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Detecting quantum phase transitions in a frustrated spin chain via transfer learning
of a quantum classifier algorithm

André J. Ferreira-Martins ,1 Leandro Silva,1,2 Alberto Palhares ,1,3 Rodrigo Pereira ,1,3 Diogo O. Soares-Pinto,2

Rafael Chaves,1,4 and Askery Canabarro 2,5,*

1International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil
2Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, São Paulo, Brazil

3Departamento de Física Teórica e Experimental, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil
4School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil

5Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas - NCEx, Campus Arapiraca, Universidade Federal de Alagoas,
57309-005 Arapiraca, Alagoas, Brazil

(Received 12 November 2023; revised 11 March 2024; accepted 16 April 2024; published 20 May 2024)

The classification of phases and the detection of phase transitions are central and challenging tasks in diverse
fields. Within physics, these rely on the identification of order parameters and the analysis of singularities
in the free energy and its derivatives. Here, we propose an alternative framework to identify quantum phase
transitions. Using the axial next-nearest-neighbor Ising (ANNNI) model as a benchmark, we show how machine
learning can detect three phases (ferromagnetic, paramagnetic, and a cluster of the antiphase with the floating
phase). Employing supervised learning, we demonstrate the feasibility of transfer learning. Specifically, a
machine trained only with nearest-neighbor interactions can learn to identify a new type of phase occurring
when next-nearest-neighbor interactions are introduced. We also compare the performance of common classical
machine learning methods with a version of the quantum nearest neighbors (QNN) algorithm.
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I. INTRODUCTION

Machine learning (ML) has proven its efficiency and suc-
cess in many scientific as well as business sectors [1–19]. In
essence, we can teach computers to see patterns by progres-
sively exposing them to quality inputs, which is crucial for
data-driven solutions given the gigantic and ever-increasing
amount of raw data. Within any branch of ML, substantial
improvements in state-of-the-art solutions are strongly related
to algorithmic and hardware advances. And, although we
still need to be careful about setting long-term expectations,
recent breakthroughs in the current noisy intermediate-scale
quantum (NISQ) era [20–23] put quantum computing among
the most promising directions toward significant progress in
machine learning. Within this context, there have been a num-
ber of different approaches seeking quantum advantages in
machine learning ranging from the quantum analog of neu-
ral networks [24] to routines for supervised or unsupervised
learning [25,26], quantum reinforcement learning [27], and
quantum pattern recognition [28] (see Refs. [29–31] for a
detailed review).

A field where machine learning has been particularly suc-
cessful is that of quantum matter and quantum information.
Classical machine learning techniques were used to perform
quantum state tomography [12], to approximate the ground
state of many Hamiltonians of interest [11], for the description
of causal networks [32–34], and finding violations of Bell
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inequalities [17,35], among many other applications. Impor-
tantly, such classical methods have also been proven capable
of tackling a central topic in many-body physics, that of
classifying phase transitions, a thorny goal especially due to
the exponential increase of Hilbert space describing quantum
systems. Apart from simple transitions, witnessed by non-
analyticities in order parameters, more general quantum phase
transitions require large lattice sizes, a costly computational
task for which a variety of classical machine learning tech-
niques provide alternative and reliable approaches [14–16,36].
It seems thus natural to consider whether quantum machine
learning can also identify phase transitions. Indeed, machine
learning based on hybrid quantum-classical variational cir-
cuits has been shown to detect phase transitions in the simple
Hamiltonians, such as the transverse field Ising and XXZ mod-
els [37–40]. Our approach distinguishes itself significantly
from others, primarily through the implementation of transfer
learning using a quantum classifier algorithm. This algorithm
is exclusively trained within a specific segment of the phase
diagram while testing on the rest of the phase diagram. We
also explore optimized data preprocessing for compatibility
with real quantum hardware. This demonstrates the effective-
ness of our technique, as discussed in detail herein.

Our aim in this paper is to show that the quantum nearest
neighbors (QNN) algorithm [41] also provides a well-founded
tool for classifying quantum phase transitions. Moving be-
yond the models previously considered, we benchmark the
QNN performance by employing the axial next-nearest-
neighbor Ising (ANNNI) model [42,43] used, for instance,
to investigate the magnetic order in quasi-one-dimensional
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spin ladder materials [44], quantum melting of crystalline
order in Rydberg atom systems [45], interactions between
Majorana edge modes in arrays of Kitaev chains [46,47], and
quench dynamics and dynamical phase transitions [48–50].
The ANNNI is the simplest model combining the effects of
quantum fluctuations and frustrated exchange interactions, a
combination from which a rich ground state phase diagram
arises [39,51–55]. It thus provides an interesting challenge to
the QNN algorithm capabilities.

As we show, even after significantly reducing the input
data, to make it compatible with quantum computational re-
quirements, the QNN algorithm still allows for a successful
learning of phase transitions. More precisely, we demonstrate
the transfer learning in the ANNNI model, as by train-
ing the machine with nearest-neighbor interactions only, it
also accurately predicts the phase transitions happening at
regions including next-nearest-neighbor interactions. Interest-
ingly, the QNN performs better than its classical counterpart,
called K nearest neighbors (KNN), when exposed to the same
input data, thus providing a proof-of-principle example of a
possible quantum advantage in accuracy.

The paper is organized as follows. In Sec. II we describe
the ANNNI model. In Sec. III we provide a succinct but com-
prehensive overview of classification problems in machine
learning, also describing the KNN and QNN algorithms. In
Sec. IV we detail the data preprocessing required to make
the problem amenable to be implemented in near-term quan-
tum devices. In Sec. V we present our results regarding the
learning of phase transitions in the ANNNI model. In Sec. VI
we discuss our results and point out interesting directions for
future research. Finally, in the Appendix we provide tech-
nical details about some of the classical machine learning
techniques we have employed in the preprocessing of the
data.

II. THE ANNNI MODEL

With the goal of analyzing the use of a quantum classifier
algorithm to witness phase transitions in a quantum many-
body system, we chose the axial next-nearest-neighbor Ising
(ANNNI) model. The reason stems from the fact that this
model displays a nontrivial and rich phase diagram. As it
happens, ANNNI is the simplest model combining quantum
fluctuations and competing frustrated exchange interactions.
The first is induced by the presence of a transverse field while
the latter is due to the fact that even though the interaction is
ferromagnetic for nearest neighbors, it becomes antiferromag-
netic for next-nearest neighbors.

The Hamiltonian for the ANNNI model is given by [42,43]

H = −J
N∑

j=1

(
σ z

j σ
z
j+1 − κσ z

j σ
z
j+2 + gσ x

j

)
, (1)

where σα
j (α = x, y, z) are Pauli matrices acting on spin-1/2

degrees of freedom at site j of a one-dimensional lattice
with N sites and periodic boundary conditions. The param-
eter J > 0 is a coupling constant that sets the energy scale
of the problem (we set J = 1) and is associated with the
nearest-neighbor ferromagnetic exchange interaction. The di-
mensionless coupling constants κ and g are related to the

next-nearest-neighbor interaction and the transverse magnetic
field, respectively.

