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Interest in the Werner-Holevo channel �1(ρ ) = 1
2 [tr(ρ )I − ρT ] has been mainly due to its abstract math-

ematical properties. We show that in three dimensions and with a slight modification, this channel can be
realized as the rotation of qutrit states in random directions by random angles. Our modification takes the form
�x (ρ ) = (1 − x)ρ + x�1(ρ ). Therefore, and in view of the potential use of qutrits in quantum processing tasks
and their realization in many different platforms, the modified Werner-Holevo channel can be used as a very
simple and realistic noise model, in the same way that the depolarizing channel is for qubits. We will make a
detailed study of this channel and derive its various properties. In particular, we will use the recently proposed
flag extension and other techniques to derive analytical expressions and bounds for the different capacities of
this channel. The role of symmetry is revealed in these derivations. We also rigorously prove that the channel �x

is antidegradable and hence has zero quantum capacity, in the region 4
7 � x � 1.

DOI: 10.1103/PhysRevA.109.052620

I. INTRODUCTION

A quantum state is a matrix that is Hermitian, positive, and
of unit trace. Any operation which is quantum mechanically
conceivable should preserve these basic properties. Never-
theless the familiar operation of transposing a matrix ρ −→
ρT , which for qubits is equivalent to converting any pure
state to its orthogonal |ψ〉 −→ |ψT 〉, while having all these
properties is not a feasible quantum operation and cannot be
implemented in any physical process. The reason is that it
lacks the important and extra property of complete positivity,
which is required to ensure that local actions on parts of a
larger system also retain properties of quantum states. While
transposing a quantum state is forbidden, it was interestingly
shown in Ref. [1] that in any dimensions d , the so-called
Werner-Holevo map

ρ −→ �WH(ρ) = 1

d − 1
[tr(ρ)I − ρT ], (1)

despite the presence of the negative sign and the transpose, is
indeed a completely positive trace-preserving map. For qubits,
it is no surprise that such a map is a physical operation since
given a density matrix ρ = ( a b

b∗ c), we simply have

�WH(ρ) =
(

c −b∗
−b a

)
= σyρσy, (2)

which implies that a unitary operation, i.e., a rotation around
the y axis by 180◦, covers ρ to trρI − ρT . For qutrits, however,
the Werner-Holevo channel is no longer a unitary map, as
simply as in the qubit case, but it is still possible to show that
it is an acceptable quantum operation. The reason is that it has
an explicit Kraus representation which proves that it is indeed
a completely positive trace-preserving (CPT) map. In fact, it
is known that [2]

�WH(ρ) = 1
2 [tr(ρ)I − ρT ] = 1

2 (JxρJx + JyρJy + JzρJz ),
(3)

where Jx, Jy, and Jz are the spin-1 representations of angular
momentum algebra, i.e.,

Jx = −i

⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦,

Jy = −i

⎡
⎣0 0 −1

0 0 0
1 0 0

⎤
⎦,

Jz = −i

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦. (4)

When written in this form, the channel is a special case
of the more general types of channels called the Landau-
Streater channel [3].1 The importance of the equivalence
of the Werner-Holevo with the Landau-Streater channel for
qutrits is beyond a simple depiction of the Kraus represen-
tation for the former channel. In fact, as has been shown
in Ref. [3], here we are dealing with the first example of a
unital channel which cannot be realized as a collection of
random unitary operations. More concretely, the map �WH,
while having the property WWH(I ) = I , cannot be written as
�WH(ρ) = ∑

i piUiρU †
i for any choice of unitary actions and

any choice of randomness. This means that the map �WH

cannot be realized as the random unitary operations (jumps)
on the qutrit as it travels along in time or space. It cannot
even be written as the convex combination of two other maps.
In other words, it is an extreme point in the space of qutrit
channels. This is an intriguing result since it is well known
that for qubits, any unital map can be written as a random

1For higher dimensions, the Kraus operators are the spin- j repre-
sentation of the angular momentum algebra and the factor 1

2 should
be replaced with 1

j( j+1) .
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unitary channel [4]. Furthermore, the Werner-Holevo channel
(3) is not continuously connected to the identity channel, i.e.,
by a parameter which can be tuned to model the effect of
environmental noise.

It is the aim of the present paper to show that by a small
modification, that is, by combining it with the identity chan-
nel, this map can in fact be a sensible model of noise on
qutrits. We will show that the resulting model, defined as

�x(ρ) = (1 − x)ρ + x�WH(ρ)

= (1 − x)ρ − x

2
ρT + x

2
tr(ρ)I 0 � x � 1, (5)

as long as x �= 1, can in fact be represented as a model in
which the environmental noise randomly rotates the qutrit
by small angles in arbitrary directions, where the parameter
x is determined by the probability distribution of random
rotations.

This result is significant in several respects: First, from
the practical point of view, while universal quantum com-
puting has been conventionally based on qubits, there are
many attempts to explore the potential advantages [5–11] and
physical realization of higher-dimensional systems, especially
qutrits. The latter ranges from orbital angular momentum of
light [12–15] and other photonic platforms [7,16–24] to NMR
ensembles, [25] superconducting quantum circuits [26–30],
and trapped ions [18,26,31–34].

Second, the channel �x defined in (5) plays the same role
for qutrits as the depolarizing channel plays for qubits. It is
true that the conventional depolarizing channel for qutrits,
ρ −→ (1 − p)ρ + p

3 I , allows a random unitary representation
in terms of Heisenberg-Weyl operators [35]. However, the
Kraus or the error operators of this channel, while being uni-
tary, are discrete operators which are not connected with the
identity operator by a continous parameter representing the
level of noise. The level of noise is controlled by the param-
eter p for all these Kraus operators. Therefore, it seems that
the channel �x shows a more natural type of noise in many
practical and numerical studies of qutrit systems. In particular,
it may have relevance to quantum processes involving the
quantum Zeno effect [36], where a series of measurements can
slow down the quantum dynamics [37–40] or a series of small
rotations and measurements can activate bound entanglement
[41] in qutrit states [42]. Finally, from a mathematical point of
view, this result may encourage others to study the vicinity of
extreme points of quantum channels in general.

After proving this physical realization, we will proceed to
investigate many of the other properties of the channel. In
particular, we will examine the symmetry properties of the
channel and the way it affects the most important properties
of the channel, namely, its various kinds of capacities. As a
prerequisite to this investigation, we will study the so-called
degradability and antidegradability [43] conditions for the
channel. Equipped with these tools and exploiting the flag
extensions [44,45] of the channel, we are able to find ex-
act expressions for the Holevo quantity of the channel, the
entanglement-assisted capacity of the channel, and finally up-
per and lower bounds for the quantum capacity. Finally, we
rigorously prove that the channel �x is antidegradable and
hence has zero quantum capacity, in the region 4

7 � x � 1.

