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Robustness of the projected squeezed state protocol

B. J. Alexander ,1,2,* J. J. Bollinger ,3 and M. S. Tame 1

1Department of Physics, Stellenbosch University, Matieland 7602, South Africa
2Korea Research Institute of Standards and Science, Daejeon 34113, Korea

3National Institute of Standards and Technology, Boulder, Colorado 80305, USA

(Received 6 November 2023; accepted 9 April 2024; published 8 May 2024)

Projected squeezed (PS) states are multipartite entangled states generated by unitary spin squeezing, followed
by a collective quantum measurement and postselection. They can lead to an appreciable decrease in the state
preparation time of the maximally entangled N-qubit Greenberger-Horne-Zeilinger (GHZ) state when compared
to deterministic preparation by unitary transformations in physical systems where spin squeezing can be realized,
such as ion, neutral atom, and superconducting qubits. Here we simulate the generation of PS states in nonideal
experimental conditions with relevant decoherence channels. By employing the Kraus operator method and
quantum trajectory method to reduce the computational complexity, we assess the quantum Fisher information
and overlap fidelity with an ideal GHZ state. Our findings highlight PS states as useful metrological resources,
demonstrating a robustness against environmental effects with increasing qubit number N .
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I. INTRODUCTION

When implementing quantum protocols in realistic phys-
ical systems, the quantum resource state is invariably in-
fluenced by the system’s interaction with its surrounding
environment [1,2]. Thus, to ensure the reliability of the results,
it is necessary to account for the impact of the coupling
between the system and the environment. Emerging quan-
tum technologies rely principally on quantum phenomena
such as entanglement to surpass classical limitations [3]. It
is therefore an essential task to develop robust protocols for
producing and controlling classes of highly entangled quan-
tum states in the presence of experimentally relevant noise
sources. Typically, the entanglement between the system and
the environment leads to a loss of quantum coherence, known
as quantum decoherence.

An important entangled state in quantum information
protocols is the maximally entangled N-qubit Greenberger-
Horne-Zeilinger (GHZ) state [4], given as

|GHZ〉 := |0〉⊗N + |1〉⊗N

√
2

, (1)

where |0〉 and |1〉 are the computational basis states of a
single qubit. The symbol ⊗N denotes the tensor product
of the individual states of the composite N-qubit system.
This is a versatile entangled state with applications in vari-
ous areas of quantum information processing [5], including
quantum metrology [6,7], quantum cryptography [8,9], and
quantum communication [10,11]. Recently, this state has been
experimentally realized deterministically with superconduct-
ing qubits by engineering a one-axis twisting Hamiltonian
[12]. Experimental realizations have also been reported with
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trapped ions [13,14] and Rydberg atoms [15]. Further the-
oretical proposals that utilize spin squeezing to generate
highly entangled GHZ-type states include ultracold atoms
[16], phonon-spin ensembles [17], Bose-Einstein condensates
[18], and trapped ions [19]. For examples of measurement-
based schemes for generating GHZ states, see Refs. [20,21].

In this study we build upon our previous work that intro-
duced a method for generating, from an initial separable state,
a class of GHZ-type states that exhibit genuine multipartite
entanglement [22], known as projected squeezed (PS) states
(see Alexander et al. in Ref. [23]). Essential steps of the
PS state generation protocol include strong spin squeezing to
generate a spread or wrap of the composite spin probability
distribution around the Bloch sphere, followed by a collective
quantum state measurement of a component of the composite
spin. Based on the measured value of the spin component, the
resulting spin state can approximate a superposition of two
different coherent spin states pointing in opposite directions,
resembling the GHZ state given in Eq. (1). Atomic spins in
optical cavities provide an example of a system where the
required collective spin measurement can be implemented
[24–27].