The ground state phase diagram of the ANNNI model
is well understood and known to contain four phases sep-
arated by three quantum phase transitions: ferromagnetic,
antiphase, paramagnetic, and floating phase. In a nutshell,
the ferromagnetic phase is characterized by a uniform spon-
taneous magnetization, with one of the ground states given
by ↑↑↑↑↑↑↑↑. In turn, the antiphase breaks the lattice trans-
lational symmetry and has long-range order with a four-site
periodicity of the form ↑↑↓↓↑↑↓↓. Distinctively, the param-
agnetic phase is disordered and has a unique ground state with
spins pointing predominantly along the field direction. Finally,
the floating phase is gapless with correlation functions decay-
ing as a power law for large distances, in contrast with the
other phases that have a finite energy gap and exponentially
decaying correlations.

For κ = 0, the transverse field Ising model is reproduced,
exactly solvable via the mapping to noninteracting spinless
fermions. Along the κ = 0 line, a second-order phase tran-
sition occurs at g = 1, separating the ferromagnetic phase
at g < 1 from the paramagnetic phase at g > 1. In par-
ticular, exactly at the critical point g = 1, the energy gap
vanishes.

For g = 0, there is a transition between the ferromagnetic
phase at small κ and the antiphase at large κ occurring at
κ = 1/2. Notice that with g = 0 the model becomes classical,
since all operators in the Hamiltonian commute with each
other. At this classical transition point, any configuration that
does not have three neighboring spins pointing in the same
direction is a ground state, showing that the degeneration
of the ground state increases exponentially with the system
size.

For g �= 0 and κ �= 0, the critical lines have to be de-
termined numerically since the model is not integrable any
longer. For 0 � κ � 1/2, the Ising transition between the
paramagnetic and ferromagnetic phases extends from the
g = 1, κ = 0 until the degenerate point g = 0, κ = 1/2,
a multicritical point at which several transition lines co-
incide. Two other transition lines start at the multicritical
point and extend to the high-frustration regime κ > 1/2.
For fixed g > 0 and increasing κ > 1/2, we first encounter
a Berezinsky-Kosterlitz-Thouless (BKT) transition from the
paramagnetic phase to the floating phase. Detecting the BKT
transition is challenging because the correlation length di-
verges exponentially at the critical point. However, the level
spectroscopy method offers a robust approach for identifying
a BKT transition point and examining its universality class
in one-dimensional quantum systems [56,57]. As we increase
κ further, there is a commensurate-incommensurate (CIC)
transition from the floating phase to the antiphase. Numerical
density matrix renormalization group results for long spin
chains [54] show that the floating phase occupies a rather
narrow region in the phase diagram, which makes it hard to
discern the BKT from the CIC transition for small system
sizes.

Using perturbation theory in the regime κ < 1/2 [43] or
by fitting numerical results [54] in the regime κ > 1/2, one
can obtain approximate expressions for the transition lines.
For instance, the critical value of g for the Ising transition for
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FIG. 1. Illustration of the main phases of ANNNI model. The
phase diagram is plotted in terms of the dimensionless coupling
constants g and κ .

0 � κ � 1/2 is approximately given by [43]

gI(κ ) ≈ 1 − κ

κ

⎛
⎝1 −

√
1 − 3κ + 4κ2

1 − κ

⎞
⎠. (2)

In turn, the critical value of g for the BKT transitions for
1/2 < κ � 3/2 is approximated by [54]

gBKT(κ ) ≈ 1.05
√

(κ − 0.5)(κ − 0.1). (3)

We use these approximations to make benchmark compar-
isons to our heuristic results.

In Fig. 1, we depict the main phases of the ANNNI model
using the approximations given by Eqs. (2) and (3). We have
also schematically represented the floating phase, investigated
in detail in [54]. It is important to note that this phase is very
narrow, making it challenging to observe, particularly in small
chains like the ones analyzed in our study.

Our dataset

As will be discussed in more detail throughout the paper,
we use the pairwise correlations among all spins in the lattice
as the training data for the machine learning algorithms. Given
N spins, we have a total of 3 × C2 = (N

2

)
observables for up

to (second) nearest neighbors, hence the combination by (2).
Thus, the features are given by {〈σ x

i σ x
j 〉, 〈σ y

i σ
y
j 〉, 〈σ z

i σ z
j 〉} with

j > i and i = [1, N − 1], where N is the number of spins in
the lattice and 〈σ x

i σ x
j 〉 = 〈λ0|σ x

i σ x
j |λ0〉 is the expectation value

of the spin correlation for the Hamiltonian ground state |λ0〉
(and similarly for the other expectation values). In our case,
we take N = 12, a manageable size for both computational
and analytical evaluation of the ground state of the ANNNI
Hamiltonian. This allows us to efficiently compute a set of 198
pairwise expectation values, which we refer to as “original
features,” since they could serve as the (raw) input variables
for a machine learning algorithm.

It is worth pointing out that even if one only has access to
short chains, the Ising transition can still be captured correctly
[39]. However, detecting the BKT transitions using standard
approaches requires computing observables for significantly

longer chains [54]. Notwithstanding, as we will see below,
even though our data regard a quite short chain N = 12, the
machine learning algorithms, both classical and quantum, will
be able to identify not only the Ising but also the antiphase
and the paramagnetic phases, lumping the BKT and CIC tran-
sitions together.

III. THE QUANTUM NEAREST NEIGHBORS ALGORITHM

The quantum nearest neighbors (QNN) [41] is a quantum
classification algorithm that employs the Hamming distance
as a distance criterion to compare the training dataset and
unclassified observations. Schematically, it consists of three
major steps:

(i) First, create a superposition of the training dataset and
the input observation.

(ii) Encode the Hamming distance between the input
observation and each example in the training set into the
amplitude of each state in the superposition.

(iii) Measure the class qudit retrieving the predicted class
with the highest probability.

Before the actual quantum algorithm starts, an important
classical preprocessing step (whose reason will become clear
in what follows) must be performed: the features in the
training dataset are represented as bit vectors, so that the
feature space becomes X = {0, 1}⊗n. This is achieved via the
procedure known as one-hot encoding, which produces the
so-called dummy variables [58]. Naturally, such a represen-
tation will be discrete (binary, in fact), so that if any original
feature is continuous (or even categorical with more than
two levels), a prior step of discretization is necessary. Notice
that the number of binary features after the encoding may be
different from the number of original features, although here
we represented both by the same number of bits n. There are
several ways to perform this binarization process. However,
whatever method is chosen, it is important that the essence
of the data topology is maintained—that is, points that are
close on the original feature space must remain close on the
binarized feature space. In Sec. IV we detail the specifics of
the particular procedure we applied to our problem.