The structure of this paper is as follows: In Sec. (II), we
show that the channel �x is indeed a random unitary channel
and show that random rotations of an input qutrit state distort
the qutrit in the way suggested by (5). In Sec. (III), we study
the structural properties of this channel, its spectrum, and its
complementary channel. In Sec. (IV), we extend this study to
the important problem of degradability and antidegradability,
which is an important requirement for the calculation of vari-
ous capacities of the channel. In Sec. (V), we use everything
we have learned in previous sections to study various capac-
ities of this channel and provide exact expressions or upper
and lower bounds for these capacities. Finally, in Sec. (VI),
we prove that the channel �x is antidegradable and hence has
zero quantum capacity, in the region 4

7 � x � 1. We conclude
the paper with a summary and outlook.

II. THE RANDOM ROTATION MODEL

Consider a qutrit state ρ passing through a communication
channel, either in time or in space, and undergoing random
kicks (rotations in random directions by random angles). The
output state will then be of the form

�(ρ) =
∫

dndθP(n, θ )ein·Jθρe−in·Jθ , (6)

where P(n, θ ) is the probability density of a rotation being
around the direction n by an angle −π

2 � θ � π
2 . We will

take this distribution to be uncorrelated in direction and angle.
Moreover, in the absence of any preference, we take the distri-
bution in directions to be uniform, hence P(n, θ ) = 1

4π
P(θ ).

It is also natural to assume an even distribution function for
angles, that is, P(θ ) = P(−θ ). We will now use the identity
for spin-1 representation (4)

ein·Jθ = 1 + i sin θ n · J + (cos θ − 1)(n · J)2, (7)

which in view of P(θ ) = P(−θ ) is simplified to

�(ρ) = ρ + 〈cos θ − 1〉[ρ〈n · J〉2 + 〈n · J〉2ρ]

+ 〈sin2 θ〉〈n · Jρn · J〉 + 〈(cos θ − 1)2〉
× 〈(n · J)2ρ(n · J)2〉, (8)

where 〈 f (θ )〉 := 1
2π

∫
P(θ ) f (θ )dθ and 〈 f (n)〉 :=

1
4π

∫
dn f (n). We now use the well-known results on the

average of unit vectors with uniform distributions to arrive at

〈(n · J)2〉 = 〈nin j〉JiJj = 1
3 JiJj = 2

3 I, (9)

where we have used the identity J2
x + J2

y + J2
z = 2I. More-

over, we find

〈n · Jρn · J〉 = 〈nin j〉JiρJj = 1

3

∑
i

JiρJi = 2

3
�WH(ρ).

(10)
The other term that we should calculate is

〈(n · J)2ρ(n · J)2〉 = 〈nin jnknl〉JiJjρJkJl . (11)

Using the identity

〈nin jnknl〉 = 1
15 (δi jδkl + δikδ jl + δilδ jk ) (12)

and inserting the expression JiJj = δi jI − | j〉〈i|, which is ob-
tained from (4), it is straigthforward to simplify the expression
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(11). The result is

〈(n · J)2ρ(n · J)2〉 = 2
5ρ + 1

15ρT + 1
15 tr(ρ)I. (13)

Putting everything together, the final result is

�(ρ) = aρ − bρT + 1 − a + b

3
tr(ρ)I, (14)

where

a = 1
15 〈1 + 8 cos θ + 6 cos2 θ〉,

b = 1
15 〈4 + 2 cos θ − 6 cos2 θ〉. (15)

This shows that random unitary kicks do indeed produce the
transpose of ρ with a negative sign, which is the characteristic
of the Werner-Holevo channel, but they also produce the state
ρ itself. Note that b is always positive, and a can never be zero,
proving that the original Werner-Holevo channel, or equiva-
lently the Landau-Streater channel, is indeed an extreme point
in the space of qutrit channels. In fact, the minimum value of
a is 1

15 = 0.067, which happens when all rotation angles are
fixed at θ = ±π

2 . This implies that the close vicinity of the
channel �WH is still not representable by random rotations.
This of course does not exclude the possibility that this neigh-
borhood be realized by other random unitary ensembles. The
answer to this question is not yet known. When the random
angles of rotation are very small so that we can neglect 〈θ4〉
and higher orders, the channel will take the form

�(ρ) ≈ (
1 − 2

3 〈θ2〉)ρ − 1
3 〈θ2〉ρT + 1

3 〈θ2〉tr(ρ)I, (16)

which is nothing but the channel �x (3) with x = 2
3 〈θ2〉.

We now turn to the study of other properties of our channel
and start with a remark on notations and conventions.

III. THE SYMMETRIES OF THE CHANNEL
AND ITS SPECTRUM

We first set up our notations and conventions:
Notations and conventions: Let Hd be a d-dimensional

Hilbert space; by L(Hd ), we mean the space of linear opera-
tors; by L+(Hd ), the set of positive semi-definite operators;
and by D(Hd ), the set of unit trace positive operators on
Hd . d-dimensional square matrices are denoted by Md and
d-dimensional identity matrix by Id . We employ the nota-
tion � to denote an arbitrary quantum channel, which is
utilized in various contexts and definitions. For brevity of
notations, we sometimes denote a system and its space of
operators by the same letter. Therefore, a quantum map � :
A −→ B is a shorthand for � : L(HA) −→ L(HB). Although
the Landau-Streater channel is defined for spin- j, in this work,
we exclusively study the channel for spin-1, which we re-
fer to mostly as the Werner-Holevo channel, since they are
equivalent. The channel �WH, which in the notation used in
(3) should be denoted by �1, is obviously covariant in the
following sense:

�1(UρU †) = U ∗�1(ρ)U ∗†
, ∀ U ∈ SU(3). (17)

Moreover, as we will see in Sec. (IV), it is both degradable and
antidegradable, which implies that it has zero quantum capac-
ity. That is, it cannot convey any quantum information at all.
For a detailed treatment, see Ref. [46]. To see the covariance

properties of the channel �x, we note that since the density
matrix ρ transforms as ρ −→ UρU † and ρT transforms as
U ∗ρU T , the covariance of the channel �x reduces from the
group SU(3) to its smaller subgroup SO(3),

�x(UρU †) = U�x(ρ)U †, ∀U ∈ SO(3). (18)

A. Spectral properties of the channel

The eigenvectors and eigenvalues of the channel can easily
be found by noting that for any symmetric matrix, ρ = ρT ,
and for any antisymmetrix matrix, ρ = −ρT . Defining the
diagonal matrices, Z1 =: E11 − E33 and Z2 =: E22 − E33, and
the Hermitian matrices, Xsr := Esr + Esr and Ysr := −i(Esr −
Esr ) for s < r, where Ekl = |k〉〈l| is the matrix with one on its
k − l entry and zero otherwise, we find

�x(I3) = I3, �x(Z1) =
(

1 − 3x

2

)
Z1,

�x(Z2) =
(

1 − 3x

2

)
Z2,

�x(Xsr ) =
(

1 − 3x

2

)
Xsr, �x(Ysr ) =

(
1 − x

2

)
Ysr . (19)

Counting the degeneracies of the eigenvalues, this shows that
the determinant of the channel is equal to

Det(�x ) =
(

1 − x

2

)3(
1 − 3

2
x

)5

. (20)

This shows that the determinant of the channel is negative in
a certain range, namely,

Det(�x ) < 0, 2
3 < x � 1. (21)

In this range, the channel is not infinitely divisible and does
not represent a Markovian evolution [47]. The question re-
mains whether, within the range of 0 � x � 2

3 , the channel
can be described as the exponential of Lindbladian dynamics.
We will explore this question in our future work.

