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Spin squeezing generated by the anisotropic central spin model
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Spin squeezing, as a crucial quantum resource, plays a pivotal role in quantum metrology, enabling us to
achieve high-precision parameter estimation schemes. Here, we investigate the spin squeezing and the quantum
phase transition in an anisotropic central spin system. We find that this kind of central spin system can be
mapped to the anisotropic Lipkin-Meshkov-Glick model in the limit where the ratio of transition frequencies
between the central spin and the spin bath tends towards infinity. This property can induce a one-axis twisting
interaction and provides another possibility for generating spin squeezing. We consider the generation of spin-
squeezed states through the ground state and the dynamical evolution of the central spin model, respectively.
The results show that the dynamical approach is more effective, and the spin-squeezing parameter improves as
the anisotropy parameter decreases, while its value scales with system size as N−2/3. Furthermore, we obtain the
critical exponent of the quantum Fisher information around the critical point by numerical simulation, and find
its value tends to 4/3 as the frequency ratio and the system size approach infinity. This paper offers a promising
scheme for generating spin-squeezed state and paves the way for potential advancements in quantum sensing.
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I. INTRODUCTION

As the understanding of the quantum world continues to
deepen, quantum technology is ushering in a series of revolu-
tionary changes in the real world. Notably, quantum precision
measurement is progressively gaining prominence, especially
playing a crucial role in critical areas such as biophysics [1–4],
inertial sensors [5,6], and measurement of physics constants
[7–9]. In the realm of quantum metrology, a core goal is to im-
prove the measurement precision of the parameters of interest.
As a result, a central focus of research lies in exploring how
to utilize the nonclassical properties of quantum resources
to achieve heightened precision. In the past decades, quan-
tum spin squeezing has garnered considerable attention as an
important concept in the field of quantum information, par-
ticularly in quantum metrology and quantum sensing. Due to
its capability to reduce quantum fluctuations of a specific spin
component, spin squeezing can enhance the precision of mea-
surements, thus spin-squeezed states are widely applied in the
domain of quantum precision measurement, such as atomic
clock [10–12], Ramsey spectroscopy [13–17], and gravita-
tional wave interferometers [18–20]. Furthermore, investigat-
ing spin squeezing is also helpful to gain a deeper understand-
ing of the correlations, entanglement, and quantum informa-
tion processing among particles in quantum systems [21–24].

The generation of spin squeezing involves two categories
[25], including nonlinear atomic-atomic collisions in Bose-
Einstein condensates (BECs) [26–36] and atomic-photon
interactions [37–53]. The former exploits the nonlinear effects
of atomic collisions to generate spin-squeezed states, while
the latter mainly involves utilizing squeezing transfer from the
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optical field to spin ensemble [38,46,48,51,52], the coherent
feedback of the optical cavity [47,53], or quantum nondemo-
lition (QND) measurement of the output light [43,49,50,52].

Utilizing bosonic atoms to generate spin squeezing can
result in more losses due to collisions [54–56], hence it is
essential to explore the use of spinful fermions to achieve
spin squeezing. Due to the similarity between the light-matter
interaction and the spin-spin interaction, the central spin sys-
tems can also induce a one-axis twisting (OAT) interaction
under certain conditions, thus it can be regarded as a promis-
ing alternative model to realize spin squeezing. The scheme
proposed in Ref. [57] innovatively employed a similar ap-
proach to achieve spin squeezing in a quantum dot composed
of an electron and a large ensemble of nuclear spins. However,
the mechanism of inducing the effective one-axis twisting
interaction in central spin systems is still ambiguous, thus, we
employ the Schrieffer-Wolff transformation to rigorously il-
lustrate the generation mechanism of the OAT interaction and
extend it to the anisotropic case. We find that when the ratio of
the transition frequency of the central spin to that of the bath
spin tends to infinity, the anisotropic central spin model can
be mapped to the anisotropic Lipkin-Meshkov-Glick (LMG)
model [58], where the OAT interaction in the Hamiltonian
can dynamically generate spin squeezing. In addition, there
exists a quantum phase transition (QPT) in this anisotropic
central spin model, and its quantum criticality can be viewed
as a quantum resource for quantum metrology. Thus we in-
vestigate the finite-size behavior around the critical point and
numerically calculate the critical exponent of the quantum
Fisher information (QFI). It is found that when the frequency
ratio tends to infinity, the critical adiabatic dimension of the
central spin model become equal to those of the LMG model,
however, as the frequency ratio decreases, the corresponding
exponent will decay to zero.
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This paper is organized as follows. In Sec. II, we give
the derivation of the mapping between the anisotropic central
spin model and the anisotropic LMG model. In Sec. III, we
investigate the spin squeezing and quantum phase transitions
of the central spin model under both isotropic and anisotropic
conditions. In Sec. IV, we discuss the quantum Fisher infor-
mation and its critical exponent of the ground state in the
anisotropic central spin model. Finally, we give a conclusion
in Sec. V.