Once the training dataset features are binarized, their rep-
resentation as quantum states is immediate via the basis
encoding [59], which accounts for a direct mapping of binary
features to the quantum computational basis states: 0 	→ |0〉
and 1 	→ |1〉. After these two steps, each training set data point
is mapped to the quantum state |xp

1 · · · xp
n 〉 ≡ |xp〉, xp

k ∈ {0, 1},
p = 1, . . . , N , where N is the number of points in the training
set. In parallel, in a separate quantum register, we encode the
class yp ∈ {0, . . . , d − 1}, and construct, for each observation
p, the state ∣∣xp

1 · · · xp
n , yp

〉 ≡ |xp, yp〉 . (4)

If we are dealing with binary classification (which is the
case in this work), the respective class is also straightfor-
wardly encoded in a single qubit, as 0 	→ |0〉 and 1 	→ |1〉.
If we have a multiclass problem, qudits are necessary, or
one could use more than one qubit to encode integers corre-
sponding to the class (for instance, |5〉 = |101〉). In this case,
log2 d� qubits are necessary to encode d classes.
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Once we have the state corresponding to each one of the
training states |xp, yp〉, we construct a training set superposi-
tion of all data points, given by

|T 〉 = 1√
N

N∑
p=1

|xp, yp〉 . (5)

Naturally, with n qubits, one can construct a superposition
of 2n states, representing all possible binarized feature vectors
of n features. However, it is possible (and most likely) that
in a given training dataset not all possible binary feature
vectors will be present. Indeed, in the binarization process,
it is likely that multiple observations that are different in the
original input space are mapped to the same binary vector so
that the transformed training dataset actually has a number of
observations quite smaller than the original number of obser-
vations (although here we represent both as N). This leads to
important details in the implementation of the algorithm in
a practical problem, as will be detailed in Sec. IV. Further,
notice that in the case in which N < 2n, the superposition
in Eq. (5) will have to be prepared with an arbitrary state
preparation routine, which is known to be costly [60]. In
this work, we perform simulations using Qiskit’s [61] ar-
bitrary state preparation routine, which implements the one
introduced in [62], which is shown to be optimal for arbi-
trary superpositions. However, in our case we have a uniform
superposition of a subset of the full computational basis su-
perposition, for which there exist much more efficient state
preparation routines, namely the one in [63], which intro-
duces a state preparation method that requires an exponential
number of CNOTs in the worst case, but was shown to re-
duce CNOTs significantly for practical benchmarks, while
generating an exact representation of quantum states with-
out using free qubits, or a modification of the one in [64],
which has a gate complexity and circuit depth of O(log N ),
where N is the number of training points, and uses neither
ancilla qubits nor any quantum gates with multiple controls.
By using one of these procedures, it is possible to efficiently
prepare |T 〉 without assuming the existence of a qRAM,
or using the inefficient arbitrary state preparation routines,
which brings the application of QNN closer to near-term
devices.

The next step is to perform the same classical binarization
process with the unclassified input vector xin (the one we
wish to classify) and map it to the state |xin,1 · · · xin,n〉 ≡ |xin〉,
xin,k ∈ {0, 1}. Keep this as the first register of the quantum
state. Finally, add an ancilla register |0〉 as the last register.
Such a construction yields an initial state given by

|ψ0〉 = 1√
N

N∑
p=1

|xin; xp, yp; 0〉 , (6)

which is made up of three registers (or, in fact, blocks of regis-
ters): the first containing the input state |xin〉, which consists of
n qubits, the second containing the superposition |T 〉 (which
is the tensor product of the feature vectors |xp〉 and the class
vectors |yp〉), thus consisting of n + 1 qubits, and given that
we have a binary classification problem, the third contains an
ancilla qubit initialized as |0〉. Therefore, the number of qubits
necessary for the algorithm is precisely 2n + 2.

Once the initial state is prepared, we put the ancilla into
a superposition, by applying a Hadamard gate to the last
register, i.e., H = 1 ⊗ 1 ⊗ 1 ⊗ H , such that

|ψ1〉 = H |ψ0〉 = 1√
N

N∑
p=1

|xin; xp, yp〉 ⊗ 1√
2

(|0〉 + |1〉).

(7)

In the next step, we want the Hamming distance compo-
nents di

k between each qubit of the first (input) and second
(training) register to replace the qubits in the second register,
such that

di
k =

{
0, if

∣∣xp
k

〉 = |xin,k〉 ,

1, else.
(8)

This is achieved by simply applying a cNOT(xin,k, xp
k ) gate,

which overwrites the entry xp
k in the second register with 0 if

xp
k = xin,k , otherwise with 1:

cNOT |00〉 = |00〉 , cNOT |01〉 = |01〉 ,

cNOT |11〉 = |10〉 , cNOT |10〉 = |11〉 .
(9)

Thus, after this step, the state is then

|ψ2〉 =
n⊗

k=1

cNOT
(
xk, v

p
k

) |ψ1〉

= 1√
N

N∑
p=1

|xin; d p, yp〉 ⊗ 1√
2

(|0〉 + |1〉),

(10)

where the Hamming distance components |d p
1 · · · d p

n 〉 ≡ |d p〉,
d p

k ∈ {0, 1}, p = 1, . . . , N are now in the second register.
In the third step, we apply the unitary operator

U = e−i π
2n O, O = 1 ⊗

n∑
k=1

(
1 − σz

2

)
dk

⊗ 1 ⊗ σz. (11)

This sums the Hamming distance components {d p
k } (thus

yielding the actual Hamming distance) between |xp〉 and |xin〉,
dH (xin, xp) ≡ dH , into the phase of the pth state of the super-
position. Notice that a relative phase is added, conditioned on
the ancilla state. After this step, the state becomes

|ψ3〉 =U |ψ2〉 = 1√
2N

N∑
p=1

(e−i π
2n dH |xin; d p, yp; 0〉

+ ei π
2n dH |xin; d p, yp; 1〉). (12)

Now we apply another Hadamard to the ancilla. This will
generate alternating-sign exponentials associated with each
ancilla state, which are easily aggregated into a sine and
cosine. The resulting state can be expressed as

|ψ4〉 = H |ψ3〉 = 1√
N

N∑
p=1

[
cos

(
πdH

2n

)
|xin; d p, yp; 0〉

+ sin

(
πdH

2n

)
|xin; d p, yp; 1〉

]
. (13)

Notice that 0 � dH � n ⇒ 0 � πdH
2n � π

2 . Therefore,
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(i) for large dH , cos( πdH
2n ) → 0 and sin( πdH

2n ) → 1, so that
we have higher probability of measuring |1〉 in the
ancilla qubit;

(ii) for small dH , cos( πdH
2n ) → 1 and sin( πdH

2n ) → 0, so that
we have higher probability of measuring |0〉.