B. Complementary channel

1. Definition and covariance of complementary channel

The concept of the complement of a channel hinges on the
well-known Stinespring’s dilation theorem [48], which states
that a quantum channel � : A −→ B can be constructed as
a unitary map U : A ⊗ E −→ B ⊗ E ′, where E and E ′ are
the environments of A and B, respectively. More formally, we
have

�(ρ) = trE ′ (UρU †), (22)

where U denotes an isometry mapping from A to B ⊗ E ′. In
this configuration, the complementary channel �c : A −→ E ′
is defined by

�c(ρ) = trB(UρU †), (23)

constituting a mapping from the input system to the output
environment [see Fig. 1]. It is important to note that the com-
plement of a quantum channel is not unique, but there exists
a connection between them through isometries, as detailed
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FIG. 1. The channel E , its complement Ec, and the channels M
and N , in the definition (1) of degradability and antidegradability.
For simplicity, we have taken the environments of A and B, the same
as E . In principle, they can be different.

in Ref. [49]. The Kraus operators of the channel � and its
complement �c are related as follows [50]:

�(ρ) =
∑

α

KαρK†
α ,

�c(ρ) =
∑

i

RiρR†
i ,

(Ri )α, j = (Kα )i, j . (24)

As shown in Ref. [51], the covariance of a channel also
induces a covariance on the complementary channel. The

theorem of Ref. [51] states that if a channel � is covariant
in the form

�[U (g)ρU †(g)] = V (g)�(ρ)V †(g) ∀ g ∈ G, (25)

where U (g) and V (g) are two representations of the group
element g in a group G, then the complement channel is
covariant in the following form:

�c[U (g)ρU †(g)] = �†(g)�c(ρ)�(g) ∀ g ∈ G, (26)

where �(g) is the representation defined in the following
form:

V †(g)KiU (g) =
∑

j

�i, j (g)Kj . (27)

2. Complementary channel of �x

The formula (24) gives a very simple recipe for writing the
Kraus operators of the complementary channel easily. Put the
first rows of all the Kraus operators in consecutive rows of
a matrix and call it R1, put the second rows of all the Kraus
operators in consecutive rows of a matrix and call it R2, and
so on and so forth. Since the Kraus operators of the channel
�x are given by

K0 = √
1 − x

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ (28)

and

K1 = −i

√
x

2

⎡
⎢⎣

0 0 0

0 0 1

0 −1 0

⎤
⎥⎦, K2 = −i

√
x

2

⎡
⎢⎣

0 0 −1

0 0 0

1 0 0

⎤
⎥⎦, K3 = −i

√
x

2

⎡
⎢⎣

0 1 0

−1 0 0

0 0 0

⎤
⎥⎦, (29)

it is readily found that the Kraus operators of �c
x are given by

R1 =

⎡
⎢⎢⎢⎢⎣

√
1 − x 0 0

0 0 0

0 0 i
√

x/2

0 −i
√

x/2 0

⎤
⎥⎥⎥⎥⎦, R2 =

⎡
⎢⎢⎢⎢⎣

0
√

1 − x 0

0 0 −i
√

x/2

0 0 0

i
√

x/2 0 0

⎤
⎥⎥⎥⎥⎦, R3 =

⎡
⎢⎢⎢⎢⎣

0 0
√

1 − x

0 i
√

x/2 0

−i
√

x/2 0 0

0 0 0

⎤
⎥⎥⎥⎥⎦.

(30)

In passing and for future use, it is instructive to note the effect of the complementary channel on a general matrix

X =

⎛
⎜⎝

a b c

d e f

g h k

⎞
⎟⎠, (31)

which is readily found from (30) to be

�c
x(X ) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

2(1 − x)[(a + e + k)] i
√

2x(1 − x)( f − h) −i
√

2x(1 − x)(c − g) i
√

2x(1 − x)(b − d )

i
√

2x(1 − x)( f − h) x(e + k) −dx −gx

−i
√

2x(1 − x)(c − g) −bx x(a + k) −hx

i
√

2x(1 − x)(b − d ) −cx − f x x(a + e)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)
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In the case of channel �x, we have

U †K0U = K0, U †KiU =
∑

j

Ui jKj, U ∈ SO(3), (33)

where U = eiθn·J is the spin-1 representation of a rotation.
Hence,

� =
(

1 0T

0 U

)
. (34)

Therefore, the channel �c
x is also covariant under SU(3) when

x = 0 and is covariant under SO(3) for arbitrary x.

IV. DEGRADABILITY AND ANTIDEGRADABILITY

Degradable and antidegradable channels belong to a note-
worthy class of completely positive trace-preserving maps.
These channels possess advantageous properties that we use
in this paper to analyze various capacities.

Definition 1. [43,52] Let E : A −→ B and Ec : A −→ E be
a quantum channel and its complement, respectively. Then, E
is degradable if there exists a quantum channel N : B −→ E ,
such that N ◦ E (ρ) = Ec(ρ). It is antidegradable if there ex-
ists a quantum channel M : E −→ B such that M ◦ Ec(ρ) =
E (ρ), Fig. 1.

We first note that in the specific point x = 1, where we have
the pure Landau-Streater channel and K0 = 0, K1,2,3 = Jx,y,z,
it is readily seen that the Kraus operators Ri will be 3 × 3
matrices and

R1 = −K1, R2 = −K2, R3 = −K3. (35)

That is, the Landau-Streater channel and its complement are
the same,

�1(ρ) = �c
1(ρ). (36)

This implies that the Landau-Streater channel is both degrad-
able and antidegradable simultaneously and has important
implications for the quantum capacity of the channel, as we
will later explain. In the other extreme, when x = 0 and we
have the identity channel, �0(ρ) = ρ, we find

R1 = (1, 0, 0) = |0〉〈1|,
R2 = (0, 1, 0) = |0〉〈2|, (37)

R3 = (0, 0, 1) = |0〉〈3|,
which leads to

�c
0(ρ) = tr(ρ)|0〉〈0|. (38)

It is then obvious that the channel is degradable with N (ρ) =
tr(ρ)|0〉〈0|, since �c

0(ρ) = (N ◦ �)(ρ), and since no channel
can retrieve a state from its trace, the channel �x is not
antidegradable at point x = 0.

