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Quantum geometric tensor and critical metrology in the anisotropic Dicke model
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We investigate the quantum phase transition in the anisotropic Dicke model through an examination of the
quantum geometric tensor of the ground state. In this analysis, two distinct classical limits exhibit their unique
anisotropic characteristics. The classical spin limit demonstrates a preference for the rotating-wave coupling,
whereas the classical oscillator limit exhibits symmetry in the coupling strength of the bias. The anisotropic
features of the classical spin limit persist at finite scales. Furthermore, we observe that the interplay among
the anisotropic ratio, spin length, and frequency ratio can collectively enhance the critical behaviors. This
critical enhancement without a trade-off between these factors provides a flexible method for quantum precision
measurement.
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I. INTRODUCTION

The Dicke model [1] describes the interaction between N
identical two-level systems and a single-mode bosonic field
via a dipole coupling, which is of key importance as a model
describing the collective effects in quantum optics [2,3]. A
huge body of literature has been built around the Dicke model.
It is useful for understanding nonequilibrium dynamics [4–10]
and studying the ultrastrong-coupling regime in quantum sys-
tems [11–14]. It is also a paradigmatic model to benchmark
tools detecting quantum chaos [15–18]. Recently, it was em-
ployed to analyze the relationship between classical chaos
and the evolution of out-of-time-ordered correlators [19–21]
and the presence of quantum scars [22,23]. In the classical
spin (CS) limit with the spin length N → ∞ it exhibits a
normal-to-superradiant quantum phase transition (QPT) at the
critical point, which was first studied by Hepp and Lieb [24]
at weak coupling. For the finite N , the Dicke model becomes
nonintegrable due to the unclosed Hilbert space in a gen-
eral coupling range [25]. Consequently, several approximate
methods have been devised to capture the effect of finite-size
corrections [26–29], proving pivotal in comprehending the
universal properties near the critical point of QPT [30–33].

A generalized version of the Dicke model, namely, the
anisotropic Dicke model (ADM) (h̄ = 1),

H = ωa†a + �Jz + λ1√
N

(eiθ a†J− + e−iθ aJ+)

+ λ2√
N

(eiθ a†J+ + e−iθ aJ−), (1)

where ω is the frequency of single-mode bosonic field de-
scribed by the bosonic operators a(†), � is the transition
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frequency, and J±,z = ∑2 j
i=1

1
2σ i

±,z are the collective spin oper-
ators with pseudospin j = N /2. λ1 and λ2 are the amplitudes
of the coupling strengths corresponding to the rotating-wave
and counterrotating-wave coupling terms, where an extra
phase θ is introduced. When λ1 = λ2 = λ, the ADM reduces
to the conventional Dicke model. While the properties of the
Dicke model have been studied extensively, they are also
prominently present in the ADM [34–39], where the asym-
metric coupling strength endows it with some new properties
at the same time. QPTs are often investigated by a variety of
characterizations for quantumness, wherein entanglement was
the earliest and most famous one [40–44]. Quantum discord,
another quantity that characterizes the quantum correlation
in certain situations, can be used to detect QPTs [45–47]. A
quantum geometric tensor (QGT), as the preponderant ele-
ment for studying the geometry of the quantum parameter
space, was also useful in characterizing QPTs [48–50]. In
addition, QPT also represents a powerful resource [51–55] for
quantum metrology, which provides techniques to enhance the
precision of measurements of physical quantities.

In this paper, we address a QPT in the classical oscilla-
tor (CO) limit with the frequency ratio η = �/ω → ∞. In
contrast to the CS limit, a QPT occurs here already at finite
N . We investigate the normal-to-superradiant QPT behavior
of the ADM and its dependence on the asymmetric coupling
strengths in both limits. First, we observe the QPT in the
ADM utilizing the quantum metric tensor (QMT) and the
Berry curvature. The CS and CO limits give rise to QPTs with
identical critical behaviors based on the mean-field theory
[56]. Furthermore, we assess the metrological potential of
a finite-component QPT by measuring the quantum Fisher
information (QFI) [57], which is directly related to metro-
logical sensitivity by the quantum Cramér-Rao bound δA �
1/

√
MIA [58], where M is the number of measurements

and IA = 4[〈∂Aψ |∂Aψ〉 + (〈∂Aψ |ψ〉)2] is the QFI, where |ψ〉
denotes the arbitrary state of the system and ∂A = ∂

∂A . By com-
paring the QFI of the ground state under different anisotropic
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ratios, we find that both limits can be distinguished through
the dependence of the anisotropic ratio. In the CS limit, the
rotating-wave coupling preponderates more to QPT than the
counterrotating-wave coupling does. But the contributions of
the rotating-wave and counterrotating-wave interaction terms
are symmetric in the CO limit. At finite scales, the QFI ex-
hibits the same anisotropic ratio dependence as in the CS
limit. Through contrasting anisotropic ratio, spin length, and
frequency ratio that affect QFI, we are pleasantly surprised to
find that they can be varied synchronously to make the QFI
closer to the thermodynamic limit than when varied individ-
ually, which means that they can complement each other for
better measurement precision under limited conditions.