That is, if the input is far away from most training observa-
tions, we have a higher probability of measuring the ancilla in
the state |1〉, and if the input is close to many observations, the
ancilla is more likely to be measured in |0〉. Thus, intuitively,
since our criterion for classification is to consider the closest
observations, by measuring the ancilla in |0〉, the amplitudes
of close observations will be large, while the opposite is true
for distant observations. The importance of this fact becomes
clear if we rewrite |ψ4〉, to show that the different classes
appear weighted by their member’s distance to the input, such
that

|ψ4〉 = 1√
N

d−1∑
y=0

|y〉 ⊗
∑
l∈y

[
cos

(
πdH

2n

)
|xin; d l ; 0〉

+ sin

(
πdH

2n

)
|xin; d l ; 1〉

]
, (14)

where l runs over all training vectors classified with the label
y. Written like this, it becomes clear that if the ancilla is mea-
sured to be in |0〉, the amplitudes of close observations will
be large, which implies that the probability of measuring the
respective class qubit of these observations will also be large.
And, as we discuss next, this is how the final classification is
performed.

As the final step, the ancilla of the state |ψ4〉 is measured
on the computational basis. According to Eq. (13), it is easy
to see that the probability of measuring |0〉 is

P(|0〉a) = |〈0|ψ4〉|2 = 1

N

N∑
p=1

cos2

(
πdH

2n

)
. (15)

The conditional probability to measure a certain class y ∈
{1, . . . , d}, given that we previously measured the ancilla in
|0〉 (and, therefore, the state collapsed to |ψ̃4〉 = 〈0|ψ4〉 |0〉),
is, in terms of the joint probability,

P(y | |0〉a) = P(y)P(|0〉a)

= |〈y|ψ̃4〉|2

= 1

N

∑
l∈y

cos2

(
πdH

2n

)
, (16)

which is easily verifiable using Eq. (14). Indeed, Eq. (16)
implies that

P(y) = 1

P(|0〉a)

1

N

∑
l∈y

cos2

(
πdH

2n

)
. (17)

Thus, the class measured with the highest probability is that
whose members are the closest to the input vector, provided
that P(c) is only computed after the ancilla is measured in |0〉,
which is precisely why the amplitudes associated to the clos-
est neighbors are considered. Notice that if the measurement
returns |1〉, this run of the algorithm is not taken into account.

In Fig. 7 the full quantum circuit is illustrated for a par-
ticular dataset, as detailed in Appendix A 4. The algorithm
uses O(Nn) [41] gates, which is completely due to the con-
struction of the training data superposition [described by
Eq. (5)], which depends on the number of training samples,
thus yielding an O(Nn) complexity [41,65], which is close to
the classical KNN algorithm complexity, in which we have
to compute the distance between the test observation and all
other N training points. However, if one can find a procedure
to prepare the training data superposition in a manner indepen-
dent of the number of samples (perhaps by reading quantum
data [66–69]), the QNN algorithms would run in O(n), offer-
ing a potentially large advantage over the classical KNN, for
which it seems unlikely that there exists an algorithm which
is independent of the number of training samples; that is a
quite remarkable advantage achieved by the exploitation of
the superposition in a quantum algorithm.

We highlight that, in contrast to the classical KNN, the
QNN algorithm does not depend on the hyperparameter k. In
fact, a superposition of all members of each class is taken into
consideration for the classification. This is equivalent to con-
sidering all neighbors (that is, k = N), which in the classical
algorithm is associated with a high bias, since, if the dataset is
imbalanced with respect to the target, the majority class will
always be predicted. In the quantum algorithm, however, this
is not the case: even if the dataset is imbalanced, the input
observation will be assigned to the class which is the closest
to it, since, as is clear in Eq. (17), the distance of the input to
the members of the class explicitly affects the probability.

As a final remark, notice that the probability distribution in
Eq. (17) is precisely what is recovered from multiple runs of
the algorithm on an actual hardware (or a simulator thereof).
The final prediction, as a class, is therefore recovered by
choosing the class with the largest observed probability. How-
ever, as explained in Sec. IV and illustrated in Fig. 4, in this
work we directly use the class probability, i.e., Eq. (17) itself.
Fortunately, in contrast to many classical learning models,
outputting class probabilities is the most natural choice for
the QNN algorithm.

We remark that the Python/Qiskit implementation of the
algorithm described above, as well as all the data used in this
paper and the corresponding results, is available in an online
repository [70].

IV. DATA PREPROCESSING

As described in Sec. III, the classical data loaded into the
quantum registers, via the basis encoding strategy, must be
in a binary representation. On the other hand, as discussed in
Sec. II A, the dataset under study consists of 198 continuous
features (“original features”): the pairwise correlations among
all spins in a lattice with 12 sites considering boundary condi-
tions and the symmetry it implies. Thus, in order to represent
each observation as a binary vector, we must first discretize
the continuous features, so that the discrete levels may then
be binarized.

Before proceeding with these procedures, however, an im-
portant remark is due. As discussed above, the QNN algorithm
uses 2n + 2 qubits, where n is the number of binarized fea-
tures. Indeed, this implies that if one wants to simulate the
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circuit, or even execute it on NISQ hardware, n must be cho-
sen accordingly, to make the execution/simulation feasible.

As will be detailed below, we employed an efficient dis-
cretization and binarization procedure that maps each original
continuous feature to only two bits. However, given that we
start with 198 features, this would imply n = 396, thus requir-
ing a circuit consisting of 794 qubits, which is way beyond
the limit for a classical simulation as well as current quantum
hardware capabilities, both in terms of number of qubits as
well as circuit depth. And this is a quite simple discretization
one can think of: if one produces more bins per feature, which
would be desirable, the resulting number of binary features
(and qubits, consequently) would further increase, making the
simulation or execution yet more intractable.

Therefore, in order to fit the dataset into current capabili-
ties, we employ a series of preprocessing steps to the original
raw features, which starts with a dimensionality reduction pro-
cedure implemented via a feature selection routine, in order to
pick from the 198 original features, the ones that contribute
the most to the classification, with the hope that they are
enough to produce a good classifier. The procedure we use for
picking the most important features is based on the random
forest algorithm [71]—in particular, a modification thereof,
known as “extremely randomized trees” [72]. It consists of
the calculation of a “feature importance coefficient” which
is also known as “mean decrease impurity” or “gini impor-
tance” [73]. This coefficient is calculated as the total decrease
in each node impurity, averaged over all trees in the forest.
The mean is weighted by the probability that the respective
node is reached, which is often estimated by the proportion
of observations reaching the node. A detailed account of this
algorithm can be found in Appendix A 3.

Having in mind the discussion about the current capabil-
ities of simulation and hardware, we have selected only the
four most important features that correspond to the following
two-body correlation terms. Physically, we expect that the
most important features are the correlation functions 〈σ z

i σ z
j 〉 at

the largest available distances. The reason is that this correla-
tion detects long-range order associated with the spontaneous
breaking of the Z2 symmetry σ z

j 	→ −σ z
j of the Hamiltonian.