V. CAPACITIES OF THE NOISY LANDAU-STREATER
CHANNEL

We have now concluded our partial investigation of the
properties of channel �x. In this section, our focus shifts to
the examination of its various capacities. Calculating different
capacities analytically is not always feasible, except in some
special cases [53–63]. We leverage the symmetry properties

of this channel to derive analytical expressions for its Holevo
quantity and entanglement-assisted capacity. We then numer-
ically find upper and lower bounds for the quantum capacity
and determine the region of nonzero quantum capacity. This
is shown in Fig. 4. Let us start with the classical capacity.

A. Classical capacity

The classical capacity represents the ultimate rate at which
classical messages can be faithfully transmitted through a
channel upon being encoded into quantum states. This con-
cept is formulated as [64,65]

Ccl (�) = lim
n−→∞

1

n
χ∗(�⊗n), (39)

where χ∗(�) is defined as

χ∗(�) = max
pi,ρi

S

(∑
i

pi�(ρi )

)
−
∑

i

piS[�(ρi )].

In this context, the von Neumann entropy is represented
as S(ρ) = −Tr(ρ log ρ) [66]. It is crucial to note that χ∗ ex-
hibits superadditivity, meaning that nχ∗(�) � χ∗(�⊗n). This
necessitates the regularization step in Eq. (39) for calculation
of the classical capacity [67].

1. The Holevo quantity

This regularization being extremely difficult, we, as many
others [46,68,69], try to calculate the Holevo quantity, which
is a lower bound on the regularized classical capacity, that is,

χ∗(�) � Ccl (�). (40)

Since channel �x is irreducibly covariant, we can use a result
of Holevo [70], according to which χ∗(�x ) is given by

χ∗(�x ) = log2 d − min
ρ

S[�x(ρ)]. (41)

Thus, our task reduces to finding the minimum output en-
tropy state of channel �x. As entropy is a concave function,
we know that this minimum output state can be taken to be a
pure state [35]. To find this minimum output entropy state, we
use the covariance properties of the channel. First, consider
the two endpoints of the parameter space {0, 1}, namely, x = 0
and x = 1. In these two points, the channel has SU(3) covari-
ance, which means that if a given state |ψ0〉 is a minimum
output entropy state, so is the state U |ψ0〉, where U is an
arbitrary U ∈ SU(3). This is due to the fact that

S[�i(UρU †)] = S[U�i(ρ)U †] = S[�i(ρ)], i = 0, 1.

(42)

We can now use this full SU(3) covariance to choose the
minimum output entropy state as

ρmin = |1〉〈1|, where |1〉 =
⎛
⎝1

0
0

⎞
⎠. (43)

This immediately leads to

�0(|1〉〈1|) =
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠, �1(|1〉〈1|) =

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠,

(44)
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from which we obtain

χ∗(�0) = log2 3, χ∗(�1) = log2 3 − 1. (45)

However, when x is not an endpoint, the channel’s full SU(3)
covariance is broken down to its SO(3) subgroup. It is no
longer possible to transform any arbitrary state in the complex
Hilbert space H3 to a fixed state like |1〉 by SO(3) rotations. To
use this limited covariance, suppose that the minimum output
entropy state is given by

|〉 =
⎛
⎝ψ1

ψ2

ψ3

⎞
⎠, (46)

where ψ1, ψ2, and ψ3 are complex numbers, modulo the nor-
malization condition and a global phase. We now use a group
element O1 ∈ SO(3) with a suitable rotation parameter α,

O1 =
⎛
⎝ cos α sin α 0

− sin α cos α 0
0 0 1

⎞
⎠, (47)

to make ψ2 real [i.e., we can always choose α so that
Im(−ψ1 sin α + ψ2 cos α) = 0] and turn |〉 to

|〉 =
⎛
⎝ψ1

r2

ψ3

⎞
⎠, r2 ∈ R. (48)

With another rotation of the form

O2 =
⎛
⎝ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎞
⎠, (49)

with a suitable parameter β, we can make ψ3 also real,

|〉 =
⎛
⎝ψ1

r2

r3

⎞
⎠, r2, r3 ∈ R. (50)

Finally, we use the rotation matrix O3 ∈ SO(3)

O3 =
⎛
⎝1 0 0

0 cos γ sin γ

0 − sin γ cos γ

⎞
⎠ (51)

to eliminate the third component (−r2 sin γ + r3 cos γ = 0)
and set the form of |〉 into

|〉 =
⎛
⎝cos θeiφ

sin θ

0

⎞
⎠, (52)

where normalization has also been used. The output of the
channel �x is now given by

�x(|〉〈|) =
(

(1 − x) cos2 θ + x
2 sin2 θ cos θ sin θ

[
(1 − x)eiφ − x

2 e−iφ
]

cos θ sin θ
[
(1 − x)eiφ − x

2 e−iφ
]

(1 − x) sin2 θ + x
2 cos2 θ

)
⊕ x

2
I1. (53)

Let us abbreviate the above matrix to �x(|〉〈|) = M ⊕ x
2 I1. Then, the eigenvalues of this matrix are x

2 plus the two eigenvalues
of the matrix M. Instead of explicit calculation of the eigenvalues of M, which we denote as λ1 and λ2, we note that

tr(M ) ≡ λ1 + λ2 = 1 − x

2
, Det(M ) ≡ λ1λ2 = 1

2
x(1 − x)(1 − sin2 2θ sin2 φ). (54)

The sum of eigenvalues is fixed and independent of the input
state |〉. The minimum output entropy is obtained when the
two eigenvalues are as far apart as possible, i.e., when Det(M )
is a minimum that is realized for

θ = π

4
, φ = π

2
. (55)

This leads to Det(M ) = 0. Thus, the minimum output entropy
state is

|〉 = 1√
2

⎛
⎝ i

1
0

⎞
⎠, (56)

and the eigenvalues of M are {λ1 = 0, λ2 = 1 − x
2 }. Taking

into account the third eigenvalue λ3 = x
2 , the minimum output

entropy will be

S = − x

2
log2

x

2
−
(

1 − x

2

)
log2

(
1 − x

2

)
, (57)

which leads to

χ∗(�x ) = log2 3 + x

2
log2

x

2
+
(

1 − x

2

)
log2

(
1 − x

2

)
,

(58)

which, in view of (58), shows that the classical capacity is a
continuous function of the parameter x. Figure 3 shows the
Holevo quantity as a function of x.