We explore the generation and properties of PS states
within the context of decoherence, focusing on their advan-
tages over deterministic preparation methods for achieving the
GHZ state. PS states, generated through unitary spin squeez-
ing and postselection, offer a significant decrease in state
preparation time compared to unitary evolution for systems
with large N or high decoherence. The class of PS states
described in Ref. [23] was shown to yield favorable overlap
fidelity with the GHZ state of approximately F � 0.90 for
N � 30, with an upward monotonic trend observed for in-
creasing system size N .

Our investigation involves simulating the generation
of PS states under nonideal experimental conditions.
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Utilizing the Kraus operator method and the quantum tra-
jectory method to reduce computational complexity, we
evaluate the quantum Fisher information and overlap fi-
delity of PS states with an ideal GHZ state. To analyze
the impact of decoherence during the PS state generation,
we consider experimentally relevant decoherence channels
[19,28]. Our objective is to demonstrate the superior perfor-
mance of the PS state protocol compared to deterministically
generated macroscopic-superposition states (MSSs) in the
presence of decoherence, particularly as the system size N
increases. It is worth noting that the GHZ state can be de-
rived from the MSS state using a sequence of local unitary
operations [7,29].

The outcomes of our study emphasize the utility of PS
states as valuable metrological resources. We demonstrate
their scalability and robustness against environmental effects,
showcasing their potential for reliable quantum information
processing. By providing a comprehensive analysis of the
implications and performance of PS states under decoherence,
our findings contribute to advancing the understanding and
practical application of these states.

In Sec. II, we provide a brief overview of the requisite
concepts in quantum information theory. In particular, we
define the important metrological quantities of the fidelity of
quantum states and the quantum Fisher information (QFI).
These definitions are necessary for subsequent discussions
and analyses.

Section III presents a detailed step-by-step description of
the modified PS state protocol, along with an elaboration on
the unitary MSS protocol, which is used as a benchmark for
comparison. We aim to provide a clear understanding of the
procedures involved and their relevance to our research ob-
jectives. Additionally, we contextualize the motivation behind
our research, highlighting the modification of the original PS
state protocol for the purpose of yielding superior resource
states for quantum sensing.

In Sec. IV, we analyze the computational complexity of
the ideal decoherence-free PS state protocol in comparison
to the protocol incorporating relevant decoherence channels.
Furthermore, we describe how the reduction in computational
complexity serves as a compelling reason for adopting the
quantum trajectory method.

In Sec. V, we describe and motivate the quantum trajec-
tory method, used to simulate open quantum systems. Here
we highlight the advantages and rationale of utilizing this
method, underscoring its relevance in efficiently evaluating
central metrological quantities.

To facilitate the practical implementation, Sec. VI presents
the numerical methods utilized for executing the Kraus oper-
ator sum method and quantum trajectory method. We provide
a detailed description, considering relevant experimental pa-
rameters, with a particular focus on their applicability within
a trapped-ion experimental setup. This section provides a
comprehensive comparative analysis of the efficiency between
the PS state protocol, accounting for decoherence effects,
and the unitary MSS generating protocol, which serves as
a benchmark for reference. By illustrating these results, we
highlight the influence of decoherence on the performance of
the PS state protocol, further emphasizing the significance of
our modified approach.

Section VII offers a discussion and summary of the key
findings presented in the study.

II. PRELIMINARIES

To quantify the notion of “closeness” between two quan-
tum states, we consider the overlap fidelity. Although not a
metric, as it does not fulfill the triangle inequality, it serves
as a useful and widely used quantum state comparative tool.
The overlap fidelity, similar to the classical Bhattacharyya
distance measure [30], operates as a statistical distance for
quantifying the similarity between two probability distribu-
tions. Specifically, the comparison focuses on the marginal
probability distributions (or probability amplitudes) of two
quantum states [2], rather than their joint distribution. Given
density operators ρ and σ , the fidelity is defined as

F (ρ, σ ) := (tr
√√

ρσ
√

ρ)2, (2)

where
√· denotes the matrix square root. Given pure states

ρ = |ψ〉〈ψ | and σ = |φ〉〈φ|, this simplifies to

F (ρ, σ ) = |〈φ|ψ〉|2. (3)

The fidelity is a useful and well-established quantity for mea-
suring the closeness of two quantum states [2]. Hereafter, the
context of the fidelity will mainly be with respect to the PS
and GHZ states, which we will simply denote as F .