II. MODEL

The central spin model can be described as an ensemble of
N identical spin- 1

2 particles with a total spin of I = N/2 inter-
acting with a central spin- 1

2 particle. This model is discussed
in Refs. [59–65] and its Hamiltonian can be written as (we set
h̄ = 1)

H = �

2
σ (0)

z + ω

2

N∑
k=1

σ (k)
z +

N∑
k=1

(
Ax

2
σ (k)

x σ (0)
x

+ Ay

2
σ (k)

y σ (0)
y + Az

2
σ (k)

z σ (0)
z

)
, (1)

where � and ω are the transition frequencies of the central
spin and bath spins induced by an external magnetic field,
respectively. Ai (i = x, y, z) represents the strength of the in-
teraction between the central spin and bath spins in different
directions. Here, σ

(0)
i represents the Pauli operator of the cen-

tral spin and σ
(k)
i (k �= 0, i = x, y, z) is the ith Pauli operator

of the bath spins. The central spin model is widely used to
study the spin-spin interactions in quantum dots [62,62–64]
and nitrogen-vacancy centers [65]. Some intriguing physical
phenomena, such as collapse and revival [59,60], the super-
radiance effect [59], and dissipative phase transitions [66],
emerge within this model. In this paper, we mainly focus on
the anisotropic model, that is, the coupling strength of the X
and Y directions is different. Hence we set Ax = (1 + λ)A,
Ay = (1 − λ)A, and Az = 0, and Eq. (1) can be rewritten as

H = �

2
σz + ωIz + A[(I+σ− + I−σ+) + λ(I+σ+ + I−σ−)],

(2)

where σ (0)
z ≡ σz, Ii = 1

2

∑N
k=1 σ

(k)
i , and λ is the anisotropy

parameter. Note that the Hamiltonian in Eq. (2) com-
mutes with the operators P1 = exp[iπ (σz/2 + Iz + N/2)] and
P2 = �N

i=0σ
(i)
z , i.e., [H,P1] = [H,P2] = 0, indicating that

it possesses the Z2 symmetry (spin-flip symmetry). This Z2

symmetry also leads to the following consequence for any
eigenstates of P2 that satisfy [67,68]〈

N∑
i=0

σ (i)
x

〉
=

〈
N∑

i=0

σ (i)
y

〉
= 0. (3)

It can be seen that if the anisotropy parameter λ = 1, then
the total magnetization M = σz/2 + Iz remains invariant un-
der the action of this Hamiltonian. This allows us to find
a two-dimensional subspace to solve the eigenstates of the
Hamiltonian in Eq. (2). However, if λ �= 1, then such a closed
subspace does not exist, which complicates further analysis of

this model. To this end, we apply a Schrieffer-Wolff transfor-
mation eS with S = −iA(1 + λ)/�Ixσy + iA(1 − λ)/�Iyσx to
Eq. (2), and in the limit of η = �/ω → ∞ we obtain

H = �

2
σz + γzIz + 1

N

(
γxI2

x + γyI2
y

)
σz, (4)

where

γx = g̃2ω(1 + λ)2

4
, γy = g̃2ω(1 − λ)2

4
, (5)

γz = ω − g̃2 (1 + λ)(1 − λ)ω

4N
, (6)

g̃ = 2A
√

N√
�ω

. (7)

Here, g̃ in Eq. (7) is a dimensionless coupling strength pa-
rameter. It can be seen that the Hamiltonian in Eq. (4) is
block-diagonal with respect to spin states and its low-energy
effective Hamiltonian in the spin-down subspace is

H↓ = −�

2
+ γzIz − 1

N

(
γxI2

x + γyI2
y

)
. (8)

One can see that Eq. (8) is exactly the Hamiltonian of the
anisotropic LMG model. In other words, there exists a map-
ping between the anisotropic model and the LMG model in
the limit of η → ∞. The detailed derivation of the above
process is presented in Appendix A. A similar method for
generating spin squeezing has been discussed in Ref. [57].
Here, we present an explicit mapping relationship coupled
with the corresponding derivation process.