2. Upper bound for classical capacity

We employ an upper bound using semidefinite program-
ming, as introduced in Ref. [71] and denoted as Cβ . Consider
a quantum channel � : A → B, where J (�) = ∑

i j (|i〉〈 j|) ⊗
(�(|i〉〈 j|)) to represent its Choi matrix [72]. Take SB and R as
Hermitian matrices in B and A ⊗ B, respectively. Then, it is
shown that [71]

Ccl (�) � Cβ (�) := log2[min
�

Tr(SB)],

where the subscript � is meant to denote the constraints on SB

in this optimization, which is to be performed over all feasible
Hermitian matrices SB and R, subject to

−R � J (�)TB � R

−IA ⊗ SB � RTB � IA ⊗ SB.

Here, TB signifies the partial transpose operation with respect
to subspace B, defined as (|i j〉〈kl|)TB = |il〉〈k j|. We utilize
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FIG. 2. The Holevo quantity χ∗ and classical capacities’
semidefinite programming (SDP) upper bound of channel �x as a
function of x. The shaded region shows the allowable region for the
classical capacity of the channel. When x = 0, i.e., the identity chan-
nel, the upper and lower bounds are equal to log2(3). The parameter
x and the quantity χ∗ are dimensionless. The parameter x and the
capacities are dimensionless.

this method to establish an upper bound for the classical
capacity of the channel (5), as visually represented in Fig. 2.

B. Entanglement-assisted capacity

Entanglement-assisted capacity is a measure of the maxi-
mum rate at which quantum information can be transmitted
through a noisy quantum channel when the sender and re-
ceiver are allowed to share an entangled quantum state [73].
The entanglement-assisted classical capacity of a channel �

is determined by [74]

Cea(�) = max
ρ

I (ρ,�), (59)

where

I (ρ,�) := S(ρ) + S[�(ρ)] − S(ρ,�). (60)

Here, S(ρ,�) is the output entropy of the environment, re-
ferred to as the entropy exchange [75], and is represented by
the expression S(ρ,�) = S[�c

x(ρ)], where �c
x is the comple-

mentary channel [see Sec. (III B)]. According to Proposition
9.3 in Ref. [76], the maximum entanglement-assisted capacity
of a covariant channel � is attained for an invariant state
ρ. In the special case where � is irreducibly covariant, the
maximum is attained on the maximally mixed state. Hence,
for the channel (5),

Cea(�x ) = S

(
I

3

)
+ S

[
�x

(
I

3

)]
− S

[
�c

x

(
I

3

)]
, (61)

which, given the unitarity of the channel, leads to

Cea(�x ) = 2S

(
I

3

)
− S

[
�c

x

(
I

3

)]

= 2 log2 3 − S

[
�c

x

(
I

3

)]
. (62)

FIG. 3. The Holevo quantity χ∗ and entanglement assisted (Cea)
capacities of channel �x as a function of x. All quantities and param-
eters are dimensionless.

From (32), one finds

�c
x

(
I

3

)
=

⎛
⎜⎜⎜⎜⎝

1 − x 0 0 0

0 x
3 0 0

0 0 x
3 0

0 0 0 x
3

⎞
⎟⎟⎟⎟⎠,

which gives the final expression for the entanglement-assisted
classical capacity,

Cea(�x ) = 2 log2 3 + x log2
x

3
+ (1 − x) log2(1 − x). (63)

The specific limiting points of the graph (3) can be understood
on physical grounds as follows. First, consider the point x =
0, where the channel is identity. In this case, without using
entanglement, we can communicate the classical bits 0, 1, and
2, by encoding them into the qutrit states |0〉, |1〉, and | − 1〉,
which after passing through the channel can be retrieved in a
safe form. This will give mutual information of

Icl,x=0(X ;Y ) ≡ H (X ) − H (X |Y )

= log2 3 − 0 = log2 3 ≈ 1.58. (64)

When x = 0, we can run the usual dense-coding pro-
tocol and communicate two classical traits by sending
each single qutrit through the channel. This gives the
mutual information Iea,x=0 = H (X ) − H (X |Y ) = log2 9 =
2 log2 3 ≈ 3.17, as shown in Fig. 3. At the other endpoint,
when x = 1, we calculate the mutual information as follows.
Let us use the same encoding (0, 1, 2) −→ |0〉, |1〉, | − 1〉).
Call an arbitrary qutrit state |m〉 and send it through the chan-
nel. This turns into the mixed state

�1(|m〉〈m|) = 1
2 (I − |m〉〈m|),

and is received by the receiver. A projective measurement
by the receiver leads to the following pattern of conditional
probabilities: P(y = m|x = m) = 0 and P(y �= m|x = m) =
1
2 . This gives the following mutual information:

Icl,x=1(X : Y ) = H (X ) − H (X |Y ) = log2 3 − 1 ≈ 0.58.

(65)
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It remains to make a concrete calculation of Cea at x = 1.
This is the most nontrivial, and we have only found examples
that are compatible with the results in Fig. 3. In Appendix A,
we explain two different protocols that yield different mutual
information, both compatible with the result (63). Figure 3
shows both classical and entanglement-assisted capacity as a
function of x.

C. Quantum capacity

The largest rate at which quantum information can be sent
reliably through a quantum channel � is represented by its
quantum capacity Q(�). The coherent information Ic(�,ρ) =
S[�(ρ)] − S[�c(ρ)] is an entropic quantity that can be used
to express the quantum capacity. The maximum value of Ic

over all input states ρ is denoted by Q1(�), i.e.,

Q1(�) = max
ρ

Ic(�,ρ) = max
ρ

S[�(ρ)] − S[�c(ρ)]. (66)

To define the quantum capacity of a channel, Q(�), we use
the single-letter quantum capacity and take the limit as n
approaches infinity [75,77,78]:

lim
n→∞

1

n
Q1(�⊗n). (67)

When the channel � is degradable, this regularization is
not necessary, and we have

Q(�) = Q1(�), (68)

and calculation of Q1(�) is then a convex optimization prob-
lem. In general, however, performing the regularization in (67)
is extremely difficult, if not impossible [79]; even for very
simple qubit channels like the depolarizing or the Pauli chan-
nel, determining the quantum capacity remains elusive [80].
This is because of the superadditivity of coherent information,
i.e., for two quantum channels, denoted as �1 and �2, the
coherent information of the joint channel �1 ⊗ �2 satisfies a
specific inequality [81–83],

Q1(�1 ⊗ �2) � Q1(�1) + Q1(�2), (69)

and this inequality can be strict [61,67,83–87]. Consequently,
bounding techniques are commonly used to obtain upper and
lower bounds on the quantum capacity [44,45,51,84]. In this
paper, we review some bounding techniques that are effi-
ciently computable and then apply them to our channel (5).
These bounds are not monotone as a function of the parameter
x. Consequently, we invoke two different bounds from the
combination of which we will find a rather narrow region for
the quantum capacity of this channel.