An entanglement witness is an operator that is used to dis-
tinguish between multipartite entangled states and separable
states. An Hermitian operator Ŵ is an entanglement witness if
it yields non-negative expectation values for separable states,
and negative values for some entangled states,

Tr(Ŵ ρ)

{
� 0 for all separable states,
< 0 for some entangled states. (4)

In Ref. [22], a detailed discussion is provided on constructing
entanglement witnesses, with a particular focus on states that
exhibit high fidelity with the GHZ state.

An example of a projector witness that detects genuine
multipartite entanglement (GME) of states close to the GHZ
state [22] reads as

ŴGHZ := 1
2 1̂ − |GHZ〉〈GHZ|. (5)

This entanglement witness provides a sufficient condition for
GME based on the state’s fidelity with the GHZ state, specif-
ically implying that F > 1

2 indicates the presence of GME.
Furthermore, experimental implementations of the concept of
entanglement witnesses have been reported [31,32].

The quantum Fisher information (QFI) [33,34], which
is the quantum analog of the classical Fisher information
[35,36], is an important quantity in quantum metrology
[37,38]. Furthermore, there exist established theoretical
benchmarks that connect the multipartite entanglement of a
quantum state with its QFI [39]. More commonly, the QFI is
used to quantify the amount of information about a parameter
encoded in a state via a unitary evolution. Consider some
unitary transformation given by

Û (θ ′) := exp(−iĤθ ′t/h̄), (6)
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where Ĥ denotes some Hamiltonian operator, while θ ′ denotes
the unitary phase parameter. For a simplified representation
we consider the phase parameter θ := θ ′t/h̄, which depends
on the evolution time and the system properties, yielding
Û (θ ) = exp(−iĤθ ) from Eq. (6). The QFI with respect to Ĥ ,
for some state ρ, is given by (see Refs. [34–36])

Q(ρ, Ĥ ) : = 2
∑
j,k=1

λ j+λk �=0

(λ j − λk )2

λ j + λk
|〈 j|Ĥ |k〉|2, (7)

where λi and |i〉 are the eigenvalues and eigenvectors of ρ,
respectively.

The QFI exhibits convexity [40] and, therefore, for the
mixed state ρ = pρ1 + (1 − p)ρ2, the following inequality
holds:

Q(ρ, Ĥ ) � pQ(ρ1, Ĥ ) + (1 − p)Q(ρ2, Ĥ ). (8)

Furthermore, it is known that the QFI of a state ρ with respect
to some Hamiltonian Ĥ satisfies the inequality

Q(ρ, Ĥ ) � 4(�H )2, (9)

where (�H )2 = 〈(�Ĥ )2〉 = 〈Ĥ2〉 − 〈Ĥ〉2 represents the un-
certainty (or variance) in the measurement of the system’s
energy, and where equality holds for pure states [34].

Quantum states with favorable QFI are suitable resource
states for the canonical phase estimation task, which essen-
tially seeks to estimate, to highest precision, the encoded
phase 0 < θ � 1 of a state ρ after some unitary transforma-
tion, that is, Û (θ ) : ρ 	→ Û (θ )ρÛ †(θ ), with Û (θ ) defined by
Eq. (6). The QFI constrains the achievable estimation preci-
sion of θ by setting a lower-bound on the estimator variance,
which is defined by

(�θ )2 := (�A)2

|∂θ 〈Â〉|2 , (10)

where 〈Â〉 and (�A)2 := 〈Â2〉 − 〈Â〉2 denote the expectation
value and variance of a chosen measurement operator Â, re-
spectively. The phase estimation precision, for any single-shot
measurement, is bound by the well-known quantum Cramér-
Rao bound [34–36], which reads as