II. QUANTUM GEOMETRIC TENSOR

We briefly review the concept of the QGT which char-
acterizes the geometry of a quantum system. Consider two
quantum states |ψ (p)〉 and |ψ (p + δp)〉 that differ infinitesi-
mally in a set of parameters p = {pi} (i = 1, 2, . . . , M), the
components of the QGT are defined as

Qμυ = 〈∂μψ |∂υψ〉 − 〈∂μψ |ψ〉〈ψ |∂υψ〉, (2)

which can take complex values. The real part of QGT is
the QMT, denoted as Gμυ = Re[Qμυ], which is symmet-
ric and defines a distance ds2 = 1 − |〈|ψ (p)|ψ (p + δp)〉|2 =∑

μυ Gμυd pμd pυ between two nearby states |ψ (p)〉 and
|ψ (p + δp)〉 [59]. The imaginary part is related to the Berry
curvature Fμυ = 2 Im[Qμυ] = −Fυμ [60], which is antisym-
metric and can be used to synthesize the first Chern number
[61–64] after being integrated over a surface subtended by a
closed path in the parameter space.

In particular, if we initialize the system in a nondegenerate
eigenstate |ψ (p)〉 = |n(x)〉, with the corresponding nondegen-
erate eigenvalue En(p), as long as the parameter is slowly
varying functions of time, the adiabatic theorem guarantees
that the system will remain in this eigenstate during the evo-
lution. The QMT can be expanded in a simple perturbative
argument as [65]

Q(n)
μυ =

∑
m �=n

〈n|∂μH |m〉〈m|∂υH |n〉
(Em − En)2

. (3)

As mentioned above, this metric tensor characterizes the dis-
tance between two states, meaning that the larger its value,
the more prominent is its statistical distinguishability of the
two states. Equation (3) shows that at the stationary points
of the QPT, which are characterized by the ground-state level
crossing, the components of the QGT are singular.

III. THE QPT OF TWO DIFFERENT LIMITS

The ADM is invariant under the unitary transforma-
tion � = exp{iπ [a†a + Jz + j]}, such that [H,�] = 0. The
eigenvalues of � are ±1, depending on whether the num-
ber of qubits is even or odd, which allows the separation of
the Hamiltonian matrix into two subspaces of definite parity.
Unless stated, we work exclusively in the positive parity sub-
space.

The ADM undergoes a second-order QPT at g = λ1+λ2√
ω�

= 1
in both the CS and CO limits, separating the system into two

phases: the normal phase for g < 1, and the superradiant phase
for g > 1, respectively.

To calculate the effective Hamiltonian of the CS limit,
we use the Holstein-Primakoff representation of the angular
momentum operators, which represent the operators in terms
of a single-mode bosonic in the following way [66],

J+ = b†
√

2 j − b†b,

J− =
√

2 j − b†bb, (4)

Jz = b†b − j,

where b and b† are bosonic operators obeying [b, b†] = 1. This
thus converts H into a two-mode bosonic problem.

In this representation, the parity operator � becomes � =
exp{iπ [a†a + b†b]}. To consider the CS limit, we expand the
square roots in Eq. (4) and neglect terms with powers of j in
the denominator, which leads to

J+ �
√

2 jb†,

J− �
√

2 jb,

Jz = b†b − j. (5)

In the normal phase g < 1, this yields the effective Hamilto-
nian as

Hcs
np � ωa†a + �(b†b − j) + λ1(eiθa†b + e−iθ ab†)

+ λ2(eiθa†b† + e−iθ ab), (6)

which is bilinear in the bosonic operators.
In the superradiant phase g > 1, we need to displace the

Hamiltonian, which can be achieved by rotating the angular
momentum operators as⎛

⎝Jx

Jy

Jz

⎞
⎠ =

⎛
⎝ cos δ 0 sin δ

0 1 0
− sin δ 0 cos δ

⎞
⎠

⎛
⎝J ′

x
J ′

y
J ′

z

⎞
⎠, (7)

and displacing the bosonic operators as

a = a′ + α∗, a† = a′† + α, (8)

where δ and α are to be determined. We apply the truncated
Holstein-Primakoff transformation to the rotated operators
J ′

x,y,z, i.e.,

J ′
x �

√
j

2
(b′† + b′),

J ′
y � −i

√
j

2
(b′† − b′), (9)

J ′
z = b′†b′ − j,

to find the values of δ and α. The Hamiltonian becomes

Hsp � ω|α|2 + ωa′†a′ + � cos δ(b′†b′ − j)