1. Semidefinite programming upper bound of quantum capacity

A general upper bound for quantum capacity using
semidefinite programming is introduced in Ref. [80] and is
denoted by Q� . Let � : A → B, be a quantum channel and let
J (�) = ∑

i j (|i〉〈 j|) ⊗ [�(|i〉〈 j|)] be its Choi matrix [72]. Let
ρA be an arbitrary density matrix in A and R be an arbitrary
positive semidefinite linear operator in L+(A ⊗ B). Then, it is
shown that [80]

Q(�) � Q� (�) := log2 {max Tr[J (�)R]}, (70)

where maximization is done on the set of all density matrices
ρA and all positive semidefinite matrices R subject to the
condition

−ρA ⊗ IB � RTB � ρA ⊗ IB,

where TB represents the partial transpose operation with re-
spect to space B, defined as (|i j〉〈kl|)TB = |il〉〈k j|. In this
paper, we will use this method to upper bound the quantum
capacity of the channel (5).

2. Flagged extension upper bound

Flagged extension is a technique that has proven to be
effective for finding upper bounds on the quantum capacity
of various quantum channels. It involves constructing a new
channel with a higher-dimensional output Hilbert space for
any channel that can be expressed as a convex combination
of other channels. While this technique does not provide a
general upper bound and requires specific settings to be tight
and computable, it has been successful in investigating the
quantum capacities of several channels [44,45,57,87]. In this
section, we use two different flagged extensions and obtain
two different upper bounds for the quantum channel which
complement each other.

a. Flagged extension with orthogonal flags. An upper bound
for the quantum capacity of a quantum channel can be found
using the following theorem, which is the result of a flagged
extension of degradable channels with orthogonal flags. The
theorem was first proved in Ref. [87].

Theorem 1. [87] Suppose we have

� =
∑

i

pi�i,

where �i is degradable for all i. The following inequality
holds:

Q(�) �
∑

i

piQ(�i ) =
∑

i

piQ1(�i ), (71)

where the last equality is due to the degradability assumption
of all �is.

Channel �x is already in a convex form �x = (1 −
x)�0(ρ) + x�1(ρ), where �0 and �1 are both degradable
(see Sec. IV). This allows a simple upper bound to be found by
using the above theorem. Since the �1 channel is known to be
antidegradable [see the discussion after Eq. (36)], its quantum
capacity is zero. We simply obtain

Q(�x ) � (1 − x)Q1(�0) + xQ1(�1), (72)

since �1 is antidegradable Q1(�1) = 0, and Q1(�0) = 0 be-
ing the quantum capacity of the identity channel, is simply
found from

Q1(�0) = max
ρ

{
S[�0(ρ)] − S

[
�c

0(ρ)
]}

= max
ρ

{S(ρ) − S[tr(ρ)]} = max
ρ

S(ρ) = log2 3,

(73)

which leads to

Q(�x ) � (1 − x)Q1(�0) = (1 − x) log2 3. (74)

In Fig. 4, we denote this upper bound as Q f 1.

052620-8



NOISY WERNER-HOLEVO CHANNEL AND ITS … PHYSICAL REVIEW A 109, 052620 (2024)

FIG. 4. Various bounds for the generalized Landau-Streater
channel are presented. The figure illustrates that the flagged exten-
sion upper bound Qf 2 performs optimally in the region 0 � x �
0.4435, while the SDP upper bound excels in the region 0.4435 �
x � 0.75. In the remaining regions, the flagged extension upper
bound Qf 1 outperforms other bounds. The hatched area in the fig-
ure signifies the potential quantum capacity values. The lower bound
for the quantum capacity, the green solid line, is obtained both by a
numerical search as in (77) and by taking an ansatz for this optimum
state as in (78). The results agree. Moreover the lower bound is zero
for x = 1, which conforms with the antidegradability of the channel
�1. The parameter x and the quantum capacity are dimensionless.

b. Flagged extension with nonorthogonal flags. An alter-
native degradable flagged extension of the channel (5) for
0 � x � 1

2 , can be achieved through [57]

Λx(ρ) = (1 − x)ρ ⊗ |φ0〉〈φ0| + x�1(ρ) ⊗ |φ1〉〈φ1|, (75)

where

|φ0〉 =
√

1 − 2x

1 − x
|0〉 +

√
x

1 − x
|1〉, |φ1〉 = |0〉.

This results in

Q(�x ) � Q(Λx ) = Q1(Λx ),

with the last equality arising from the degradability of the
flagged extension channel. Notably, the covariance of this
channel remains SO(3). Let us denote the covariance group
of this channel as G, and assume that Ug for g ∈ G is an
irreducible representation of this group. By exploiting the
irreducible covariance of the channel (75), we have

1

|G|
∑
g∈G

UgρU †
g = I

d
, (76)

where d is the dimension of the input space of the channel (in
this case, d = 3). Moreover, due to the degradability of the
flagged extension channel, the coherent information is con-
cave. By leveraging the invariance of the coherent information
under the covariance of the channel, we obtain

Ic

(
Λx,

I

3

)
= Ic(Λx,

1

|G|
∑
g∈G

UgρU †
g )� 1

|G|
∑
g∈G

Ic(Λx,UgρU †
g )

= Ic(Λx, ρ),

where |G| is the cardinality of the group G. The inequality
comes from the concavity of the coherent information, and
the equality is due to Eq. (76). Hence,

Q1(Λx ) = max
ρ

Ic(Λx, ρ) = Ic

(
Λx,

I

3

)
.

Therefore, it is sufficient to evaluate Ic(Λx,
I
3 ) = S[Λx( I

3 )] −
S(Λx ⊗ I |φ+〉〈φ+|), where |φ+〉 = 1

3

∑3
i=0 |ii〉. In this regard,

first, we calculate S[Λx( I
3 )]:

S

[
Λx

(
I

3

)]
= S

(
I

3
⊗ [(1 − x)|φ0〉〈φ0| + x|φ1〉〈φ1|]

)

= log(3) + S[(1 − x)|φ0〉〈φ0| + x|φ1〉〈φ1|].
Now, we should calculate S(Λx ⊗ I |φ+〉〈φ+|). The nonzero
eigenvalues of J (Λx ) are (1 − x, x

3 , x
3

x
3 ) (see Appendix B),

hence,

S[J (Λx )] = −(1 − x) log2(1 − x) − x log2

(
x

3

)
.

We have visualized and labeled this upper bound as Q f 2

in Fig. 4. We have found (not reported here for simplicity)
that for our channel and all values of the parameter x, the
bounds introduced here are lower than the other upper bounds
introduced in the literature, like the partial transposition bound
[88], which is efficiently computable by SDP [89,90]. There-
fore, to obtain a reasonable upper bound for all values of
the parameter x, we only need to compare the flag-extension
upper bounds and the SDP bound.

