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Optimizing control fields for diabatic protocols in the presence of noise
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Quantum control techniques are employed to perform quantum algorithms inspired by the adiabatic quantum
computing protocols in the presence of noise. First, we analyze the entanglement protocol for two qubits. In this
case, we find that this protocol is very robust against noise. The reason behind this fact is related to the chosen
Hamiltonians, where the ground state of the initial Hamiltonian is not affected by the noise. The optimal control
solution, in this case, is to leave the system in its ground state and apply a fast pulse to entangle the qubits at
the end of the time evolution. Second, we probe a system composed of three qubits, where the goal is to teleport
the first qubit to the third qubit. In this case, the ground state of the system does not share the same robustness
against noise as in the case of the entanglement protocol. To circumvent this problem, we propose the inclusion
of a local control field that can drive the system to an intermediate state, which is more robust against noise in
comparison to other states. The target state is also achieved by a fast pulse close to the final time. We find that
this approach provides a significant gain and promises to improve the realization of quantum computing in the
so-called noisy intermediate-scale quantum devices.

DOI: 10.1103/PhysRevA.109.052622

I. INTRODUCTION

Quantum computing holds the promise of surpassing the
performance of its classical counterpart, leading to a new era
of technological advances. However, there exist severe bot-
tlenecks to performing quantum computing with full power,
the main one concerning the intrinsic noise of the quantum
hardware, which constrains the number of qubits that can
be used in practice. Nevertheless, quantum hardware with
some tens of qubits is accessible and a great amount of effort
has been devoted to operating these currently available ma-
chines, known as noisy intermediate-scale quantum (NISQ)
devices [1].

Among the classes of algorithms that can run on NISQ
devices are the adiabatic quantum algorithms, which are based
on a combination of time-independent Hamiltonians [2,3].
Through the adiabatic theorem, the Hamiltonian adiabati-
cally switches from the so-called driving Hamiltonian, whose
ground state can in principle be easily prepared, to the prob-
lem Hamiltonian, whose ground state encodes the solution
of the computational task. Adiabatic quantum algorithms use
the fact that a quantum system remains in its instantaneous
eigenstate given that the evolution is carried out sufficiently
slowly (adiabatic theorem) [4]. The drawback of this approach
is the required time to keep the adiabatic theorem valid, which
can be too long for real applications. Furthermore, the final
ground state can be drastically affected because of the ac-
tion of noise for sufficiently long times. Several alternatives
have been proposed to attack this problem, such as the lo-
cal adiabatic evolution or the use of counterdiabatic drivings
[5–10]. Another approach relies on the applications of optimal
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control theory (OCT) to adiabatic inspired quantum algo-
rithms [11–15]. In this approach, the framework of the driving
and problem Hamiltonians is kept, but the dynamics is no
longer adiabatic, meaning that the condition for the adiabatic
theorem generally does not hold. This type of quantum com-
putation has been called diabatic quantum annealing, where
the time evolution does not necessarily go along with the
instantaneous energy eigenstates and diabatic transitions are
allowed [8].

Recently, we investigated the problem of finding an un-
known target state using OCT for the teleportation protocol
built for diabatic quantum annealing, without taking into ac-
count dissipative effects [15]. For bounded controls, wherein
constraints are imposed on the amplitude of the control func-
tions, we identify an optimal solution, called the double-bang
solution, characterized by simply setting both control func-
tions at their maximum values during the entire evolution
under certain conditions. We successfully applied this solu-
tion to the teleportation protocol considering three qubits,
where the goal is to teleport the first qubit to the third qubit
[16]. Also, we utilized the Krotov method for open quan-
tum systems to derive optimized controls for manipulating
qubit or qutrit systems surrounded by an external environ-
ment [17]. Two distinct procedures to obtain the controls
were employed: (i) the nonunitary optimization, where the
noise is taken into account during the optimization process,
and (ii) the unitary optimization, where the optimization is
performed for a noise-free system. Subsequently, the resulting
controls from unitary optimization were probed considering
environmental noise. Both procedures were contrasted, and
we found that controls derived from nonunitary optimization
demonstrated superior performance compared to those from
unitary optimization for state preparation. However, this su-
periority does not hold for quantum gate implementation in
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scenarios where noise is modeled by the Markovian master
equation.