In the paramagnetic phase, 〈σ z
i σ z

j 〉 decays exponentially to
zero for |i − j| larger than the correlation length, while it
approaches a nonzero value in the ferromagnetic phase and
oscillates with a four-site periodicity in the antiphase. By
contrast, the correlation function 〈σ x

i σ x
j 〉 is nonzero for g �= 0

in all phases because the transverse magnetic field induces a
finite expectation value for σ x

j .
We then proceed to the discretization of the features, using

a procedure based on the k-means clustering algorithm [74].
More specifically, we use a k-bins discretizer, implemented
in scikit-learn [75], which divides continuous data into k
intervals or “bins.” Essentially, we first cluster observations
that are similar to the feature being discretized and use the
clusters’ centroids as centers of the bins; that is, values in each
bin will have the same nearest centroid, as determined by the
1-dimensional k-means algorithm. See Fig. 2 for a schematic
illustration of this procedure. For each feature, we created 3
bins. At this point, our dataset is characterized by 12 discrete
values, 3 for each one of the 4 features selected by the feature
importance procedure.

FIG. 2. Schematics of the k-bins discretizer using uniform and
k-means (k = 3) binning strategies. (a) The k-bins discretizer with
bins uniformly defined. The vertical red lines represent the bins’
limits. Notice that bin widths are uniform in the feature space, but the
clustering structure is not respected. (b) The green points represent
the clusters’ centroids, and the vertical green lines, the bins’ limits.
Notice how nonuniform bins are created, but the clustering structure
is respected.

After discretization, the features are binarized using the
one-hot encoding procedure, which consists of creating l − 1
independent binary features for each column with l categor-
ical levels, as illustrated in Fig. 3. In our case, since l = 3
for each discretized feature, we create l − 1 = 2 new binary
features each, which then results in n = 8 independent binary
features. This is the final dimensionality we work with.

Notice that, with 8 binary features, we will need 2 × 8 +
2 = 18 qubits for the circuit execution, which is a reasonable
number for the circuit simulation or execution—and, most
importantly, it is enough to yield good results for the problem
we analyze, as will be shown. We could have chosen more
than 4 original features or discretized the features in more
bins, which could possibly have increased the performance
quantum classifier. In Sec. VI we further elaborate on this
point.

FIG. 3. One-hot encoding procedure. From a column with
l = 3 categorical (discrete) levels, we construct l − 1 = 2 indepen-
dent binary columns, which are the binary features. Notice that only
l − 1 binary columns are necessary because it is possible to represent
one of the levels as “00” (in this example, “L3”).
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Notice that after the feature selection, discretization, and
binarization preprocessing described above, some observa-
tions which were different in the original space of continuous
features may be mapped to the same binary representation.
This makes perfect sense, given that the different values of
a given feature may fall in the same bin, which is given by
a range of values. If this happens with all 4 features of two
different observations, they will naturally be represented by
the same 8-dimensional feature vector. This is why using a
k-means binning strategy is a good idea [instead of the com-
peting strategy “uniform,” for example, in which all bins have
identical widths, as depicted schematically in Fig. 2(b)]: given
that bins are clusters, this strategy groups together similar
observations in the same bin, so that it makes sense if they
are represented by the same binary feature vector.

After the preprocessing routine, our original training
dataset, which had 1000 rows and 198 continuous-valued
columns, was reduced to a dataset with 8 binary features and
only 10 rows. We can see that as a way of reducing the dataset
only to the most representative samples and better explanatory
features, which, as we will show below, was enough to yield
good results with the quantum classification algorithm.

It is important to remark that the aforementioned feature
importance and discretization processes were such that their
respective parameters were determined only using the training
data. That is, the exact same procedure was merely reproduced
for all test datasets, but with parameters already defined in the
training data. Now, although this is the correct thing to be done
to avoid data leakage, there is a potential problem, especially
with the discretization process: given that the feature range
varies a lot from training to testing data, it is possible that the
resulting bins for testing data features will be concentrated;
that is, all observations will fall in the same bin of a given
feature. Effectively, this implies that such test observations
will be characterized by less than 8 features, which is a
problem because the QNN algorithm assumes that the test
(input) observation has the same number of features as all
training observations. In order to fix this, we pad such input
observations with zeros, to guarantee that all binarized test-
ing observations will be 8-dimensional. In practice, different
observations will be identified only by the actual features
present, and the padding will have no effect in terms of the
classification, given that it will be the same for all observations
in a given test dataset, as we observed. Indeed, as the results
show, such a procedure does not jeopardize the classifier’s
performance.

As already remarked, remember that QNN is a lazy algo-
rithm, so each test (input) observation is classified at a time.
This means that, in principle, we would have to simulate
or execute a number of circuits equal to the number of test
observations, to have their prediction. Given that we have
10 testing sets, one for each k value, and that we consider
k = 0 the training point, each one with 1000 observations,
the number of circuit simulations or executions would be
quite large. However, the aforementioned fact that different
training observations in the original feature space may be
mapped to the same binary representation is of course also
true for the testing data observations (although the exact num-
ber of unique binarized testing observations varies among the
different test datasets). Given that, we implement a cache:

FIG. 4. QNN probability predictions for κ = 0.1, with training
on κ = 0 as a function of the dimensionless transverse magnetic field
coupling parameter g. The machine was trained at κ = 0 and asked
to predict where the transition happens at κ = 0.1, by considering
where the machine is most uncertain, that is, when the probabilities
are closest p0 = p1 = 1/2. Here the ferromagnetic (paramagnetic)
phase is labeled as 0 (1).

whenever we see a new testing observation (in terms of its
8 features), we pass it through the quantum circuit, simulating
or executing it, and store its prediction. If this observation
is repeated (which, again, can happen given the nature of
the preprocessing routine), we do not run the circuit again,
but instead merely replicate the prediction in the cache. This
allows us to have a prediction for each one of the observations
in the testing datasets, without having to simulate or execute
the quantum algorithm that many times. Indeed, this is very
important for resource optimization, in terms of simulation
time or hardware calls for execution.

V. MACHINE LEARNING THE PHASE DIAGRAM
OF THE ANNNI MODEL WITH QNN

Our aim is to understand whether transfer learning is
possible using QNN. More specifically, all our training data
consist of κ = 0 and we use that to predict phases at re-
gions where κ � 0. This is particularly relevant since for
κ = 0 the model is analytically solvable, pointing out that a
transition occurs at g ≈ 1. We highlight that for κ = 0 we
have only two phases: either the ferromagnetic (“phase 0”)
or the paramagnetic (“phase 1”). However, when κ � 0 the
ANNNI Hamiltonian also leads to a third phase, the antiphase
(“phase 2”), not contained in the training data. In particular,
for κ � 0.5, we are in a region where typically only phases 1
and 2 are noticeable as the floating phase is too narrow for the
small chains we investigated, in accordance with [54]. So, the
best the classifier algorithm can do is to output 1 if the phase is
indeed 1, and not 1 otherwise, which is interpreted as 2, since
the classifier is binary.