D. Lower bound for the quantum capacity

In order to restrict the allowable values of the quantum
capacity, we also need a lower bound. Due to the superadditiv-
ity of the channel [i.e., Q1(�) � 1

n Q1(�⊗n)], a natural lower
bound for Q(�x ) is given by Q1(�x ). This is given by

Q1(�x ) = max
ρ

Ic(�x, ρ). (77)

The optimization problem in inequality (77) can be evaluated
using various numerical methods. Here, we adopt a hy-
brid strategy that combines the capabilities of the “fmincon”
local optimization algorithm and the GlobalSearch global
optimization algorithm, both accessible through MATLAB’s
Optimization Toolbox and Global Optimization Toolbox. This
approach is tailored to effectively address the challenges
posed by our nonconvex optimization problem. It is worth
noting that our problem is mathematically equivalent to mini-
mizing the negative of the coherent information, expressed as
− minρ −Ic(�x, ρ). Therefore, we address this optimization
problem, which necessitates finding minima. GlobalSearch
expands the search scope by initially sampling points within
the solution space. It then uses “fmincon” to fine-tune and
identify local minima in these initial points.

We can also follow a semianalytical method which con-
firms this numerical result. Let us take an ansatz for ρ of the
form ρ0 = diag(s, 1 − 2s, s), where s is a real parameter. In
view of (77), it is true that

max
s

Ic(�x, ρ0) � Q1(�x ) � Q(�x ). (78)
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The optimization over this single parameter can then be per-
formed numerically, the result of which coincides with the one
performed by the previously mentioned toolbox. We obtain
that for x less than 0.38, s = 1

3 , which means that ρ0 = I
3 ,

and for x greater than 0.38, Ic(�, I
3 ) becomes negative and

hence will not be a meaningful lower bound. For this region,
we find the lower bound is actually equal to zero, which is
achieved by any of the following pure states: |1〉 := (1, 0, 0)T ,
|0〉 := (0, 1, 0)T , and | − 1〉 := (0, 0, 1)T . In fact, one sees
from (5) and (32) that

�x(|1〉〈1|) =
⎛
⎝1 − x

x
2

x
2

⎞
⎠, (79)

and

�c
x(|1〉〈1|) =

⎛
⎜⎜⎝

1 − x
0

x
2

x
2

⎞
⎟⎟⎠, (80)

both of which have the same entropy, thus leading to
Ic(�x, |1〉〈1|) = 0. The same thing happens for the other two
pure states. This lower bound precisely coincides with the
result obtained through numerical search.

Combining the two upper bounds, namely, the SDP up-
per bound and the flag-extension upper bound and the lower
bound Q1(�x), we find the hashed area in Fig. 4 for the
allowable values of the quantum capacity of the channel �x.

VI. ANTIDEGRADABILITY OF CHANNEL �x

FOR 4
7 � x � 1

It is clear that the Holevo-Werner or the Landau-Streater
channel �1 is both degradable and antidegradable and hence
its quantum capacity is zero. The question arises whether
these two properties still hold for a certain period near x = 1.
In this section we show that channel �x is antidegradable in
the interval 4

7 � x � 1. Hence, in this interval, channel �x has
zero quantum capacity. In view of the superadditivity of the
quantum channel and the extreme difficulty of its calculation,
this is a significant result. To prove this statement, we find a
channel N such that

�x(ρ) = N
[
�c

x(ρ)
]
.

First, let us remind the reader about the fundamental rep-
resentation of SO(3) generators that we used and the Kraus
operators of the complementary channel �c. With k, l , and
m ∈ {1, 2, 3} in cyclic order, we have from (29) and (30) that

Jm = −i(|k〉〈l| − |l〉〈k)

Rk = √
1 − x|0〉〈k| −

√
x

2
Jk,

k = 1, 2, 3. (81)

Note that the Kraus operators Rk are 4 × 3 dimensional ma-
trices with rows indexed by 0,1,2, and 3 and columns indexed
by 1,2, and 3. We now define the channel N by the following

3 × 4 dimensional Kraus operators:

N0 = t
3∑

i=1

|i〉〈i| = t I3, Nk = 1√
3
|k〉〈0| − rJk, k = 1, 2, 3,

(82)

where I3 and Jk are the embedding of the three-dimensional
matrices in the corresponding blocks of the matrices, i.e.,

N0 = (0 t I3) Nk =
(

1√
3
|k〉 − rJk

)
.

The parameter r is chosen to satisfy

r

√
x

2
=
√

1 − x

3
, (83)

and t is a real parameter to be determined (note that the phase
of a complex t can always be removed to make it real, without
affecting the definition of the channel). A simple calculation
shows that

N†
0 N0 +

3∑
k=0

N†
k Nk = |0〉〈0| + (t2 + 2r2)I3, (84)

where the requirement of trace preserving demands that

t2 + 2r2 = 1. (85)

We also need the following simply proved identity:

JkJl = δkl I3 − |l〉〈k|. (86)

It is then a simple matter to use (83) and show that

N0Rk = −t

√
x

2
Jk,

NkRk =
√

1 − x

3
|k〉〈k| + r

√
x

2
J2

k

=
√

1 − x

3
|k〉〈k| + r

√
x

2
(I3 − |k〉〈k|) =

√
1 − x

3
I3

NkRl =
√

1 − x

3
|k〉〈l| + r

√
x

2
JkJl

=
√

1 − x

3
|k〉〈l| − r

√
x

2
|l〉〈k| = i

√
1 − x

3
Jm, (87)

where we have noted the cyclic order of the indices (k, l, m).
We can now evaluate N [�c

x(ρ)]:

N
[
�c

x(ρ)
] =

3∑
k=0,l=1

NkRl (ρ)(NkRl )
†

=
∑

k

(N0Rk )(ρ)(N0Rk )† +
∑

k

(NkRk )(ρ)(NkRk )†

+
∑
k �=l

(NkRl )(ρ)(NkRl )
†

= x

2
t2
∑

k

JkρJ†
k + (1 − x)ρ

+ 2

3
(1 − x)

∑
m

JmρJ†
m

= (1 − x)ρ +
[

x

2
t2 + 2

3
(1 − x)

]∑
k

JkρJ†
k . (88)
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The right-hand side will be the same as �x(ρ), if t satisfies
x

2
t2 + 2

3
(1 − x) = x

2
, (89)

which in view of (83) is the same as the trace-preserving
condition. This requires that the parameter t satisfies

t2 = 7x − 4

3x
, (90)

which means that in the region 4
7 � x � 1, the channel is

antidegradable and hence its quantum capacity is zero.