In this paper we apply OCT techniques to diabatic quantum
annealing protocols operating in the presence of noise. The
controls obtained by OCT can perform the computational
task faster than the usual adiabatic quantum computing. Ini-
tially, we consider the entanglement protocol designed for two
qubits. Intriguingly, our findings reveal the robustness of this
protocol against noise, meaning that it is possible to attain the
entangled state for arbitrarily high values of the noise strength.
The reason behind this fact is related to the chosen Hamiltoni-
ans, where the ground state of the driving Hamiltonian is not
affected by the noise. The optimized control solution dictates
the maintenance of the system in its ground state, followed by
the application of a fast pulse to promote the entanglement of
the qubits at the end of the time evolution.

Subsequently, we consider the teleportation protocol,
where the ground state of the system is not immune to the
influence of noise, differing from the case of the entanglement
protocol. To enhance the performance of this protocol, we pro-
pose the inclusion of an extra control term in the Hamiltonian
that can drive the system to an intermediate state, which is
less affected by the noise in comparison to other states. As
in the entanglement protocol, the desired outcome of the tele-
portation protocol is realized by a fast pulse at the end of the
time evolution. We find that this approach yields a significant
reduction in the mean value of the problem Hamiltonian at
the end of the protocol, therefore approaching its ground state.
The concept of Hamiltonian engineering, aimed at mitigating
the impact of noise, has also been applied to nitrogen-vacancy.
centers in diamond [18] and in nuclear spins in quantum dots
[19] with great success.

II. ENTANGLEMENT PROTOCOL

We start by considering two independent control functions,
which are related to two time-independent Hamiltonians: H1

(driving) and H2 (problem) [15]. The system is initially pre-
pared in the ground state of H1, and the desire is to reach
the ground state of H2 at the final time. The system evolves
according to the total time-dependent Hamiltonian

H (t ) = ε1(t )H1 + ε2(t )H2, (1)

where ε1(t ) and ε2(t ) are the two independent dimensionless
control functions.

We analyze the problem of two qubits, initially in a sep-
arable state, that should evolve to an entangled state at a
given final time. In this case, the driving and the problem
Hamiltonians are given by

H1 = ω0
(
σ (1)

z + σ (2)
z

)
, (2)

H2 = ω0
(
σ (1)

y σ (2)
y − σ (1)

z σ (2)
z

)
, (3)

where σ
( j)
m is the Pauli spin matrix in the m direction acting on

the jth qubit, e.g., σ (1)
z = σz ⊗ 1. Hereafter, we use the system

of units where h̄ = 1. The ground states of the Hamiltonians
H1 and H2 are given by

|φ0〉 = |11〉, (4)

|χ0〉 = 1√
2
(|00〉 + |11〉), (5)

respectively, where |φ0〉 is the separable initial state and |χ0〉
is the desired entangled state to be reached at the final time
of evolution. Both ground states have the same eigenenergy
E0 = −2ω0. Under unitary dynamics (no decoherence
present), the target can be achieved by the adiabatic approach
with ε1(t ) = 1 − ε2(t ) [15].

The nonunitary dynamics is described by the Markovian
master equation for the density matrix ρ(t ),

dρ(t )

dt
= L[ρ], (6)

where the Liouvillian that corresponds to physical solutions
has the Lindblad form given by

L[ρ] = −i[H, ρ] + 1

2

∑
j

γ j (2LjρL†
j − L†

j L jρ − ρL†
j L j ),

(7)
where the first term on the right-hand side represents the
unitary evolution, while the second term accounts for the
dissipative effects. The Lj are the Lindblad operators and γ j

are the corresponding decay rates.
By following the variational control approach for open

quantum systems described in Ref. [20], we are led to a set of
equations that must be self-consistently solved. First, we have
to solve Eq. (6) considering the initial condition ρ(0) = ρ0 for
a given initial state ρ0 = |φ0〉〈φ0|. Also, we have to solve the
equation

dχ (t )

dt
= L†[χ ], (8)

where L† is the adjoint of the superoperator given in Eq. (7)
and the evolution considers the condition χ (T ) = H2ρ(T )H2

at the final time t = T , which is obtained through the solu-
tion of Eq. (6). Finally, the controls are updated through the
expression

ε
(k)
j (t ) = ε

(k−1)
j (t ) + Im

[
Tr

(
χ (t )

λ j
[Hj, ρ(t )]

)]
(9)

for j = 1, 2, where the index k is related to the kth step within
the self-consistent method. The λ j is a chosen constant that is
used together with the number of steps of the self-consistent
method to supervise the convergence of the controls ε j (t ). By
solving the set of equations (6)–(9) we can numerically find
the controls that maximize the total functional, consequently
minimizing the mean energy of the problem Hamiltonian
〈H2〉(T ). This approach can be applied to all types of prob-
lems inspired by the adiabatic quantum computation, where
the goal is to obtain the ground state of the problem Hamilto-
nian at the end of the dynamics. Usually, this procedure works
with high accuracy for closed quantum systems and we would
like to investigate the role of dissipative effects.