(�θ )2 � 1

Q(ρ, Ĥ )
. (11)

III. IDEAL PS STATE PROTOCOL

In Ref. [23] the ideal decoherence-free PS state protocol
is introduced and described in the subspace spanned by the
symmetric Dicke basis states [41]. This subspace is no longer
suitable when including decoherence channels since, as a
consequence, the state can migrate out of the subspace. Our
approach involves modifying the original set of measurement
operators introduced in Ref. [23]. This modification enables
the PS state protocol to be well defined in the total Hilbert
space, even with the inclusion of decoherence. Additionally,
we reduce the magnitude of spin squeezing and incorporate
an extra collective Pauli-X rotation in the final step.

For an N-qubit system, the collective Pauli-X rotation op-
erator is defined by

Ĵx := 1

2

N∑
i=1

σ̂ x
i , (12)

where σ̂ x
i denotes the Pauli-X operator associated with the ith

qubit. The collective Pauli-Y and Pauli-Z rotation operators
are similarly defined, and denoted by Ĵy and Ĵz, respectively.
The modified protocol we present in this work achieves supe-
rior fidelity and QFI results for all N , while requiring reduced
spin squeezing compared to the findings reported in Ref. [23].
These results are described in detail in subsequent sections.

The dimension of the total Hilbert space scales exponen-
tially with the system size (∼2N ), while the dimension of the
symmetric subspace spanned by the Dicke basis has linear
scaling (∼N + 1). This increase in computational complexity
restricts our ability to simulate larger system sizes within a
reasonable time frame. To overcome these computational lim-
itations, we utilize the quantum trajectory method [28,42,43],
which allows us to model the protocol as a quantum state
vector, as opposed to the more computationally expensive
density operator. As a result, we are able to evaluate the
QFI using the simpler and computationally cheaper Eq. (9)
for pure states, as opposed to Eq. (7), which requires diago-
nalizing the density operator, the computational complexity
of which increases substantially as a function of the state
space dimension. Based on Eqs. (8) and (11), the average QFI
obtained from the quantum trajectories establishes a lower
bound on the precision (�θ )2. The time required to com-
putationally simulate the density operator evolution is only
practical for low system sizes of the order N � 10. For larger
N , we used the quantum trajectory method to simulate the
preparation of PS states while taking into account experi-
mentally relevant decoherence channels [19]. The PS states
are a class of highly entangled N-qubit states [23], generated
by a particular sequence of collective rotations, unitary spin
squeezing [44], and collective quantum measurement with
postselection. The protocol for producing PS states, for arbi-
trary N , can be summarized by the following sequential steps
(see Fig. 1):

Step 1. Initialize a pure N-qubit all spin-up state,

|ψ (0)〉 = | ↑〉 ⊗ · · · ⊗ | ↑〉︸ ︷︷ ︸
N qubits

, (13)

where | ↑〉 := |0〉 and | ↓〉 := |1〉.
Step 2. To form the coherent spin state, denoted by |CS〉,

execute a π/2 collective Ĵx rotation on the all spin-up state,

|ψ (0)〉 	→ exp

(
− i

π

2
Ĵx

)
|ψ (0)〉 =: |CS〉. (14)

Step 3. The coherent spin state then undergoes unitary spin
squeezing characterized by the one-axis twisting operator

ÛSq(χt ) := exp
( − iχt Ĵ2

z

)
, (15)

where χt denotes the strength of the interaction. The one-
axis twisting operator reduces the spin uncertainty of the
state along one spin axis, at the expense of increasing the
uncertainty along an orthogonal spin axis [45]. We squeeze
with sufficient magnitude to yield states with a positive
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FIG. 1. An overview of the PS state protocol. See main text for details.