III. SPIN SQUEEZING AND QUANTUM PHASE
TRANSITIONS IN CENTRAL SPIN MODEL

In this section, we will discuss the spin squeezing and
quantum phase transition in the anisotropic central spin
model. We will begin by introducing the two commonly used
definitions of spin squeezing proposed by Kitagawa et al. [69]
and Wineland et al. [70], which are given by

ξ 2
S = 4 min(�2I�n⊥ )

N
, (9)

and

ξ 2
R = N min(�2I�n⊥ )

|〈�I〉|2 , (10)

where �n⊥ refers to an axis perpendicular to the mean spin
direction 〈�I〉 with �I = (Ix, Iy, Iz ), �2I�n⊥ is the variance of
I�n⊥ = �I · �n⊥, and the minimization is over all directions �n⊥. If
ξ 2

S < 1 or ξ 2
R < 1, it implies that this state is a spin-squeezed

state. Moreover, there exist other definitions of spin-squeezing
parameters, as discussed in Refs. [23,26,71–74], which have
been employed to investigate the relationship between entan-
glement and spin squeezing. In the following, we will analyze
the spin squeezing in the isotropic (λ = 0) and anisotropic
(λ �= 0) cases separately.
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A. Isotropic case

For λ = 0, the Hamiltonian in Eq. (2) becomes

H = �

2
σz + ωIz + g̃

2

√
�ω

N
(I+σ− + I−σ+). (11)

We can find that the above Hamiltonian remains invariant
under the action of � = exp[iθ (σz/2 + Iz + N/2)], indicating
that it possesses U (1) symmetry. In Sec. II, we mention that
the Hamiltonian in Eq. (11) can be solved by utilizing a closed
subspace. The analytical solution of isotropic case has been
discussed in detail in Refs. [60,61].

First, we will briefly review the results presented in
Ref. [61] and calculate the spin-squeezing parameters of the
ground state in the isotropic case. Reference [61] shows that
there exists a normal-to-superradiant phase transition in the
limit of η → ∞ and N → ∞, and the critical point is g̃c =
2/(1 + λ) = 2. For further analysis, we introduce the Dicke
state |n〉 ≡ |N

2 ,−N
2 + n〉 (n ∈ [0, N]), which is the eigenstate

of the operators I2 and Iz. For η 
 1 and N 
 1, the ground
state is | ↓, 0〉 ≡ | ↓〉 ⊗ |N

2 ,−N
2 〉 when g̃ < 2, where | ↓〉 (| ↑

〉) is the eigenstate of the operator σz. Immediately, we obtain
ξ 2

S = ξ 2
R = 1 under the condition of g̃ < 2. For g̃ > 2, the

ground state is given by [61]

|ψ−(n)〉 = P̃↑,n−1|↑, n − 1〉 + P̃↓,n|↓, n〉, (12)

where

P̃↑,n−1 = �̃ −
√

1 + �̃2√
2(1 + �̃2) − 2�̃

√
1 + �̃2

, (13)

P̃↓,n = 1√
2(1 + �̃2) − 2�̃

√
1 + �̃2

, (14)

�̃ = � − ω

g̃
√

(N − n + 1)n�ω
, (15)

and

n = η

4
(g̃2 − g̃−2). (16)

Here, n in Eq. (16) can be regarded as the excitation number of
the ground state. Utilizing the above equations, we can obtain
the spin-squeezing parameters of the ground state for η 
 1,
which are

ξ 2
S = −2

(
n − N

2

)2

N
+ N

2
+ 1, (17)

and

ξ 2
R = −N

2
+ N2(N + 2)

8
(
n − N

2

)2 . (18)

The derivation of the above equations is provided in Ap-
pendix B. The analytical results of Eqs. (17) and (18) are
shown in Fig. 1. One can see that the squeezing parameters ξ 2

S
and ξ 2

R remain 1 when g̃ < g̃c, and they begin to continuously
increase after crossing the critical point g̃c, which implies
that the squeezing parameters can be used as an indicator to
characterize the phase transition [25,68,75]. Apart from this,
we can also find that the squeezing parameters of the central
spin model tend to approach those of the LMG model as the
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FIG. 1. Spin-squeezing parameters ξ 2
S and ξ 2

R of the ground state
for the isotropic case as functions of g̃ with N = 200. The first row
[(a) and (b)] corresponds to the cases of spin-squeezing parameter
ξ 2

S with η = 103 and η = 105, respectively. The second row [(c) and
(d)] corresponds to the cases of spin-squeezing parameter ξ 2

R with
η = 103 and η = 105, respectively. The solid lines are the results of
the LMG model and the dashed lines are the results of the central
spin model.

frequency ratio η increases. As shown in Figs. 1(b) and 1(d),
the two spin-squeezing parameters are essentially consistent
when the frequency ratio is η = 105.