As discussed above, for an observation point, both the
classical and quantum classifier algorithms will return a nor-
malized probability vector (p0, p1) where the assigned phase
will correspond to the component with the largest value. As
typical with such algorithms, to determine when we are facing
a transition, we plot both the probability components and
check when they cross, as shown in Fig. 4. As can be seen
in Fig. 5, using this approach, the QNN algorithm recovers
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FIG. 5. Phase diagrams (plotted in terms of the dimensionless
coupling constants g and κ) produced with diverse (Q)ML algorithms
when trained only with κ = 0: KNN trained with raw data (blue
circles); KNN trained with the same preprocessed data as the QNN—
fair comparison (black squares); QNN (red triangles), and two
different analytical solutions: Ising (solid blue line) and BKT (dashed
orange line). All different methods recover the ferro/paramagnetic
and paramagnetic/BKT transitions qualitatively well, although, as
quantitatively expressed in Table I, the QNN solution yields the
smallest MAE and MSE with relation to the analytical approxima-
tion, thus being an overall better solution (see main text for more
details).

the left part (κ < 0.5) of the phase diagram, corresponding to
the ferromagnetic/paramagnetic transition, very successfully.
The precise prediction also holds as we approach the critical
point at κ = 0.5 and γ = 0 at which a new antiphase appears.
However, as we start to increase γ the approximated solutions
in (2) and (3) and the QNN predictions start to differ more
significantly, even though they remain qualitatively similar.

To benchmark our results we have compared the QNN
solution with that obtained by the classical KNN algorithm.
As can be seen in Fig. 5, the solution is significantly worse
when the classical algorithm is fed with the same preprocessed
data as those given to the quantum algorithm. However, if the
classical algorithm uses the complete data (not preprocessed)
it reaches a similar success in the prediction, even though
it is smaller as quantified by shown ahead. Importantly, the
quantum classifier performs significantly better at the critical
point (g = 0, κ = 1/2).

TABLE I. Performance [average 	1 norm and 	2 norm with re-
lation to the analytical approximations given by Eqs. (2) and (3)]
computed for the three main phases and comparing QNN with KNN
(using both the preprocessed and complete training data). For the
classical KNN we used k = 7 and the Euclidean distance, which
were found to be the best hyperparameter values using 10-fold cross-
validated grid search. The best result is in boldface.

Technique Average 	1 norm Average 	2 norm

QNN (preprocessed) 0.0508(0) 0.0036(6)
KNN (preprocessed) 0.1088(1) 0.0164(1)
KNN (raw data) 0.0509(5) 0.0043(1)

VI. DISCUSSION

The detections of phase and phase transitions of the
ANNNI model with both classical as well as quantum
heuristic approaches have already been done. In Ref. [36],
Canabarro et al. showed the possibility of applying both
unsupervised and supervised classical techniques to achieve
good results. The problem was satisfactorily well solved with
unsupervised learning, reducing the use of supervised learn-
ing to a validation step. Therefore, they tried using transfer
learning of diverse supervised learning algorithms trained
solely on nearest-neighbor interactions exhibiting the capacity
to discern a novel phase emerging upon the introduction of
next-nearest-neighbor interactions. They showed that some of
the learners could unveil the Ising as well as the antiphase
and the paramagnetic phases. This amalgamation effectively
groups the BKT and CIC transitions together, showcasing the
robustness of our method. On the other hand, in Ref. [40],
Monaco et al. used quantum convolutional neural networks
by training only on marginal points of the phase diagram
represented by integral models. Our approach in this paper
is both innovative and complementary. We use a new and sim-
pler quantum machine learning algorithm and apply transfer
learning, we test some ideal preprocessing of the data to fit in
a real quantum computer, and we train only on κ = 0, testing
on the remaining phase diagram to show the viability of the
technique as we discuss here.

We show that with the right preprocessing of the data, the
quantum nearest neighbor (QNN) algorithm proposed in [41]
allows for the classification of phases in a nontrivial Hamil-
tonian model. Using two-point correlation functions obtained
by exact diagonalization on a small N = 12 spins lattice, we
could reproduce the main phases of the axial next-nearest-
neighbor Ising (ANNNI) model. More precisely, using as
training data only the ferromagnetic and paramagnetic phases,
we could detect a transition for an antiphase by increasing
the interaction strength of the next-nearest neighbor. This is
a relevant instance of transfer learning, since using analyti-
cal data extracted from the exactly solvable transverse field
Ising model, we could explore a nonintegrable region of the
Hamiltonian model. This makes the approach computation-
ally cheaper as access to training labels is one of the major
bottlenecks for any supervised method.

To benchmark the quality of our quantum machine learning
model, we compared it with approximated expressions ob-
tained by various methods. The solution provided by QNN
works very well in the ferromagnetic and paramagnetic re-
gions, offering a less precise but still qualitatively reasonable
solution as we enter the antiphase. Arguably, however, to as-
sess the quality of a quantum learning method, it is reasonable
to compare its performance with that of classical learning
algorithms. We performed this comparison, and the results are
quite favorable to the quantum approach. Even when we feed
the original data (without any preprocessing, a necessary step
to reduce the number of qubits in the quantum realization) to
classical classifiers, the quantum classifier remains superior,
as can be seen in Fig. 5 and Table I. And performing the
fairest comparison, obtained when the quantum and classical
algorithms see the same preprocessed data, the accuracy of the
quantum classifier is significantly higher. Importantly, these
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performance comparisons were done on the testing data; that
is, we were really evaluating the generalization capability of
the different models, which is, after all, what matters the most
when one builds a data-driven model. Furthermore, we tuned
the classical models’ hyperparameters, to guarantee their best
performance for the comparison—namely, the values k = 7
and Euclidean distance were found to be the best ones via
10-fold cross-validated grid search.

This proof-of-principle (since it was obtained in a sim-
ulated or perfect quantum circuit) quantum advantage does
not come in terms of algorithmic complexity, but rather in
generalization and accuracy, which is of major interest in
the context of machine learning. Still, one may interpret the
advantage from a different point of view, namely that of
sample complexity [76–78]: the quantum algorithm could
find the underlying pattern reflected in the dataset with much
less information than its classical counterpart, and with better
generalization performance. As mentioned before, we can see
that as a way of reducing the dataset only to the most repre-
sentative samples and better explanatory features. Although
we focus on a particular Hamiltonian, we believe it leads to
relevant general questions: in a statistical learning theoretical
sense, how and why is such a sample complexity reduction
and consequent quantum advantage achieved? Similar ques-
tions have been addressed in recent research [79–81], and
further research along this direction, in the particular context
of QNN, might lead to new insights. Another clear path is to
understand how well the QNN classifier works in real NISQ
devices, also considering different Hamiltonian models and
increasing the number of qubits and features. In this regard,
it would be interesting to consider other data formats, such as
the classical shadows [82], efficiently encoding classical data
about quantum systems for machine learning purposes [83].

