until this point, we focused more on the conceptual mes-
sage of using perturbative gadgets in VQAs to overcome
cost-function-dependent barren plateaus and less on practical
details relevant to their actual implementation. One of them
is the qubit ordering in the joint register of the quantum com-
puter or simulator. While our main theorems do not depend
on the geometry of the quantum circuit, the couplings in the
constructed gadget Hamiltonian do have a particular structure.
Considering the state generated at the end of the PQC and the
nearest-neighbor coupling of each layer of the used ansatz in
combination with shallow circuit depths, it is reasonable to
assume that the ordering of the qubits in a one-dimensional,
joint register will have an effect. Qubits coupled by the target
Hamiltonian should probably be more entangled than those
that are not coupled. We have thus explored different layouts
of the target and auxiliary qubit registers with the goal of
keeping coupled qubits closer.

First, let us discuss the straightforward qubit ordering used
for the simulation results in Fig. 7. As shown in Fig. 10(b),
the qubits have been added to the total register as they appear
in the gadget construction. That is, first the target register and
then one auxiliary register after the other. The resulting cou-
pling terms σ

target
s, j ⊗ X aux

s, j ⊗ X aux
s,( j+1) mod k are then divided with

the target qubit being far from the two corresponding auxiliary
qubits. Training simulations in this setting [Fig. 10(a)] were
mostly successful, but in some instances ended up maximizing
the target cost function instead of minimizing it.

Since the coupling graph resulting from Hgad does not
allow for a one-dimensional distribution such that only
nearest-neighbor qubits are coupled, we settled for putting at
least one of the relevant auxiliary qubits close to the target
qubit. To do so, we interleave the registers such that the
first auxiliary qubit in σ

target
s, j ⊗ X aux

s, j ⊗ X aux
s,( j+1) mod k is added

between the corresponding target qubit and the next target
qubit. Due to the cyclic nature of the gadget construction, the
second auxiliary qubit will be placed in the neighborhood of
the following target qubit. A simple example of this is pre-
sented in Fig. 10(c). With this new ordering, we obtained the
results shown in Fig. 9. The comparison of the convergence
properties of the training simulations in both settings provides
numerical evidence of the role of qubit ordering when it comes
to practical implementations of the introduced methods. First,
the average convergence speed visibly improves when using
the new ordering. Second, the better ordering does not exhibit
any runs that maximize the target Hamiltonian as found for the
first one, which could be attributed to the local minima of the
gadget cost function. Although this reordering does not pre-
tend to be optimal but rather a first proposal, we could show
for our example that considering the order of the qubits in
combination with the structure of the minimized cost function
can lead to clear improvements in the performance of VQAs
in practical settings.

APPENDIX H: A GADGET FOR REDUCING
MEASUREMENT BASES IN THE HAMILTONIAN

READOUT PROBLEM

The gadget discussed so far is a gadget tuned for maximally
reducing the locality of the gadget Hamiltonian. There, we
have also noted, that the energy of such a gadget construction
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can be estimated using only four measurement settings. This
motivates the construction of a different gadget minimizing
the resource overheads. Such a gadget is presented here. Fur-
thermore, since such a gadget can be expressed in four layers
of mutually commuting terms, it could also be applicable to
the fault-tolerant setting, where layers of mutually commuting
T gates can be executed in parallel by increasing the number
of qubits [56].

1. Gadget definition

The gadget itself is constructed as follows: Let H target

be an arbitrary Hamiltonian represented using r differently
weighted tensor products of Pauli operators, such that

H target =
r∑

s=1

csHs =
r∑

s=1

csH
X
s HY

s HZ
s , (H1)

where each individual Pauli-word is decomposed into its
Pauli-X , Pauli-Y , and Pauli-Z part, e.g.,

H1 = X1Y2X3Z4, (H2)

HX
1 = X1X3, (H3)

HY
1 =Y2, (H4)

HZ
1 = Z4. (H5)

Then, we choose our gadget Hamiltonian to be

Hgad = H aux + λV, (H6)

with

H aux = −
q∑

i=1

Zi (H7)

acting as the unperturbed Hamiltonian on the q auxiliary
qubits and

λV = λ

r∑
s=1

∑
A∈{X,Y,Z}

c̃sH
A
s ⊗ V aux

s,A (H8)

its perturbation. Since the goal is that products of V aux
s,A only

become the identity if the corresponding product of HA
s is one

of the target terms, we introduce

τX
i = Xi−1, τY

i = Xi, τ Z
i = Xi−1Xi (H9)

for X being the Pauli-X operators acting on the auxiliary
qubits.

The idea is to construct the terms V aux
s,A as products of

some τA
i such that their product only results in the identity

if we have V X
s V Y

s V Z
s . To do so, we define M to be the set of

all subsets of {1, 2, . . . , q/2} with an odd number of entries
sorted with respect to their cardinality. There are

q∑
k odd

(
q

k

)
= 2q−1 (H10)

TABLE II. Exemplary assignments for the perturbation acting on
ten auxiliary qubits for a computational Hamiltonian comprising 16
terms.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

V aux
1,X = τX

2 X 1

V aux
1,Y = τY

2 1 X

V aux
1,Z = τ Z

2 X X

V aux
2,X = τX

4 X 1

V aux
3,X = τX

6 X 1

...
. . .

V aux
6,X = τX

2 τX
4 τX

6 X 1 X 1 X 1

V aux
7,X = τX

2 τX
4 τX

8 X 1 X 1 X 1

...
. . .