Here we consider two different types of Lindblad oper-
ators, related to the dephasing channel and the amplitude-
damping channel, which are archetypal noisy channels [21].
For two qubits, the sum in Eq. (7) contains the terms j = 1, 2
and the Lindblad operators are either L1 = σz ⊗ 1 and L2 =
1 ⊗ σz (dephasing) or L1 = σ− ⊗ 1 and L2 = 1 ⊗ σ− (ampli-
tude damping), where σ− = (σx − iσy)/2. Figure 1 shows the
mean value of the problem Hamiltonian 〈H2〉(T ) evaluated
at the end of the evolution as a function of the decay rate
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FIG. 1. Mean value of the problem Hamiltonian 〈H2〉(T ) eval-
uated at the end of the evolution for the entanglement protocol
considering (a) dephasing and (b) amplitude-damping errors as a
function of the decay rate γ using the control function obtained
from the unitary optimization (blue dash-dotted lines) and nonunitary
optimization (orange solid lines).

γ1 = γ2 = γ for both types of Lindblad operators, the de-
phasing [Fig. 1(a)] and the amplitude damping [Fig. 1(b)].
It is noteworthy that the mean value has a percent error of
less than 1% for the considered range of values of γ when
the optimization is evaluated using the nonunitary dynamics
(orange solid lines in Fig. 1). In contrast, the results for
〈H2〉(T ) obtained from the unitary optimization diverge from
the exact solution as the decay rate increases (blue dotted
lines in Fig. 1). In this case, the control fields are obtained
for the optimization carried out with γ = 0, while the mean
value 〈H2〉(T ) is evaluated through the time evolution given
by Eq. (6) for each different value of γ .

To understand the discrepancy between the unitary and the
nonunitary optimization, Fig. 2 shows the optimized controls
considering the unitary (γ = 0) and the nonunitary optimiza-
tion γ = 0.1ω0, for both dephasing and amplitude-damping
types of noise. The fields obtained from the unitary opti-
mization [Fig. 2(a)] are smooth and have a smaller amplitude
than the fields obtained from the nonunitary optimization
[Figs. 2(b) and 2(c)]. Moreover, the fields resulting from the
nonunitary optimization are close to zero in most of the evolu-
tion time. Only at the end of the evolution do the control fields
behave as strong pulses that can achieve the desired target
state. Here it is worth mentioning that a completely equivalent
but faster solution would be the application of the same pulses
of Figs. 2(b) and 2(c) closer to the initial time.

To further assess the behavior of these controls, Fig. 3
exhibits the population dynamics of the system. Initially,
only the state |ψ1〉 = |11〉 is populated. Figure 3(a) presents
the dynamics with γ = 0.1ω0 considering the control fields
obtained from the unitary optimization. In this case, the pop-
ulation of the state |00〉 increases, while the population of
the state |11〉 decreases as a function of time. At the final
time of evolution, the populations of both states |00〉 and
|11〉 approach 0.5, but due to the dissipation the desired value
cannot be perfectly obtained. Figures 3(b) and 3(c) show the
dynamics in the presence of decoherence (γ = 0.1ω0) with
the control fields obtained from the nonunitary dynamics. In
contrast to Fig. 3(a), the system remains in the initial state

FIG. 2. Optimized control functions ε1 (blue solid lines) and ε2

(orange dashed lines) obtained with the objective of minimizing the
value of 〈H2〉(T ). (a) Unitary optimization, which does not depend
on the type of noise. Also shown are the optimized control functions
for a fixed decay rate γ = 0.1ω0 considering the (b) dephasing and
(c) amplitude-damping errors.

|11〉 for as long as possible, while other states are not pop-
ulated. Only at the end of the time evolution, the state |00〉
is populated and the target state is reached with very high
accuracy at the final time. This result is related to the fact that
the nonunitary optimization is searching for optimal control

FIG. 3. (a) Population of states as a function of time for the
entanglement protocol resulting from the unitary optimization. Also
shown is the population of states as a function of time for the entan-
glement protocol with a fixed decay rate γ = 0.1ω0 resulting from
nonunitary optimization for the (b) dephasing and (c) amplitude-
damping noises. The population of states |00〉 and |11〉 are shown
by blue solid and orange dash-dotted lines, respectively.
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functions that minimize the effects of noise. One possible way
to accomplish such a task is to leave the system in states
that are less affected by the dissipation. In the present case,
the initial state is free from dissipation. After all, it does not
suffer from the spontaneous decay (amplitude-damping noise)
or dephasing effects, because it is a separable state. Therefore,
in the dissipative case, the optimal controls are such that they
leave the system essentially unperturbed up to very close to
the final evolution time. Then the controls act with a large
amplitude to perform the desired transition in a short time,
thus diminishing overall dissipative effects.