+ λ1 + λ2

2
cos δ(eiθ a′† + e−iθ a′)(b′† + b′)

+
√

2

j
(λ1 + λ2)|α| sin δ(b′†b′ − j)

+ λ1 + λ2√
2 j

sin δ(eiθ a′† + e−iθ a′)b′†b′
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+
[
ω|α| −

√
j

2
(λ1 + λ2) sin δ

]
(eiθa′† + e−iθ a′)

+
[

(λ1 + λ2)|α| cos δ − �

√
j

2
sin δ

]
(b′† + b′)

− λ1 − λ2

2
(eiθa′† − e−iθ a′)(b′† − b′). (10)

Now we eliminate the terms in Eq. (10) that are linear in
(a′† + a′) and (b′† + b′) by choosing the values of α and δ,
so that

ω|α| −
√

j

2
(λ1 + λ2) sin δ = 0,

(λ1 + λ2)|α| cos δ − �

√
j

2
sin δ = 0. (11)

The nontrivial solution gives

α = eiθ
√

2 j[(λ1 + λ2)4 − ω2�2]

2(λ1 + λ2)ω
,

cos δ = ω�

(λ1 + λ2)2
. (12)

With these determinations, we obtain the Hamiltonian as

Hcs
sp � ω�

2(λ1 + λ2)
(eiθa′† + e−iθ a′)(b′† + b′)

− λ1 − λ2

2
(eiθ a′† − e−iθ a′)(b′† − b′)

+ωa′†a′ + (λ1 + λ2)2

ω
b′†b′

− j

[
(λ1 + λ2)2

2ω
+ ω�2

2(λ1 + λ2)2

]
. (13)

This effective Hamiltonian Hcs
sp in the superradiant phase is

also bilinear with the bosonic operators. Although the global
symmetry � becomes broken at the phase transition, two new
local symmetries appear, corresponding to the operator � =
exp{iπ [a′†a′ + b′†b′]}.

For the CO limit, we apply the Schrieffer-Wolff transfor-
mation to obtain an effective low-energy Hamiltonian. The
transformed Hamiltonian is written as

H′ = exp−S H expS =
∞∑

k=0

[H, S]k

k!
, (14)

where [H, S]k = [[H, S]k−1, S] with [H, S]0 = H. We divide
Eq. (14) into diagonal and off-diagonal parts, where we have
denoted the special anti-Hermitian operator S as

S = S1 + S2, (15)

with

S1 = − 1√
2 j�

(AJ+ − BJ−) + O(ω/�2),

S2 = 4

3(
√

2 j�)3
(ABAJ+ − BABJ−) + O(ω/�4), (16)

in which A = λ1e−iθ a + λ2eiθ a† and B = λ1eiθ a† + λ2e−iθ a.

Projecting Eq. (14) into | j,− j〉, i.e., Hco
np ≡

〈 j,− j|H′| j,− j〉, and keeping the terms up to the first order
in ω/�, it results in an effective low-energy Hamiltonian

Hco
np � − 1

�
(λ1eiθ a† + λ2e−iθ a)(λ1e−iθ a + λ2eiθ a†)

+ωa†a − j�. (17)

For g > 1, we need to displace the Hamiltonian H as previ-
ously done within the CS limit, employing identical formulas
for α and δ as Eq. (12). Therefore H approximates to be

H̃ � ωa′†a′ + �̃J ′
z + λ′

1√
2 j

(eiθa′†J ′
− + e−iθ a′J ′

+)

+ λ′
2√
2 j

(eiθa′†J ′
+ + e−iθ a′J ′

−)

+ j�

2
(g2 − g−2), (18)

with the rescaled frequency and qubit-oscillator coupling
strengths being

�̃ = �g2,

λ′
1 = 1

2
√

2 j
[
√

ω�g−1 + (λ1 − λ2)],

λ′
2 = 1

2
√

2 j
[
√

ω�g−1 − (λ1 − λ2)]. (19)

With the application of the same method described above in
the normal phase, the effective Hamiltonian for the superradi-
ant phase reaches as follows:

Hco
sp � − 1

�̃
(λ′

1eiθ a′† + λ′
2e−iθ a′)(λ′

2eiθ a′† + λ′
1e−iθ a′)

+ωa′†a′ − j�

2
(g2 + g−2). (20)

The effective Hamiltonian Hco
sp has a similar structure to

Hco
np, which means that both phases exhibit analogous critical

behaviors.