However, from the above analysis, we can find that the
ground state of the central spin model is not a spin-squeezed
state due to ξ 2

R � ξ 2
S � 1. Subsequently, we will explore

the possibility of generating spin-squeezed states through a
dynamical approach. We choose |↓〉 ⊗ |ψcs〉 as the initial
state, where |ψcs〉 is the spin coherent state, i.e., |ψcs〉 =
⊗N

k=0[cos(θ0/2)|↑〉k + eiφ0 (θ0/2)|↓〉k], and the exact solution
of this dynamical process has been provided in Ref. [60],
which is

|ψ f (t )〉 =
N∑

m=0

√
Cm

N e−i(− N
2 +m− 1

2 )ωt

(
cos

θ0

2

)m(
sin

θ0

2

)N−m

× (Pm
↓ |↓, m〉 + Pm

↑ |↑, m − 1〉), (19)

where Pm
↓ = i� sin(�mt/2)/�m + cos(�mt/2), Pm

↑ =
−i2

√
kmA sin(�mt/2)/�m, and �m =

√
�2 + 4kmA2

with km = m(N − m + 1). Note that we set φ0 = 0
for simplicity, and the mean spin direction is �n0 =
(sin θ cos φ, sin θ sin φ, cos θ ), while the directions
perpendicular to it are given by �n1 = (− sin φ, cos φ, 0)
and �n2 = (cos θ cos φ, cos θ sin φ,− sin θ ), where the
parameters θ (t ) and φ(t ) are functions of evolution time
t . The spin-squeezing parameters are given by [76]

ξ 2
S = 2(C − √

A2 + B2)

N
, (20)
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FIG. 2. Time evolution of the spin-squeezing parameters ξ 2
S [(a)]

and ξ 2
R [(b)] for different frequency ratios η. The parameters cho-

sen here are N = 200, ω = 1, and g̃ = 2. The curves from top to
bottom correspond to the spin-squeezing parameter ξ 2

S of the LMG
model (blue solid line) and the central spin model with frequency
ratios η = 103 (yellow dotted line), η = 104 (red dashed-dotted line),
and η = 105 (purple dashed line), respectively. In (a), the bottom
straight line corresponds to the optimal spin-squeezing parameter
ξ 2

S,min (green dashed-dotted line).

and

ξ 2
R = N2

4|〈�I〉|2 ξ 2
S , (21)

where A = 〈I2
�n1

− I2
�n2

〉, B = 〈I�n1 I�n2 − I�n2 I�n1〉, C = 〈I2
�n1

+ I2
�n2

〉.
The values of the above parameters only depend on the fol-
lowing five parameters: 〈Iz〉, 〈I2

z 〉, 〈I+〉, 〈I2
+〉, 〈I+(2Iz + 1)〉

[76]. The specific expressions for the above parameters are
presented in Appendix B. Due to the inequality ξ 2

S � ξ 2
R , as

long as the quantum state satisfies ξ 2
S < 1, then this state can

be regarded as a spin-squeezed state. Therefore, we only need
to compute ξ 2

S from now on.
In Fig. 2, we show time evolution of the spin-squeezing

parameters ξ 2
S and ξ 2

R of the central spin model with different
frequency ratios η. Here, we choose θ0 = π/2 and N is large
enough (N = 200), and the optimal squeezing parameter for
the above model is given by

ξ 2
S,min � 1

2

(
N

3

)− 2
3

, (22)

and the corresponding squeezing time is

tmin � 4 × 3
1
6 N

1
3

g̃2ω
. (23)

In fact, for the OAT interaction, i.e., χ I2
z , it has the following

power-law scalings with respect to N : ξ 2
S,min ∼ N−2/3 and

χtmin ∼ N−2/3 [69,76–78]. From Eqs. (22) and (23), we can
see that the power-law scalings of ξ 2

S,min and tmin (here, χ =
g̃2ω/4N) are the same as the one-axis twisting case when η

is sufficiently large. On the other hand, a substantial detuning
between the central spin and bath spins (�/ω 
 1) can induce
an intraspecies interaction, which is reported in Refs. [57,79].

B. Anisotropic case

Now we consider the anisotropic case, and without loss of
generality we set 0 < λ � 1. For the Hamiltonian in Eq. (2), it
is difficult to obtain its analytical solution. To further analyze
it, we begin with the Hamiltonian in Eq. (8) (η → ∞) and

employ the mean-field approximation [67,68] to obtain the
following mean-field energy,

EMF = 〈ψcs|H |ψcs〉

= Nω

2
cos θ0 − g̃2Nω sin2 θ0

16
(1 + λ2 + 2λ cos 2φ0)

� γxN

4

(
cos θ0 + ω

γx

)2

− Nω2

4γx
− γxN

4
, (24)

where |ψcs〉 is the spin coherent state. In the limit of η →
∞ and N → ∞, the collective spin operators Ii (i = x, y, z)
in Eq. (8) can be treated as classical variables, thus we can
minimize the mean-field energy EMF by varying θ0 and φ0,
thereby distinguishing between the two different phases.