III. TELEPORTATION PROTOCOL

As a second instance of the application of OCT to improve
algorithms based on the adiabatic quantum computation, we
consider the teleportation protocol. In this protocol, there are
three qubits whose dynamics are associated with the driving
Hamiltonian

H1 = −ω0
(
σ (2)

x σ (3)
x + σ (2)

z σ (3)
z

)
, (10)

for which the ground state is twofold degenerate |φ(1)
0 〉 =

|0〉 ⊗ |�〉 and |φ(2)
0 〉 = |1〉 ⊗ |�〉, where |�〉 is a Bell state

|�〉 = (|00〉 + |11〉)/
√

2. The problem Hamiltonian is given
by

H2 = −ω0
(
σ (1)

x σ (2)
x + σ (1)

z σ (2)
z

)
, (11)

whose ground state is also a twofold-degenerate state with
energy E0 = −2ω0 given by |χ (1)

0 〉 = |�〉 ⊗ |0〉 and |χ (2)
0 〉 =

|�〉 ⊗ |1〉.
This protocol aims at teleporting the information initially

encoded into the first qubit to the third qubit at the final time
of evolution, which is equivalent to a SWAP gate. The initial
state can be chosen as any linear combination of states |χ1

0 〉
and |χ2

0 〉 without loss of generality [16]. In this particular case,
the initial state is a linear combination of entangled states that
are tricky to initially prepare without error [22]. Therefore, we
are assuming that these states are perfectly prepared, which
differs from the current state of art. This type of error would
lead to a reduction in the performance of the optimization
procedure depending on the magnitude of the initialization
error. Interestingly, there are some advances in this direction
using OCT, but this approach is beyond the scope of the
present work [23,24].

As already discussed in Ref. [16], one-qubit gates can be
obtained by the unitary transformation of the driving Hamil-
tonian H ′

1 = UGH1U
†
G, where UG is the one-qubit gate acting

on the third qubit, which can be obtained by local magnetic
fields (the same idea can be generalized to implement two-
qubit gates; see [16] for more details). To describe dissipative
effects, we choose independent Lindblad operators given by
Li = s(i), where i = 1, 2, and 3 is the index related to the qubit
that the operator is acting on it, e.g., the Lindblad operator
acting on the first qubit is L1 = s ⊗ 1 ⊗ 1, where s = σ− =
|1〉〈0| for amplitude damping and s = σz for dephasing.

The mean values 〈H2〉(T ), resulting from application of
the OCT to the teleportation protocol, for the nonunitary and
the unitary optimization for both dephasing and amplitude
damping as a function of the decay rate are shown in Fig. 4.

FIG. 4. Mean value of the problem Hamiltonian 〈H2〉(T ) eval-
uated at the end of the evolution for the teleportation protocol
considering (a) dephasing and (b) amplitude-damping errors as a
function of the decay rate γ . The mean value of 〈H2〉(T ) evaluated
for two-control Hamiltonians of the type of Eq. (1) obtained from the
unitary and nonunitary dynamics is shown by the blue dash-dotted
and orange solid lines, respectively.

These results convey the message that the nonunitary opti-
mization does not improve the mean value 〈H2〉(T ) obtained
through the unitary optimization by a large factor, as pre-
viously found for the entanglement protocol. The respective
control functions are shown in Fig. 5 resulting from the uni-
tary optimization [Fig. 5(a)], nonunitary optimization with
dephasing [Fig. 5(b)], and nonunitary optimization with am-
plitude damping [Fig. 5(c)]. For the teleportation protocol, the
nonunitary optimization yields control functions that achieve
amplitudes that are ten times larger than the amplitude of the