Furthermore, given that the use of machine learning tech-
niques in condensed matter physics and quantum information
is a relatively new endeavor, we are still at an exploratory
phase, since in most of the literature the main idea is to
use models where we already have a good understanding in
order to provide a proof of principle that machine learning
is a feasible and trustworthy method. Thus, the main idea of
our work (and in most of the related works in the literature)
is to benchmark the machine learning method rather than
learn about the specific model under investigation. Once we
are convinced that it works in this case, we can go ahead
and apply it to more challenging problems, such as mapping
out phase diagrams of models with complex magnetic orders
whose nature is not completely settled. This is an approach
that has been widely used in the context of classical machine
learning, but that, to our knowledge, is much less explored in
the context of quantum machine learning. Thus, a proof-of-
principle result showing that with the correct preprocessing
of data one can achieve an accuracy in classification that is
comparable to (even slightly better than) full-power (taking all
data into account) classical machine learning is an important
step. Moreover, as shown in Fig. 5, when the classical and
quantum algorithms take as input the same preprocessed data,
the quantum algorithm is significantly better than the classical
version, which indicates that in use cases in which there is
a limited number of samples and/or limited representation
of data points (for instance, ab initio data for the training of

machine learning force fields), the quantum algorithm may be
superior.

In conclusion, the QNN algorithm [41] was applied to a
concrete classification problem in the context of condensed
matter physics. By applying this method, we could achieve
a quantum model whose generalization performance was su-
perior to its classical counterparts, while using much less
information, which represents a quantum advantage in both
contexts of generalization and sample complexity. This is
the main result of this paper, which opens the way to sev-
eral discussions concerning the statistical learning theoretical
properties of the QNN model.
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APPENDIX

To make the paper as self-contained as possible, in this
section, we provide a brief description of classification tasks
in machine learning [84], followed by a presentation of the
classical KNN classifier, and the ensemble methods used in
the feature selection procedure.

1. Classification problems

In a classification problem or task, the algorithm has to
assign one out of several discrete classes to an observation,
according to a rule learned from a set of labeled (previously
classified) examples. Exemplary problems include (i) diag-
nosing a disease given many symptoms; (ii) credit decisions
based on features of the applicant; (iii) classifying an email as
“spam” or “ham (not-spam),” given its content; (iv) recogni-
tion of a handwritten digit; and (v) identification of different
phases in many-body systems.

Classification problems are addressed within the su-
pervised learning paradigm, in which a data point p is
characterized by an n-dimensional data vector xp, whose com-
ponents are xp

i with i = 1, . . . , n (which we refer to as the
features, and may be given by binary, integer, or real-valued
numbers), as well as by its respective class assignment yp

(which we refer to as the target). We say that the feature vector
belongs to the feature space X , i.e., xp ∈ X ; and the target
belongs to the target space Y . Classes, which are discrete,
are often encoded by a finite number d of positive integers,
that is, yp ∈ Y = {0, . . . , d − 1}. A particular case of inter-
est is that of binary classification, in which case d = 2 and
yp ∈ {0, 1}. Within the supervised setting, machine learning
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requires that N samples of features and their respective targets
be collected—the reason why such data points are often called
observations. Together, a set of sample observations make up
the training dataset, T = {(xp, yp)}N

p=1.
From the perspective of statistical learning theory [76], a

supervised learning problem may be posed as follows. It is
assumed that there is a process that relates the features and the
target, i.e., that determines y from x. We can mathematically
describe such a process with the so-called target function F :
X → Y .1 In principle, at least in a theory-driven approach,
it could be possible to construct F (x) from first principles.
Most often, however, the problems under consideration are
too complicated for a theoretical description to be feasible. In
such cases, we resort to a data-driven approach, which is com-
monly implemented with machine learning techniques. In this
case, the so-called hypothesis function fH,w(x) is introduced,
which is intended to approximate the theoretical process F .
One important point is that the hypothesis is parametrized by
the parameter vector w. In this setting, F is unknown, and our
job is to approximate it with fH,w; i.e., we want fH,w ≈ F .
In order to do so, we are presented with the training data
T = {(xp, yp)}N

p=1, which we assume to have been generated
by F ; i.e., yp = F (xp).

An important concept is that of a hypothesis set H, which
is the set of particular functional dependencies that we allow
the hypothesis to take. That is, it is the set of all candidate
hypotheses, so that fH,w(x) ∈ H. Since the functional depen-
dency among candidates on x is the same, it is clear that
different candidate hypotheses differ only by the parameter
vector w. It is the role of the learning algorithm to take
a hypothesis set alongside with the training data, and then
determine the values of the particular parameters such that on
the training dataset the hypothesis is as close as possible to
the real process; i.e., fH,w(xp) ≈ F (xp).2 At the end, a single
hypothesis is picked, via the determination of the particular
w. Together, the hypothesis set H and the learning algorithm
make up the so-called learning model.

Therefore, machine learning methods aim at estimating F
based on limited knowledge of it, reflected in T . In other
words, the learning algorithms try to capture the underlying
pattern of the population, based on what is observed on the
sample. Naturally, in such a scenario, one major concern is
the generalization of such an approach, i.e., how confident we
are that fH,w as trained using data from the training set will
perform well as a stand-in for F on data that was not seen in
training. This question is extensively addressed via tools of
statistical learning theory [76–78].

1To account for noisy targets, it is in fact necessary to introduce
the target distribution P(y | x). In this setting, a noisy target may
be given by a deterministic portion F (x) = E(y | x) as well as by
the noise y − F (x). If there is no noise, a special case occurs for
P(y | x) = 0 everywhere, except for y = F (x).

2Operationally, the determination of the particular w that best fits
fH,w to T is achieved via the solution of an optimization problem,
namely, the optimization of the cost function, which is an error
function, accounting for the differences between predicted targets
fH,w(xp) and actual targets yp. For details, see [77,78].

Pragmatically, solving a problem with a machine learning
approach is a good idea if the following hold:

(i) There are data available for the problem at hand; for an
empirical modeling approach such as machine learning, data
are absolutely essential. Without sample data to learn from, it
is simply impossible to apply any machine learning technique.

(ii) A pattern exists and is reflected in the sample; after
all, if there is no pattern to be learned (or, pragmatically, if the
pattern is not captured in the training dataset), not even the
best learning technique will be able to produce a good model.

(iii) A theoretical description is not available; there will
always be errors associated with a machine learning model
since it is a method to empirically estimate the true process.
Therefore, if a full theoretical description is available, its use
would be preferable, since such estimation errors would not
be present.

The aim of our work is to show that a quantum classifica-
tion algorithm can perform well in the classification of phases
of a nontrivial Hamiltonian, the ANNNI model, a problem
that fits the requirements listed above. The training data are
given by the correlations between the spins of different sites in
the network. Those features are experimentally accessible and
form the basis of any attempt to classify phases in many-body
systems, thus fulfilling the first two criteria listed above. As
for the third criterion, as discussed in Sec. II, there are no
analytical tools for witnessing phase transitions in general, a
problem that typically relies on perturbation theory, approxi-
mations, or exact diagonalization on small chains.

2. K nearest neighbors classifier

We now present the fundamentals of the K nearest neigh-
bors (KNN) classifier [84], the classical counterpart of the
QNN algorithm described in Sec. III.

Given a training dataset T = {(xp, yp)}N
p=1 and an unclassi-

fied observation xin encoding n features, the goal is to assign to
the input vector xin a given class in Y , using information from
the training data. A possible approach for such a classification
is to use some distance measure and then assign to the input
vector the class whose members are closest to it. That is the
essence of the KNN classifier, with the particularity that only
the K nearest neighbors are considered for the classification
(see Fig. 6); i.e., the input observation is predicted to belong to
the class which is the most representative among its K nearest
neighbors.