IV. CRITICAL METROLOGY THROUGH QUANTUM
GEOMETRIC TENSOR

Based on the effective Hamiltonian in Sec. III, we expect
that the components of both the QMT and Berry curvature
show a divergent feature close to the critical point. In Fig. 1,
we show the corresponding components from a numerical cal-
culation of the ground state of the ADM with μ = θ , ν = ω,
γ = λ1/λ2 = 2, and the bosonic cutoff nmax = 100. It can be
seen from Fig. 1 that, in both situations, the QMT and Berry
curvature components exhibit singularity at the critical point.
It is noted that the Berry curvature component has different
divergence directions in the normal and superradiant phases
due to the fact that the squeezing parameter has different
formulation for g (see the Appendix for a proof).

Both the CS and CO limits present a critical behaviors of
the QPT in Fig. 1. The nature of the two limits is different,
however, they can be distinguished through the dependence
of γ . In Fig. 2, we compare the QFI Iωω (i.e., 4Qωω) with
different γ . From the inset, we can intuitively observe the
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(b)(a)

(d)(c)

FIG. 1. (a), (c) The QMT components as a function of g. (b),
(d) The Berry curvature component as a function of g. In the CS
limit with fixed η = 1 and in the CO limit with fixed j = 10. The
numerical results are obtained according to Eqs. (6), (13), (17),
and (20).

dependence of the two limits on γ . In the CS limit, the
Holstein-Primakoff transformation maintains the distinction
between rotating-wave and counterrotating-wave interactions.
Within this framework, rotating-wave interactions play a
more favorable role in QPT compared to counterrotating-
wave interactions. Conversely, in the CO limit, the projected
Hamiltonian is free of coupling terms among the spin states.
Consequently, this erases the distinction between rotating-
wave and counterrotating-wave interactions, rendering them
symmetric in their roles.

For finite j and η, the variation of Iωω with different γ is
shown in Fig. 3(a), the dependence of Iωω on γ is consistent
with the case in the CS limit. Figure 3(b) shows the variation
of the ratio of QFI I lab

ωω/Ieff
ωω with η = �/ω in logarithms. The

result indicates that the simultaneous adjustment of j, γ , and η

is more likely to push the QFI to approach the thermodynamic
limit as compared to the case with individual adjustments,
which means that we can optimize them simultaneously to
improve QFI without having a trade-off between them.

V. CONCLUSION

As pointed out here that the QPT can be realized in two
different classical limits for the ADM. Differences emerge
in terms of their dependence on the anisotropic ratio. In the
CS limit, the bias in the rotating-wave coupling facilitates the
improvement of the QPT behavior of the system. In contrast,
within the CO limit the influences of the rotating-wave and
counterrotating-wave interaction terms are symmetric. Fur-
thermore, the critical behavior at finite scales inherits the
anisotropic dependency observed at the CS limit. Importantly,
this bias coupling’s effect harmonizes with the enhancement
of spin length or frequency ratio, allowing us to enhance

(a)

(b)

FIG. 2. (a) The QFI Iωω as a function of g with different γ in the
CS limit with fixed η = 1. The inset shows the variation of Iωω at
g = 0.99. (b) The same data in the CO limit with fixed j = 10. The
numerical results are obtained according to Eqs. (6), (13), (17), and
(20).

measurement precision at finite scales through multidirec-
tional optimization. This approach offers valuable guidance

(a)

(b)

FIG. 3. (a) The QFI of ω as a function of g and γ with fixed
j = 10, η = 1. (b) The ratio of the QFI I lab

ωω/Ieff
ωω as a function of η

by selected numbers of j and γ at g = 0.99.
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for the practical implementation of quantum precision mea-
surements at the current stage of scientific development.
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APPENDIX

For the Rabi model, the ground state in the normal phase is

|φnp(g)〉 = S[rnp(g)]|0〉|↓〉, (A1)

for which

S[rnp(g)] = exp(1/2)[r∗
np(g)a2 − rnp(g)a†2], (A2)

rnp(g) = e2iθ (1/4) ln(1 − g2). (A3)

While in the superradiant phase, the ground state reads

|φsp(g)〉 = D[±α]S[rsp(g)]|0〉|↓±〉, (A4)

where

D[α] = exp(αa† − α∗a), (A5)

rsp(g) = e2iθ (1/4) ln(1 − g−4). (A6)

The corresponding Berry curvatures are

Fnp
θω = 2 Im[−〈∂θφnp(g)|φnp(g)〉〈φnp(g)|∂ωφnp(g)〉

+ 〈∂θφnp(g)|∂ωφnp(g)〉]
= |rnp(g)|g2 cosh[2|rnp(g)|]/[2ω(1 − g2)], (A7)

and

F sp
θω = 2 Im[−〈∂θφsp(g)|φsp(g)〉〈φsp(g)|∂ωφsp(g)〉

+ 〈∂θφsp(g)|∂ωφsp(g)〉]
= −|rsp(g)| cosh[2|rsp(g)|]/[g4ω(1 − g−4)]

+ 2λ2/ω3, (A8)

respectively. The second term of F sp
θω can be neglected near

the critical point.
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