FIG. 5. Optimized two-control functions ε j obtained for the tele-
portation protocol using the Hamiltonian described in Eqs. (10) and
(11). (a) Unitary optimization (γ = 0). Also shown are the optimized
two-control functions for a fixed decay rate γ = 0.1ω0 considering
the (b) dephasing and (c) amplitude-damping errors. The orange
dashed lines correspond to ε1(t ) and the blue solid lines correspond
to ε2(t ).
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FIG. 6. (a) Population of states as a function of time for the
teleportation protocol considering two-control functions, resulting
from the unitary optimization. Also shown is the population of states
as a function of time for the teleportation protocol with a fixed decay
rate γ = 0.1ω0 resulting from the nonunitary optimization for the
(b) dephasing and (c) amplitude-damping noises. The populations
of states |000〉 and |011〉 are given by blue solid lines and orange
dash-dotted lines, respectively, and the populations of states |101〉
and |110〉 are specified by green dash-dotted lines and red solid lines
with open circles.

unitary optimized control fields. Also, the nonunitary control
fields are given by pulses at the beginning and at the end
of the dynamics, in contrast to the always-on form of the
control fields obtained in the unitary optimization. Figure 6
shows the population dynamics corresponding to the control
functions of Fig. 5. We use one of the twofold-degenerate
ground states of the Hamiltonian H1 as the initial state, which
is given by |ψ (0)〉 = 1√

2
|0〉 ⊗ (|00〉 + |11〉), while the corre-

sponding teleported state is |ψ (T )〉 = 1√
2
(|00〉 + |11〉) ⊗ |0〉.

In the absence of noise and with the unitary-optimized control
functions, the occupation of the state |011〉 smoothly de-
creases while increasing the amplitude of the state |110〉; also
the state |101〉 is populated during the dynamics [Fig. 6(a)]. In
the presence of the dephasing noise and with the nonunitary-
optimized control functions, the occupation of the states |000〉
and |110〉 rapidly increases while decreasing the population
of the state |011〉. The populations of those three states
are kept almost constant during the dynamics until the final
pulselike portion of the controls starts to act, as shown in
Fig. 5(b). In this case, the occupation of the states |000〉
and |011〉 rapidly decreases and the population of the state
|110〉 increases to reach the target state. A similar behavior
happens for the amplitude-damping type of noise, as can be
observed in Fig. 5(c). Although the unitary and nonunitary
optimizations use different pathways to achieve the lowest
mean value 〈H2〉(T ), the net effect found for the teleportation
protocol is small, in contrast to the entanglement protocol
case. This result can be justified by the fact that the nonunitary

TABLE I. Mean value of the problem Hamiltonian 〈H2〉(T ) for
different types of local fields H3 included in the Hamiltonian of
Eq. (12).

H3 Dephasing Amplitude damping

σ (1)
x −1.911ω0 −1.752ω0

σ (2)
x −1.653ω0 −1.780ω0

σ (3)
x −1.905ω0 −1.821ω0

σ (1)
y −1.655ω0 −1.730ω0

σ (2)
y −1.655ω0 −1.730ω0

σ (3)
y −1.655ω0 −1.730ω0

σ (1)
z −1.953ω0 −1.959ω0

σ (2)
z −1.653ω0 −1.935ω0

σ (3)
z −1.933ω0 −1.950ω0

optimization cannot avoid the effects of noise due to the sym-
metry of the proposed Hamiltonian.

This last result suggests that some improvement may be
achieved by changing the structure of the system, for instance,
by adding an extra term in the Hamiltonian. For the teleporta-
tion protocol, we propose a new Hamiltonian given by

H = ε1(t )H1 + ε2(t )H2 + ε3(t )H3, (12)

where the extra Hamiltonian is chosen as a local field H3 =
σ (k)

m with m = x, y, or z and k = 1, 2, or 3. This extra term
must be added to the self-consistent method; therefore j = 1,
2, and 3 in Eqs. (6)–(9). We have tested all combinations of
local fields and obtained the results presented in Table I, which
shows 〈H2〉(T ) for each type of H3 for both dephasing and
amplitude-damping noise considering γ = 0.1ω0. The local
field that produces the smallest mean value for the problem
Hamiltonian is H3 = σ (1)

z for both dephasing and amplitude
damping.