In order to minimize the energy, we find the follow-
ing conditions: (i) For g̃ < 2/(1 + λ), we have θ0 = π

and φ0 is arbitrary; (ii) for g̃ > 2/(1 + λ), we have θ0 =
arccos(−ω/γx ), and φ0 = 0, π . Furthermore, we rotate the
spin operators around the y axis to align the z axis with
the direction of the semiclassical magnetization. The rotated
operators are expressed as Ĩx = cos θ0Ix − sin θ0Iz, Ĩy = Iy,
and Ĩz = sin θ0Ix + cos θ0Iz, and the Hamiltonian in Eq. (8)
becomes

H↓ = − γx

N

[
cos2 θ0 Ĩ2

x + sin2 θ0 Ĩ2
z + sin θ0 cos θ0(Ĩx Ĩz + Ĩz Ĩx )

]
− γy

N
I2
y + γz(− sin θ0 Ĩx + cos θ0 Ĩz ). (25)

Then we apply the Holstein-Primakoff transformation to the
above equation, i.e., Ĩ+ = √

Na, Ĩ− = √
Na†, and Ĩz = N/2 −

a†a, and assume that N is sufficiently large (
√

a†a/N � 1,
γz � ω), then Eq. (25) can be rewritten as

H↓ = −γx

2
cos2 θ0x2 − γy

2
p2 + (γx sin2 θ0 − ω cos θ0)a†a,

(26)

where x = (a† + a)/
√

2 and p = i(a† − a)/
√

2. In the above
derivation, we utilize ω sin θ0 + γx sin θ0 cos θ0 = 0 and keep
the terms up to order (1/N )−1/2, while neglecting the constant
terms and the higher-order terms O[(1/N )1/2].

Similar to the isotropic case, the spin-squeezing parameter
differs before and after the critical point. First, for g̃ < 2/(1 +
λ) and θ0 = π , Eq. (26) becomes

H̄ = ωa†a − 1
2 (γxx2 + γy p2). (27)

Then we use a unitary transformation with a squeezing oper-
ator S (r) = exp[(r/2)(a2 − a†2)] to Eq. (27) and obtain

H̄ ′ = √
(ω − γx )(ω − γy)

(
a†a + 1

2

)
, (28)

where r = 1
4 ln[(ω − γx )/(ω − γy)]. It is worth noting that

the ground state of the Hamiltonian in Eq. (8) satisfies that
〈{Ix, Iy}〉 = 0, thus the spin-squeezing parameter is given by
[68]

ξ 2
S = 4 min

{〈
I2
x

〉
,
〈
I2
y

〉}
N

, (29)

where 〈I2
x 〉 = 〈Ĩ2

x 〉 = Ne−2r/4 and 〈I2
y 〉 = 〈Ĩ2

y 〉 = Ne2r/4. Uti-
lizing the above equations, we ultimately obtain the
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spin-squeezing parameter is given by

ξ 2
S =

(
g̃2

c − g̃2

g̃2
c − γ g̃2

) 1
2

, (30)

where γ = γy/γx. For g̃ > 2/(1 + λ) and θ0 =
arccos(−ω/γx ), Eq. (26) becomes

H̃ = ω

2

(
γx

ω
− ω

γx

)
x2 + g̃2ωλ

2
p2 − γx

2
. (31)

Similarly, by applying a squeezing operator S (r) to Eq. (31),
we obtain

H̃ ′ = ω

√
g̃2λ

(
γx

ω
− ω

γx

)(
a†a + 1

2

)
− γx

2
, (32)

where r = 1
4 ln[(γx/ω − ω/γx )/g̃2λ]. The corresponding

spin-squeezing parameter is

ξ 2
S =

[
1

g̃2λ

(
g̃2

g̃2
c

− g̃2
c

g̃2

)] 1
2

. (33)

For the spin-squeezing parameter ξ 2
R , it can be obtained

through Eq. (21), where

|〈�I〉| =
{N

2 − sinh2 r, g̃ � g̃c,

ω
γx

(
N
2 − sinh2 r

)
, g̃ > g̃c.