VII. CONCLUSION AND OUTLOOK

Until now, the Werner-Holevo or Landau-Streater channel,
being an extreme point in the space of qutrit channels, has
been of interest only due to its structural properties. We have
shown that when suitably modified, this channel can in fact
be looked at as a familiar noise model on three-level states.
The noise consists of random rotations in different directions
by arbitrary angles. In view of the wider interest [7,12–24,26–
34] in qutrits as a potential candidate for quantum information
processing, our result may find applications in modeling real-
istic noise on qutrits. The interesting point is that the action of
these continuous random rotations can be represented by three
simple Kraus operators. This puts our channel on the same
footing for qutrits as the depolarizing channel for qubits.

The difference with the familiar depolarizing channel is
that the latter does not have a simple Kraus representation
in terms of physicality. We have then proceeded to determine
many of the physical properties of this channel, including its
various capacities, where we have found exact expressions for
the Holevo quantity, the entanglement-assisted capacity, and
upper and lower bounds for its quantum capacity.

Our work can be extended in a number of ways. The first
one reveals itself when we look at Eqs. (14). It is readily seen
that the coefficient a cannot be zero, and in fact, the smallest
value of this coefficient is 1

15 , which is achieved when all
the rotations are equal to ±π

2 . This is the closest distance
that we can come to the Werner-Holevo channel by random
unitary rotations. The question of how close we can come
to an extreme point by random unitary operations is an open
question, not only for the Werner-Holevo channel but for any
extreme point of CPT maps in general. This problem can be
pursued further if we study the higher-spin representations
of the Landau-Streater channel, or even by generalizing the
Landau-Streater channel so that we replace the generators
of SO(3) with those of the SO(d ) group. This channel is
completely different from the Landau-Streater channel, i.e.,
it has d (d − 1)/2 Kraus operators in d dimensions but is still
equivalent to the Werner-Holevo channel, and consequently it
is SU(d ) covariant. These are open problems that remain for
future publications.
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APPENDIX A: PROTOCOLS FOR
ENTANGLEMENT-ASSISTED CLASSICAL

COMMUNICATION

In this Appendix, we propose two different protocols for
dense coding via the Werner-Holevo channel (3) and calculate
the corresponding mutual information. In the first protocol,
we let the entangled state |�〉AB = 1√

3
(|00〉 + |11〉 + |22〉) be

shared between the two players, whom we call Alice (A)
and Bob (B). Alice encodes her trit n = 0, 1, 2 into the
entangled state by acting on her share of the state by Zn, where

Z =
(

1
ω

ω2

)
, where ω3 = 1, and in this way encodes her trit

m into

|�n〉AB = 1√
3

(|00〉 + ωn|11〉 + ω2n|22〉.

When her share passes through the channel, Bob will find the
complete state to be

ρn = (�1 ⊗ I )|�n〉〈�n|

= 1

3
(�1 ⊗ I )

∑
j,k

ω( j−k)n| j, j〉〈k, k|

= 1

3

∑
j,k

ω( j−k)n�1(| j〉〈k|) ⊗ | j〉〈k|

= 1

6

∑
j,k

ω( j−k)n(δ j,kI − |k〉〈 j|) ⊗ | j〉〈k|

= 1

6

⎛
⎝I ⊗ I −

∑
j,k

ω( j−k)n|k, j〉〈 j, k|
⎞
⎠. (A1)

Now that Bob has the full state ρn, he has the task of
determining the index n by an optimum measurement. It is
not so easy to find this optimal measurement, or maybe there
are better protocols for encoding classical trites into entangled
states and sending it to Bob. In the present protocol, one pos-
sible measurement is the following positive operator valued
measure (POVM):

Ep =
2∑

l=0

|l, l + p〉〈l, l + p| p = 0, 1, 2. (A2)

A straightforward calculation then shows that

P(y = p|x = n) ≡ tr(Epρn) = 1
2 (1 − δp,n). (A3)

This leads to mutual information

I (X : Y ) = H (X ) + H (Y ) − H (X,Y )

= log2 3 + log2 3 − log2 6

= log2 3 − 1, (A4)

which is below the analytical value Cea,x=1(�x ) = log2 3. An-
other dense coding protocol is that Alice performs a unitary
operator ZnX m on the entangled state |�〉AB and turns it into
one of the nine maximally entangled Bell states, hence en-
coding two classical trits (m, n) into this state and sending
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her own qutrit to Bob (through the channel �LS), who will
make a Bell measurement and determine the classical pair of
trits (m, n). However, detailed calculation shows that the mu-

tual information in this scenario is again equal to log2 3 − 1.
Therefore, it is an interesting problem to see what kind of
protocol saturates the value Cea = log2 3.

APPENDIX B: EIGENVALUES OF (Λx ⊗ I |φ+〉〈φ+|)
In this Appendix, we evaluate the eigenvalues of the Choi matrix of the flagged extension channel with nonorthogonal flags.

To achieve this we expand (Λx ⊗ I ) |φ+〉〈φ+| as follows:

(Λx ⊗ I ) |φ+〉〈φ+| = 1

3

3∑
i, j=1

[
(1 − x)|i〉〈 j| ⊗ |φ0〉〈φ0| ⊗ |i〉〈 j| + x

2

3∑
α=1

Jα|i〉〈 j|Jα ⊗ |φ1〉〈φ1| ⊗ |i〉〈 j|
]
.

Since |i〉〈 j|, |φ0〉〈φ0| ⊗ |i〉〈 j|, Jα|i〉〈 j|Jα , and |φ1〉〈φ1| ⊗ |i〉〈 j| are all square matrices, there exists a permutation matrix Q such
that

(Λx ⊗ I ) |φ+〉〈φ+| = 1

3

3∑
i, j=1

Q

[
(1 − x)|φ0〉〈φ0| ⊗ |i〉〈 j| ⊗ |i〉〈 j| + x

2

3∑
α=1

|φ1〉〈φ1| ⊗ |i〉〈 j| ⊗ Jα|i〉〈 j|Jα

]
QT .

Now we define |Jα〉 = 1
2

∑
i |i〉 ⊗ Jα|i〉; with this definition we can write the above equation in a simpler form:

(Λx ⊗ I ) |φ+〉〈φ+| = Q

[
(1 − x)|φ0〉〈φ0| ⊗ |φ+〉〈φ+| + x

3

3∑
α=1

|φ1〉〈φ1| ⊗ |Jα〉〈Jα|
]

QT .

Now observe that 〈Jα|Jβ〉 = Tr(J†
αJβ ) = δαβ and 〈Jα|φ+〉 = Tr(J†

α ) = 0, which indicates that the eigenvalues of (Λx ⊗
I ) |φ+〉〈φ+| are (1 − x, x

3 , x
3 , x

3 ).
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