Figure 7 shows the mean value 〈H2〉(T ) as a function
of the decay rate for the amplitude-damping and dephasing
types of noise considering the extra Hamiltonian. One can see

FIG. 7. Mean value of the problem Hamiltonian 〈H2〉(T ) eval-
uated at the end of the evolution for the teleportation protocol
considering (a) dephasing and (b) amplitude-damping errors as a
function of the decay rate γ . Here the optimized control functions
were obtained considering H3 = σ (1)

z in the Hamiltonian of Eq. (12).
The unitary and nonunitary optimizations are shown by the blue
dash-dotted and orange solid lines, respectively.
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FIG. 8. Optimized three-control functions ε j obtained for the
teleportation protocol using H3 = σ (1)

z in the Hamiltonian of
Eq. (12). (a) Unitary optimization (γ = 0). Also shown are the
optimized three-control functions for a fixed decay rate γ = 0.1ω0

considering the (b) dephasing and (c) amplitude-damping errors.
The blue solid lines correspond to ε1(t ), the orange dashed lines
correspond to ε2(t ), and the green dash-dotted lines correspond
to ε3(t ).

that the mean value 〈H2〉(T ) evaluated with the control fields
obtained from the nonunitary optimization is smaller than the
one calculated from the unitary optimization. For γ = 0.1ω0,
〈H2〉(T ) = −1.95ω0 for the nonunitary optimization, which
is very close to the minimum value of −2ω0, while the mean
value 〈H2〉(T ) = −1.7ω0 for the unitary optimization, when
three Hamiltonians are taken into account. This result can
be understood through the analysis of the control fields and
population dynamics. The OCT finds controls that have pulses
at the beginning and at the end of the time evolution as optimal
solutions for both cases, the dephasing [Fig. 8(a)] and the
amplitude-damping [Fig. 8(b)] types of noise. For the uni-
tary optimization, the control functions drive the initial state
|ψ (0)〉 = 1√

2
|0〉 ⊗ (|00〉 + |11〉) to a linear combination of the

states |000〉, |011〉, |101〉, and |110〉, as shown in Fig. 9(a).
In contrast, for the nonunitary optimization, the pulses pro-
mote a fast transition from the initial state |ψ (0)〉 = 1√

2
|0〉 ⊗

(|00〉 + |11〉) to the intermediate state |ψI〉 = |110〉, as shown
in Figs. 9(b) and 9(c). In this case, only the third qubit is
affected by the amplitude-damping noise, which drastically
reduces the error caused by the noise. At the end of the time
evolution, the pulses transform the intermediate state into the
teleported state.

Such results show that an appropriate inclusion of an extra
local Hamiltonian can improve the efficiency of the optimiza-
tion because different pathways can be accessed. As proof
of the robustness of the inclusion of the extra Hamiltonian
approach, we evaluate the average of the mean value of the
problem Hamiltonian 〈H2〉(T ) considering a myriad of differ-
ent states that must be teleported from the first to the third

FIG. 9. (a) Population of states as a function of time for the
teleportation protocol considering three-control functions resulting
from the unitary optimization. Also shown is the population of states
as a function of time for the teleportation protocol with a fixed
decay rate γ = 0.1ω0 resulting from the nonunitary optimization for
(b) dephasing and (c) amplitude-damping noises. The populations
of states |000〉 and |011〉 are given by blue solid lines and orange
dash-dotted lines, respectively, and the populations of states |101〉
and |110〉 are specified by green dash-dotted lines and red solid lines
with open circles.

qubit. This average is evaluated according to the formula

〈H2〉 = 1

N

N∑
i=1

Tr[ρi(T )H2], (13)

where ρi(T ) is the solution of Eq. (6) considering the initial
state ρi(0) = |ψi〉〈ψi|, where |ψi〉 = (αi|0〉 + βi|1〉) ⊗ |�〉 is
a particular initial state from a set of N states. The complex
numbers αi and βi are random numbers generated through
the normal distribution and this procedure produces a proper
random pure state [25,26] (see the Appendix for details). In
Fig. 10 we plot the average of the mean value of the problem
Hamiltonian as a function of the decay rate for N = 124

states, considering the optimized fields previously found for
the initial state |ψ (0)〉 = 1

2 (|0〉 + |1〉) ⊗ (|00〉 + |11〉). The
averages of the mean values of the problem Hamiltonians
denoted by 〈H2〉3 and 〈H2〉2 are evaluated considering the
total Hamiltonian with or without the extra term, respectively.
One can see that the mean value for H2 evaluated considering
the extra term 〈H2〉3 has a much better performance than
〈H2〉2. For example, 〈H2〉3 = −1.95ω0 and 〈H2〉2 = −1.65ω0

for dephasing and 〈H2〉3 = −1.96ω0 and 〈H2〉2 = −1.71ω0

for amplitude damping, when γ = 0.1ω0.
In Figs. 8(b) and 8(c) one can notice that the optimized