(34)

From Eqs. (30) and (33), we can see that ξ 2
S < 1 when

g̃ < 2/
√

(1 + λ)(1 − λ), which implies that one can generate
the spin-squeezed state by preparing the ground state of the
anisotropic central spin model with a large frequency ratio η.
In Fig. 3(a), we present the spin-squeezing parameter ξ 2

S of the
ground state for the anisotropic case varies with g̃. It can be
seen that the spin-squeezing parameter ξ 2

S of the anisotropic
central spin model tends to that of the LMG model as the
frequency ratio η increases.

In Fig. 3(a), it is evident that the optimal squeezing pa-
rameter appears in the vicinity of the critical point. However,
one can see that the analytical expression of ξ 2

S (solid green
line) decreases to zero at the critical point, which means the
results of Eqs. (30) and (33) fail when g̃ approach g̃c. It
implies that merely considering the retained terms in Eq. (26)
is insufficient. In such a case, it is necessary to consider
the higher-order corrections. The calculation method for the
higher-order terms requires the utilization of the continuous
unitary transformation, which is discussed in Ref. [67]. Here,
we directly employ a numerical simulation to calculate the
variation of the optimal spin-squeezing parameter ξ 2

S,min at
the critical point with respect to N , and the corresponding
log-log plot is shown in Fig. 3(b). The slopes of the fitted lines
with different η are separately −0.2334 (η = 103), −0.3096
(η = 104), and −0.3208 (η = 105) for N scaling. In the limit
of η → ∞, we have ξ 2

S,min ∼ N−1/3, which is consistent with
the result of the LMG model in Refs. [25,80].

The spin-squeezing parameters of the dynamic process
with various λ are also investigated by numerical simulation.
In Fig. 3(c), we compare the dynamical evolution of spin-
squeezing parameter ξ 2

S with different values of λ. It is clear
that as the value of λ decreases, the corresponding optimal
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(c)

FIG. 3. (a) Spin-squeezing parameter ξ 2
S of the ground state for

the anisotropic case as functions of g̃ with different frequency ratios
η. Here, we choose N = 200, ω = 1, and λ = 1. The curves from
top to bottom correspond to the spin-squeezing parameter ξ 2

S of the
central spin model with frequency ratios η = 10 (blue dashed-dotted
line), η = 102 (red dashed line), and η = 103 (yellow solid line), the
LMG model (purple dotted line), and the analytical results given
by Eqs. (30) and (33) (solid green line), respectively. (b) Optimal
squeezing parameters ξ 2

S,min of the ground state as functions of ln N
with different frequency ratios η. (c) Time evolution of the spin-
squeezing parameters for different anisotropy parameters. The curves
from top to bottom correspond to λ = 1 (blue circle line), λ = 0.25
(blue circle line), λ = 0.01 (yellow point line), λ = 0 (purple solid
line).

squeezing parameter also decreases. In other words, for λ = 0,
the associated optimal squeezing parameter ξ 2

S,min is minimal.
In summary, our analysis of the above results reveals that,

under the condition of fixed N , the most effective method
for generating the optimal spin-squeezed state is through the
dynamic evolution of the isotropic central spin model. In this
process, it is crucial to make the ratio η between the frequency
of the central spin and that of the bath spin as large as possible.
The corresponding results are shown in Table I.

IV. QUANTUM FISHER INFORMATION
AND FINITE-SIZE ANALYSIS

Quantum Fisher information is a core concept in quantum
metrology, and the QFI of the ground state can be regarded

TABLE I. Spin squeezing ξ 2
S generated by the ground state and

dynamical evolution in the isotropic (λ = 0) and anisotropic (λ �= 0)
cases.

ξ 2
S Isotropic Anisotropic

Ground state >1 ∼N− 1
3

Dynamical evolution 1
2 ( N

3 )−
2
3 > 1

2 ( N
3 )−

2
3
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FIG. 4. (a) QFI of the ground state as functions of g̃ with different
numbers of bath spins N . Here, we choose η = 105, ω = 1, λ = 1,
and g̃c = 1. The curves from top to bottom correspond to the QFI
of the central spin model with N = 750 (purple line), N = 1000
(yellow line), and N = 1250 (red line) and N = 1250 (blue line),
respectively. (b) Critical exponent μ within various system sizes
[N1, N2]. The curves from top to bottom correspond to the cases of
η = 1000 (blue line), η = 10 000 (red line), and η = 50 000 (yellow
line), respectively. In addition, the case of the LMG model is also
presented for comparison (top blue line).

as an indicator to detect the quantum phase transition even
without knowing the information related to the order param-
eter [81]. Therefore, in this section, we will utilize QFI to
analyze the finite-size behavior of the anisotropic central spin
model. The finite-size analysis of the isotropic case (λ = 0)
has been discussed in Ref. [61], thus here we will focus on the
anisotropic case (λ �= 0).