probability wrap about the Bloch sphere [see the Husimi
quasiprobability distribution in Fig. 2(c)], required for the
later quantum measurement described in step 5. The Husimi
distribution of a state |ψ〉 (see Refs. [45,46]), is the modulus
squared of the projection of the state onto a rotated coher-
ent spin state, that is, H := |〈ψ |exp(−iφĴz )exp(−iθ Ĵx )|CS〉|2,
where θ and φ are, respectively, the polar and azimuthal
angles. This is the chosen phase space quasiprobability dis-
tribution as it is both intuitive for visualizing symmetric
Dicke states [41], and consistent with the original study
[23]. In principle, any quasiprobability distribution could be
used.

Step 4. The squeezed coherent spin state then undergoes a
−π/2 collective Ĵx rotation,

ÛSq(χt )|CS〉 	→ exp

(
i
π

2
Ĵx

)
ÛSq(χt )|CS〉. (16)

See Fig. 2 for Husimi distributions of the state in the premea-
surement steps 1–4.

Step 5. We now perform a quantum measurement de-
scribed by a positive operator-valued measure (POVM) (see
Ref. [47]). The quantum measurement is characterized by a
set of linear positive-semidefinite operators {Âc}c∈R on the
complex Hilbert space. These operators can be expressed as

Âc :=
N∑

m=0

√
Pr

(
N

2
− m

∣∣∣c) ∑
M

∣∣ ↑ · · · ↓ j1 · · · ↓ jm · · · ↑ 〉︸ ︷︷ ︸
N qubits

〈 ↑ · · · ↓ j1 · · · ↓ jm · · · ↑ ∣∣. (17)

In this expression, c ∈ R represents the measurement out-
come, which corresponds to a set with a continuum cardinal-
ity. The summation

∑
M · accounts for all binary permutations

M of length N with m qubits in the spin-down state. The
projector weightings of Eq. (17) are characterized by Gaussian
probability distributions

Pr(x|c) := 1√
2πσ 2

exp

[
− (x − c)2

2σ 2

]
, (18)

where σ 2 � 0 modulates the spread of the probability ampli-
tudes over the projectors that define the measurement. This is
a modification of the set of measurement operators described
in the original study [23]. When considering a modification,
there is a level of freedom in choosing how to distribute the
projector weightings given by Eq. (18) without compromising

the required completeness condition, i.e.,
∫

ÂcÂ†
cdc = 1̂. To

this end, Eq. (17) is a natural extension to the total Hilbert
space of the measurement operators described in Ref. [23].

Appendix A provides the equivalence of the original and
modified measurement operators in the decoherence-free set-
ting, where they are both well defined in the symmetric Dicke
subspace.

Atomic ensembles in optical cavities provide an ex-
perimental system where unitary single-axis twisting and
collective state measurement described by Eqs. (17) and
(18) have been demonstrated with laser-cooled, dilute atomic
gasses [24–27]. Optical cavity measurement techniques can
in principle also be used with ensembles of trapped ions.
In trapped-ion systems, another potential method for execut-
ing the POVM described by Eqs. (17) and (18) is to do a

FIG. 2. The Husimi quasiprobability phase space distributions H of the premeasurement states described by steps 1–4 of the PS state
protocol for N = 10. (a) Initialize to all spin up state |ψ〉 = | ↑〉 ⊗ · · · ⊗ | ↑〉. (b) Step 2: form the coherent spin state by a collective Ĵx

rotation by π

2 rad. (c) Step 3: the coherent spin state undergoes spin squeezing by χt = 0.15. (d) Step 4: the spin squeezed state undergoes a
collective Ĵx rotation by − π

2 rad.
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state-dependent excitation of the ion motion using the optical
dipole force [48]. The optical dipole force is a spin-dependent
force which is derived from the gradient of the potential of an
inhomogeneous electromagnetic field. For two-dimensional
(2D) ion crystals in Penning traps, the optical dipole force
is arranged to act in the z direction (see Refs. [49,50]). If
resonant with the center-of-mass mode, this excites the center-
of-mass mode with a strength proportional to N/2 − m. The
image current induced in the ion trap electrodes is expected to
be proportional to the projection quantum number N/2 − m,
as opposed to the individual ion state. Measuring the image
current induced by the ion crystal motion can therefore in
principle execute the measurement given by Eq. (17). A given
measurement of the image current would then give a fixed c
value, while σ corresponds to the systematic precision with
which the measurement projects out states about the value c.