control functions behave as short pulses with high amplitude.
This characteristic can be challenging to implement exper-
imentally; therefore, we investigate the role of limiting the
amplitude of the control functions. To perform such a task,
we include a condition for the amplitudes of the control
functions to be bounded in the interval [−εb, εb] by enforcing
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FIG. 10. Average mean value of 〈H2〉(T ), evaluated from
Eq. (13) considering N = 124 random initial states, as a function of
the decay rate γ . These random states are built in such a way as to
uniformly cover the Bloch sphere relative to the first qubit. Results
are plotted for (a) dephasing and (b) amplitude-damping types of
error considering the average of the mean values 〈H2〉3 (green solid
lines) and 〈H2〉2 (magenta dash-dotted lines) evaluated for three- and
two-control functions.

the value of the corresponding limit whenever the controls
transcend the bounds. In this case, if the control function
ε j (t ) for j = 1, 2, and 3 exceeds one of the bounds −εb

or εb in a certain time interval, its value is set equal to the
crossed bound in this same time interval during the whole
self-consistent calculation. In Fig. 11 we plot the control
functions considering εb = 10 for both dephasing [Fig. 11(a)]
and amplitude damping [Fig. 11(b)], when γ = 0.1ω0. One
can see in Fig. 11 that the control functions are also pulses
limited to εb = 10 extended for a larger window of time.
This result is in agreement with the area theorem [27] that
claims that the area of the pulse must be constant to perform

FIG. 11. Optimized three-control functions ε j obtained for the
teleportation protocol using H3 = σ (1)

z in the Hamiltonian of
Eq. (12), considering the controls bounded in the interval [−εb, εb],
where εb = 10. The optimized three-control functions are plotted
for a fixed decay rate γ = 0.1ω0 considering the (a) dephasing and
(b) amplitude-damping errors. The blue solid lines correspond to
ε1(t ), the orange dashed lines correspond to ε2(t ), and the green
dash-dotted lines correspond to ε3(t ).

FIG. 12. Mean value of the problem Hamiltonian 〈H2〉(T ) eval-
uated at the end of the evolution for the teleportation protocol
considering (a) dephasing and (b) amplitude-damping errors as a
function of the decay rate γ . Here the results are obtained using
control functions that are bounded within [−εb, εb], where εb = 10
(orange solid lines with open circles) and εb = 20 (blue solid lines
with crosses).

the transition between the states. In Fig. 12 the mean value
〈H2〉(T ) is shown as a function of the decay rate for two
different bound values εb = 10 and 20. These results show
that the performance of the minimization of 〈H2〉(T ) is not
drastically affected by imposing the limits on the amplitude of
the control functions. For example, 〈H2〉(T ) = −1.91ω0 is the
worst scenario for γ = 0.1ω0, where εb = 10 for dephasing.
In comparison to the results without the limiting condition of
Fig. 7(a), we have 〈H2〉(T ) = −1.95ω0 for γ = 0.1ω0 and for
an amplitude of the control functions that can be seven times
larger than εb = 10 [see Fig. 8(b)].

Another aspect that is related to the area theorem concerns
the time duration of the control functions. In Fig. 13 we show

FIG. 13. Optimized three-control functions εi obtained for the
teleportation protocol using H3 = σ (1)

z in the Hamiltonian of Eq. (12)
considering a time evolution up to T = 0.2τ and εb = 10. The op-
timized three-control functions are plotted for a fixed decay rate
γ = 0.1ω0 considering the (a) dephasing and (b) amplitude-damping
errors. The blue solid lines correspond to ε1(t ), the orange dashed
lines correspond to ε2(t ), and the green dash-dotted lines correspond
to ε3(t ).
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FIG. 14. Mean value of the problem Hamiltonian 〈H2〉(T ) eval-
uated at the end of the evolution for the teleportation protocol
considering (a) dephasing and (b) amplitude-damping errors as a
function of the decay rate γ . We consider a time evolution up to T =
0.2τ . Also, the blue dash-dotted and orange solid lines correspond to
εb = 10 for both unitary and nonunitary optimization, respectively.
The green solid lines with crosses correspond to the nonunitary
optimization without imposing bounds in the control fields.

the optimized control functions for γ = 0.1ω0 considering
T = 0.2τ and εb = 10 for both dephasing [Fig. 13(a)] and
amplitude damping [Fig. 13(b)]. According to the area
theorem, the short duration of the time evolution implies that
the amplitude of the control functions must increase. Thus,
the controls no longer behave as two short pulses, except for
ε3(t ) when dephasing noise is considered, as can be observed
in Fig. 13.