For a pure state |ψ (g̃)〉, the QFI with respect to parameter
g̃ is give by

F (g̃) = 4〈∂g̃ψ |∂g̃ψ〉 − 4|〈∂g̃ψ |ψ〉|2, (35)

and its value is four times the fidelity susceptibility [81,82].
According to the conclusion in Ref. [83], for the LMG model,
the QFI of the ground state around the critical point presents
scaling behavior as

F (g̃m ) ∝ Nμ, (36)

where g̃m is the position of the maximal QFI, N is the size
of the system, and μ is the critical adiabatic dimension with
a specific value of μ = 4/3 [81]. For the anisotropic central
spin model, two conditions are required for a phase transition
to occur, namely, the frequency ratio η and the size of the
system N tend to infinity. Nevertheless, when the frequency
ratio η is finite, the scaling behavior of F (g̃m ) in Eq. (36) is
still unknown. Therefore, we utilize the exact diagonalization
to obtain the ground state and calculate the critical adiabatic
dimension μ for a finite η.

In Fig. 4(a), we depict the variation of the QFI of the
ground state for the anisotropic central spin model with differ-
ent numbers of bath spins. It is observed that as N increases,
the maximum values of the QFI exhibits a progressively
growing trend, and their corresponding positions gradually
approach the critical point. The critical adiabatic dimension
μ within different system size ranges [N1, N2] is provided
in Fig. 4(b). It is evident that, as the frequency ratio η in-
creases, the value of μ converges to 4/3 when N is sufficiently
large, which corresponds precisely to the critical adiabatic

dimension of the LMG model (solid blue line) [83]. On the
other hand, we find that if η is not sufficiently large, the value
of μ will rapidly decrease with increasing N until it converges
to zero. Namely, if N tends to infinity while η remains finite,
the corresponding μ will decay to zero, which implies that the
quantum phase transition will not occur. Hence, the condition
for the phase transition to occur requires η and N both tend
towards infinity.

V. CONCLUSION

In summary, we have analyzed the spin squeezing and
quantum phase transition in the anisotropic central spin
model. Utilizing the Schrieffer-Wolff transformation, we an-
alytically established the mapping between the anisotropic
central spin model and the anisotropic LMG model. Mean-
while, it is shown that the substantial detuning between the
central spin and bath spins can induce an intraspecies nonlin-
ear interaction. Inspired by the above results, we investigated
the potential pathways for generating spin-squeezed states
with central spin systems. Through comparisons, we found
that the dynamics initiated with a spin coherent state can
generate the optimal spin-squeezed state. Furthermore, when
the anisotropy parameter λ is zero, the optimal spin-squeezing
parameter scales with the system size as N−2/3. The critical
adiabatic dimension μ of the quantum Fisher information
around the critical point has also been employed to study
the finite-size behavior in the anisotropic central spin model.
Specifically, we obtained μ = 4/3 as η and N approach infin-
ity, however, when η is finite, it is found that the value of μ

decreases to zero with the increase of N . This work provides
another potential pathway for generating spin-squeezed states
in practical physical systems, simultaneously offering a fresh
perspective for our understanding of the relationship between
spin squeezing and quantum criticality.
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APPENDIX A: DERIVATION OF MAPPING BETWEEN
CENTRAL SPIN MODEL AND LMG MODEL

In this Appendix, we give the derivation of the mapping
between the central spin model and the LMG model. First of
all, Eq. (2) can be rewritten as

H = H0 + AV, (A1)

where

H0 = �

2
σz + ωIz, (A2)

V = (1 + λ)Ixσx + (1 − λ)Iyσy. (A3)

Note that H0 is diagonal with respect to the spin subspace
while V is off-diagonal. Then we perform the Schrieffer-Wolff
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transformation eS on Eq. (A1) and obtain [84,85]

H ′ = e−SHeS =
∞∑

k=0

1

k!
[H, S](k), (A4)

where [H, S](k) = [[H, S](k−1), S], [H, S](0) = H , and the gen-
erator S is an anti-Hermitian and block-off-diagonal operator.
In order to diagonalize the Hamiltonian H ′, we need the block-
off-diagonal part of H ′ to be zero up to second order in A,
which leads to the follow relationship

[H0, S] = −AV, (A5)

and we find the expression of S satisfying Eq. (A5) is as
follows,

S = −i
A(1 + λ)

�
Ixσy + i

A(1 − λ)

�
Iyσx. (A6)

In the limit of η → ∞, the Hamiltonian in Eq. (A4) becomes

H ′ = H0 + A

2
[V, S]

= �

2
σz +

[
ω − A2 (1 + λ)(1 − λ)

�

]
Iz

+ A2

[
(1 + λ)2

�
I2
x σz + (1 − λ)2

�
I2
y σz

]
. (A7)

Furthermore, we set g̃ = 2A
√

N/�ω, γx = g̃2ω(1 + λ)2/4,
γy = g̃2ω(1 − λ)2/4, and finally we get the Hamiltonian in
Eq. (4), which precisely corresponds to the Hamiltonian of
the anisotropic LMG model.