In short, the KNN algorithm proceeds via the following
steps: (1) Set the value for K (the number of neighbors to
be considered). (2) For every instance x (query example) in
the training set, (i) calculate the distance between the query
example and true output, and (ii) add the distance and the
corresponding index of the query example to an ordered col-
lection. (3) Sort the ordered collection of distances and indices
from smallest to largest (in ascending order) by the distances.
(4) Pick the first K entries from the sorted collection. (5) Get
the labels of the selected K entries. (6) Return the mode of the
K labels (classification tasks).

Apart from K , which is an obviously important hyperpa-
rameter, it is also crucial to choose an appropriate distance
metric, so that the determination of neighbors’ observations
is meaningful. Several distance metrics are possible, each
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FIG. 6. Pictorial illustration of KNN classification considering
K = 5. Based on the distances from the five training points closest
to the input test observation, this input would be classified as class 1
(green). The decision boundary (surface separating the two classes)
is also depicted.

exploring a particular aspect of the dataset structure. In this
work, we will consider the Hamming distance, which is used
when the features are encoded as binary strings or vectors. It is
defined as the number of different bits, or components, among
a pair of binary strings. For instance, taking a = 1011101 and
b = 1001001, we have dH (a, b) = 2, since only the third and
fifth components differ.

It is worth noticing that the KNN classifier is a “lazy
algorithm,” given that an explicit training procedure does not
take place—which also means that no explicit hypothesis
from a hypothesis set will be determined. In fact, each input
observation is classified at a time. This is also the case for the
quantum nearest neighbors algorithm.

We trained the KNN model using sklearn’s implementation
sklearn.neighbors.KNeighborsClassifier [75]. We ran a cross-
validated grid search to select the best values for K , while we
used the Euclidean distance for the model trained with the raw
features, and Hamming distance for the model trained with the
preprocessed, binary data.

3. Random forest and extra trees

Random forest [71] is an ensemble method used for clas-
sification tasks, consisting of a multitude of decision trees.
In the end, it outputs the most voted class of the individual
decision trees, mimicking the ancient idea behind the “wis-
dom of the crowds.” Decision tree learning consists of the
construction of a decision tree from labeled training instances.
The root is the training data itself. The branches are the output
(Boolean output) of tests for the attributes. Finally, the leaf
nodes are the estimated class. Therefore, for a given input x,
a label y is predicted after percolating from the root up to the
leaf. It must be noted, however, that an individual decision tree
algorithm is a weak learner since it produces high-bias errors.

To implement a combination of decision trees, we first par-
tition the training set into M smaller subsets B1, B2, . . . , BM

that are randomly chosen and may be repeated. If the subsets
are large enough for training a specific learner, they can be
aggregated to create an ensemble predictor. For classification
tasks, we take a majority vote on all the predictions. This
process was introduced in Ref. [73] and is called bagging, an
acronym for bootstrap aggregation, and was shown to reduce
the variance (out-of-sample error) without increasing the bias
(in-sample error) [2].

Within this context, the key idea of random forest is to
perform subsets of the features. Now, the trees randomly
choose a k number of N total features with k < N . This
bagging of features reduces the correlation between the var-
ious decision trees, contributing to better modeling. The
code employed in our work was made using the package
sklearn.ensemble.RandomForestClassifier [75], using param-
eters given by max_depth=None, n_estimators=1000.

Operationally, the calculation proceeds as follows. For
every tree in the ensemble, we traverse its internal nodes
and calculate the impurity reduction that the respective split
produces. Naturally, the impurity reduction depends on the
criterion used to measure the quality of a split. For classifi-
cation problems, the scikit-learn implementation supports the
Gini impurity and the information gain (entropy) criteria. For
this reason, even though the “impurity reduction” term is often
used, if we use the entropy criterion, we are not dealing with
a proper impurity, and should actually use the term “error
reduction.”

The impurity reduction 
ε is calculated as the difference
between the impurity before the split and after the split (which
is given by the averaged impurities of each one of the two
branches); that is, 
ε = εbefore split − εafter split. This impurity
reduction is multiplied by the proportion of observations pass-
ing through the node, which is how the average becomes
weighted. Recall that in each node we have a feature; there-
fore, the reduction is associated with a given feature. After this
procedure, we have a given score for each feature, when we
analyze a single tree. To get the final scores, we average the
scores over all trees in the ensemble. Notice that the features
that more commonly appear in the nodes will naturally have
a higher total score, which intuitively makes sense: if a given
feature appears in many nodes, and is responsible for a higher
impurity decrease, it is a “better” feature, for the purpose of
classification.

As mentioned in Sec. IV, we employed a modification of
random forest, known as “extremely randomized trees” (“ex-
tra trees”). The major difference is that, in the case of extra
trees, additional randomness is induced in the way of comput-
ing the tree splits: instead of using a fixed better-separating
threshold (which is the case for traditional random forest),
we randomly generate thresholds for each candidate feature
for the split. Introduced in [72], the algorithm yields smaller
variance, although the bias is often slightly increased. But, for
the purpose of feature selection (which is how we employed
this algorithm), it is often a better choice, since the extra
randomness allows us to choose the features by their actual
discriminative power, avoiding the undesired effect of a fixed
threshold.
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FIG. 7. An illustration of the QNN quantum circuit for a particular dataset of N = 4 observations and n = 4 features. We plot a smaller
circuit here for the sake of space. The test point is given by the binary string 0010. Each barrier in the plot indicates an important step of the
quantum algorithm (as described in Sec. III), after which the quantum state is the one given respectively by Eqs. (6), (7), (10), (12), and (14).
The measurement yields the probabilities as described in Eqs. (15) and (16).

In practice, once we have an importance score for each
feature, we can pick the ones that are the most important. We
use the implementation from scikit-learn [75], and chose the
4 most important features, among the 198 original ones.

4. Illustration of the quantum circuit

In Fig. 7 the QNN circuit is illustrated for the following
training dataset, consisting of N = 4 observations of n = 4
binary features:

X y
0 0 0 0 0
0 0 0 1 0
1 1 1 0 1
1 1 1 1 1

and the test observation 0010. The superposition state of all
the training data points [Eq. (5)] is represented by the black-
box state preparation routine given by the initialize Qiskit
instruction. In practice, this instruction is decomposed into
elementary gates during the circuit transpilation.

Notice how the full circuit for this problem instance uses
2n + 2 = 10 qubits and 2 classical registers and has a depth of
13 (which considers the state preparation routine as depth 1;
in practice, the superposition construction takes time O(Nn)
[65]). Indeed, that matches the O(n) depth expected for this
circuit, which mainly arises from the application of the U
operator [Eq. (11)], which demands 2n sequential gates.

Finally, we chose to illustrate the quantum circuit for this
simpler problem instance instead of illustrating one of the
actual quantum circuits built in the study, because those have
18 qubits, which would be much more difficult to visualize.
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