In Fig. 14 we plot the mean value 〈H2〉(T ) as a function
of the decay rate for T = 0.2τ considering the bound in the
amplitude εb = 10. We also add the case where no restriction
is imposed in the amplitude to check the difference caused by
limiting the amplitude. There is still a gain in the performance
of the minimization of 〈H2〉(T ) when we compare the unitary
and nonunitary optimizations (see Fig. 14). On the other hand,
the mean value of 〈H2〉(T ) achieves values closer to the exact
value for the nonunitary optimization without limiting the
amplitude. For example, the percent errors are 2.5% and 4.5%
for the unbounded case and 3.5% and 5.5% for the bounded
case for the amplitude-damping and dephasing types of noise,
respectively. Although there is a gain for the unbounded case,
the maximum amplitude of the control functions can achieve
values above 100 (results not shown here), which is ten times
larger than the bounded case. This result indicates that the
amplitude can be bounded until a certain limit without losing
too much information about the ground state of the problem
Hamiltonian. Of course, there is a threshold for the reduction
of the amplitude. When this threshold is crossed the optimiza-
tion cannot find the ground state of the problem Hamiltonian
even in the absence of noise.

IV. CONCLUSION

In this work we applied OCT for open quantum sys-
tems to numerically investigate the performance of algorithms
originally proposed for adiabatic quantum computing. We
considered two different protocols aimed at performing entan-

glement and teleportation. In the entanglement protocol, we
verified that the nonunitary optimization performs much better
compared to the unitary optimization. The reason for this
improvement is related to the finding of pathways that avoid
noise effects. The strategy used by the optimized controls is
essentially to leave the system in states that are not affected by
the noise, and only close to the end of the time evolution, to act
abruptly to drive the system to the desired state, thus spending
only a very short time in states that suffer from noise effects.
In contrast, the unitary optimization, not impacted by noise
effects, drives the system to states more affected by noise, not
being capable of avoiding possible errors.

We applied the same analysis for the teleportation proto-
col. However, in this case, the performance obtained from
the nonunitary optimization is similar to that obtained from
the unitary optimization. We conjecture that the reason for
such comparatively low performance of the nonunitary op-
timization is related to the type of Hamiltonian used in the
teleportation protocol. The proposed Hamiltonian does not
allow for pathways that are free from noise effects. To cir-
cumvent this problem, we proposed the inclusion of an extra
local Hamiltonian. We found that the optimal control function
derived by the nonunitary optimization through the inclusion
of this extra term performs better in comparison to the unitary
optimization. The percent error in finding the ground state
of the problem Hamiltonian, considering the average of its
mean value, is of order 2.5% for the highest value of decay
rate taken into account in our calculations. We also carried
out an analysis of the amplitude and duration of the control
functions. We found that it is possible to reduce the amplitude
of the control functions without losing the performance of
the optimization. This result conveys useful information for
possible practical implementation, where there is a limit in
the real experiments.

In this paper we have not considered other types of errors,
such as the measurement and initialization [22] errors. These
types of errors play an important role and will affect the
performance of the minimization of the energy of the problem
Hamiltonian. The former type of error can be mitigated by
some techniques based on the reduction of the full assignment
matrix [28], while the latter type of error can be dealt with by
preparation through steady states [29]. Also, state initializa-
tion can benefit from OCT, where robust quantum control can
be employed to take care of imperfections [23,24]. We believe
that the combination of OCT for open quantum systems with
the Hamiltonian engineering in the original protocols can be
very interesting in real applications of algorithms related to
the diabatic quantum annealing. Since this conclusion has
been reached from a limited set of cases, additional investi-
gations have to be carried out to verify its extension to other
cases.
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(a) (b)

FIG. 15. Random state distribution plotted as points in the Bloch sphere. Blue dots indicate the (a) N = 123 and (b) N = 124 random states
for a qubit.

APPENDIX: RANDOM STATES FOR QUBITS

For completeness, we provide Fig. 15, which contains
points (blue dots) that represent the random states for a qubit
plotted in the Bloch sphere using N = 123 [Fig. 15(a)] and
Ns = 124 points [Fig. 15(b)]. One can see that the sphere is

almost completely covered for N = 124 points, which is the
number of points used to calculate the average over the initial
random states employed in the calculation of the average of
the mean value of the problem Hamiltonian 〈H2〉 described in
Eq. (13).
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