APPENDIX B: DERIVATION OF SPIN-SQUEEZING
PARAMETER IN DYNAMICAL PROCESS

First of all, we give the derivation of Eqs. (17) and (18).
For the ground state of the isotropic central spin model, the
mean spin direction is always along the z axis, thus we have
〈Ix〉 = 〈Iy〉 = 0, and then we obtain [25]

min(�2I�n⊥ ) = 1
2

[〈
I2
x + I2

y

〉 − √(〈
I2
x − I2

y

〉)2 + 4 Cov(Ix, Iy)2
]

= 1
2

〈
I2
x + I2

y

〉
, (B1)

where Cov(Ix, Iy) = 1
2 〈IxIy + IyIx〉.

For η → ∞, we make an approximation that P̃↑,n−1 �
0, P̃↓,n � 1, and Eq. (B1) becomes

min(�2I�n⊥ ) = 1

2

〈
I2 − I2

z

〉
= −1

2

(
n − N

2

)2

+ N2

8
+ N

4
. (B2)

Utilizing Eq. (B2) we can get Eqs. (17) and (18).
Then we give the derivation of the time evolution of spin-

squeezing parameters ξ 2
S and ξ 2

R . The initial state we choose is
given in Eq. (19), and under the condition of η 
 1 we have

〈Iz〉 = N

2
cos θ0, (B3)〈

I2
z

〉 = 1
8 N[N + 1 + (N − 1) cos 2θ0]. (B4)

Then we make the following approximations: �n � �,
Pn

↓ � ei �nt
2 , Pn

↑ � 0, and �n � � + 2knA2. We obtain

〈I+〉 �
N−1∑
n=0

Cn
N−1N

(
cos2 θ0

2

)n(
sin2 θ0

2

)N−1−n

e−i (N−2n)A2t
� eiωt cot

θ0

2

= 1

2
Nei(ω− A2

�
)t

(
cos

A2t

�
+ i sin

A2t

�
cos θ0

)N−1

sin θ0, (B5)

〈I2
+〉 � e2iωt

N−1∑
n=0

(
cos2 θ0

2

)n(
sin2 θ0

2

)N−n

Cn
N−2N (N − 1)e

−i2(N−2n−1)A2t
� cot2 θ0

2

= 1

4
e2i(ω− A2

�
)t N (N − 1)

[
cos

(
2A2t

�

)
+ i cos θ0 sin

(
2A2t

�

)]N−2

sin2 θ0, (B6)

2〈I+Iz〉 + 〈I+〉 �
N−1∑
n=0

Cn
N−1N

(
cos2 θ0

2

)n(
sin2 θ0

2

)N−n

e−i (N−2n)A2t
� eiωt

[
2

(
−N

2
+ n

)
+ 1

]
cot

θ0

2

= 1

2
ei(ω− A2

�
)t N (N − 1)

[
cos

(
A2t

�

)
+ i cos θ0 sin

(
A2t

�

)]N−2[
cos θ0 cos

(
A2t

�

)
+ i sin

(
A2t

�

)]
sin θ0. (B7)

For the sake of simplicity, we choose θ0 = π/2, and the directions perpendicular to the mean spin direction �n0 are �n1 =
(− sin φ, cos φ, 0), �n2 = (0, 0, 1), and φ = ωt . Therefore, the spin-squeezing parameter is given by [25]

ξ 2
S = 2

N

[〈
I2
�n1

+ I2
�n2

〉 − √(〈
I2
�n1

− I2
�n2

〉)2 + 4 Cov(I�n1 , I�n2 )2
]

= 2

N
(C −

√
A2 + B2), (B8)
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where

A = 1

8
(N − 1)N

[
1 − cos

(
A2t

�

)N−2
]
, (B9)

B = N

2
(N − 1) cos

(
A2t

�

)N−2

sin

(
A2t

�

)
, (B10)

C = A + N

2
. (B11)

By substituting Eqs. (B9)–(B11) into Eq. (20), we can obtain the analytical solution for the time evolution of the spin-squeezing
parameter ξ 2

S .
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