V aux
16,X = ∏5

i=1 τX
2i X 1 X 1 X 1 X 1 X 1

such sets. Then, constructing the perturbations V aux
s,A for the

term HA
s using the set Ms, we define

V aux
s,A =

∏
i∈Ms

τA
2i, (H11)

and

c̃s = 3
√

cs|Ms|2. (H12)

The ground state of H aux is given by |0〉⊗k . Since the action of
the perturbation is not immediately apparent, it is worthwhile
to inspect it more closely. Imagine a system with q = 10 aux-
iliary qubits a1, . . . , aq. There, the individual V aux

i,A are chosen
in the fashion of Table II:

In this fashion, we have that V X
s V Y

s′ V Z
s′′ = 1 only if s =

s′ = s′′. In any other case, due to the perturbative expansion,
the product does not contribute to the effective Hamiltonian.
Since there are two auxiliary qubits required as a unit, we
obtain a qubit overhead of q � 2[log2(r) + 1]. Here, we note
that this perturbation structure is only one example and that
more compact versions requiring fewer qubits might exist.

2. Mathematical analysis

The perturbation of H aux by λV results in a global energy
shift and a splitting of the degeneracy of the ground space,
mimicking H target and leading to the following result:

Theorem 2 (mathematical analysis). Given Hgad acting on n
target and q auxiliary qubits as defined above and λ < 1/2‖V ‖
with the operator norm ‖ . . . ‖, Heff(Hgad, d ) will mimic H target

at third order in perturbation theory with respect to λ, specifi-
cally

Heff(H
gad, 2n) = �� + λ3H target ⊗ P+ + O(λ4), (H13)

where � is a constant energy shift and P+ = |0〉〈0|⊗q denotes
the operator projecting all auxiliary qubits onto their ground
state and � the projector on the support of Heff(Hgad, 2k ).

Proof. The fundamentals of the perturbative expansion are
presented above in Appendix A, identical to those also used
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in Appendix B. Consequently, the expansion converges if

‖λV ‖ <
γ

4
, (H14)

with γ being equal to the smallest energy gap of H aux, i.e.,
γ = 2 for Hgad leading to the condition that

λ � 1

2‖V ‖ . (H15)

Let us now start by identifying nonzero terms in every or-
der of perturbation theory. Since [see Eq. (A54)] all terms are
sandwiched by P0 = 1 ⊗ P+ operators projecting the system
onto the ground space E(0) of H aux, all terms vanish that do not
take a state from E(0) and return it to E(0). For the perturbation
introduced in Eq. (H8), this is equivalent to saying that no
combination of terms of V resulting in an auxiliary space
unequal to |0〉⊗q will survive. Consequently, there will be no
surviving terms in the first order of perturbation theory.

The terms in second order originate from V 2 and belong
to one of the following two categories: either they vanish
because they excite the auxiliary space in two different ways
not returning the state to E(0) or they are squares of individual
terms that survive since Pauli operators square to the identity.
The latter are responsible for the constant energy shift �.

In analogy, all third-order terms vanish except for those of
the form V X

s V Y
s V Z

s resulting in a degeneracy splitting caused
by the application of HX

s HY
s HZ

s on the original system, be-
cause only a combination of τX

s , τY
s , and τ Z

s will yield |0〉⊗q ∈
E(0) on the auxiliary register after the perturbation. There are
six possible permutations of these three perturbations, and the
perturbation corresponding to the Pauli-Z string can happen
first, second or last, resulting in different energy penalties.
Applying V Z

i first or last will result in one intermediate state
with a penalty of 4|Ms| and one with a penalty of 2|Ms|,
whereas applying the V Z

i perturbation in the middle results
in both intermediate states having a penalty of 2|Ms|. Further-

more, from the sum in Eq. (A54), only the case (	1, 	2) =
(1, 1) contributes, and not (2, 0). Including the corresponding
combinatorial factors we find

Heff(H
gad, 2n)(3)

=
r∑

s=1

1

|Ms|2

⎛⎜⎜⎜⎜⎝2
1

(−2)(−2)︸ ︷︷ ︸
V Z

i second

+4
1

(−4)(−2)︸ ︷︷ ︸
V Z

i first or last

⎞⎟⎟⎟⎟⎠
× c̃3

s λ
3HX

s HY
s HZ

s ⊗ P+

= λ3
r∑

s=1

csHs ⊗ P+ = λ3H target ⊗ P+. (H16)

�
The striking feature of these types of gadgets is, that their

Hamiltonian can be grouped into four sums of qubit-wise
commuting Pauli operators, which can therefore be estimated
using only four measurement bases:

Hgad = −
q∑

i=1

1 ⊗ Zi︸ ︷︷ ︸
1target⊗Zaux

+ λ

r∑
s=1

c̃sH
X
s ⊗ V aux

s,X︸ ︷︷ ︸
Xtarget⊗Xaux

+ λ

r∑
s=1

c̃sH
Y
s ⊗ V aux

s,Y︸ ︷︷ ︸
Ytarget⊗Xaux

+ λ

r∑
s=1

c̃sH
Z
s ⊗ V aux

s,Z︸ ︷︷ ︸
Ztarget⊗Xaux

. (H17)

However, as mentioned above, the scaling in λ is unfavor-
able except for settings in which it is excessively expensive to
change measurement settings but cheap to evaluate a circuit
given a chosen setting.
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