The postmeasurement state reads as

ÂcρÂ†
c

Tr[Â†
cÂcρ]

(19)

for measurement outcome c, which occurs with probability
Tr[Â†

cÂcρ]. A quantum measurement is an inherently stochas-
tic process and, as such, a desired measurement outcome
requires postselection. Although the term projected squeezed
state is used in this work and in the original study [23], a more
precise description of the quantum measurement outlined in
Eqs. (17) and (18) is as a POVM. This is due to the measure-
ment’s nonorthogonality for different outcomes, continuous
spectrum, and fulfillment of the completeness condition.

In the original study, the optimal measurement outcome
was reported as c ≈ 0. However, with the implementation of
the modified protocol (see step 6), we have found the optimal
measurement outcome to be c ≈ −2.5. The computational
analysis suggests that the optimal postselected measurement
outcome could depend on N , but for the limited system size
interval considered here, we find a common optimal measure-
ment outcome of c ≈ −2.5. In Ref. [23], which describes an
ideal protocol in the Dicke subspace (without the inclusion
of decoherence channels), the optimal measurement outcome
of c ≈ 0 has a clearer geometrical interpretation when rep-
resented as a Husimi distribution than the modified protocol
introduced in this study. This clarity arises from the Dicke
subspace being spanned by symmetric states, with a quoted to-
tal spin squeezing of χt ≈ 0.4 resulting in a probability wrap
about the Bloch sphere. The quoted optimal postselected out-
come of c = 0 can be represented as the projection about the
equator of the multiqubit Bloch sphere, where the projection
probability amplitudes peak around what can be considered as
the central basis state, the Dicke state |N

2 , 0〉. However, with
the inclusion of decoherence channels, the modified protocol,
now presented in the full Hilbert space, essentially describes a
new protocol, with an additional collective Ĵx rotation allow-
ing substantially reduced spin squeezing requirements. This
reduction in spin squeezing results in a shifting of the optimal
measurement outcome. The optimal measurement outcome is
thus a function of the magnitude of total spin squeezing. The
optimal postmeasurement outcome of c = −2.5 has a less
intuitive geometrical interpretation but should rather be re-
garded as a continuous control parameter chosen to maximize

the overlap fidelity with the GHZ state, while minimizing the
required duration of the one-axis squeezing. A comprehensive
motivation of this optimal measurement will be provided.

Furthermore, the modified measurement operator given in
Eq. (17) becomes necessary with the inclusion of decoher-
ence, which generates states lying outside the Dicke manifold
of symmetric spin states. In general, the original measure-
ment operator given in Ref. [23] will not preserve the relative
phase of superposition states in the general 2N -dimensional
Hilbert space spanned by N spins. This modification makes
the measurements more representative of the way they would
be performed in an experiment, with the relative phases pre-
served.

Step 6. Finally, we sequentially perform Ĵy and Ĵx rota-
tions using the computationally determined optimal angles of
π/2 rad and 5.6 rad, respectively. These rotation angles are
observed to be optimal for arbitrary N .

The fidelity F serves as a measure of how closely the
PS state approximates the GHZ state (see Fig. 3 for the
corresponding Husimi distributions for N = 10). The final
Ĵx rotation was not included in the original study [23], but
on further analysis it is shown to consistently yield superior
GHZ overlap fidelity for varied system sizes. This process
allows us to generate a PS state with maximal fidelity F .
Through the utilization of computational methods, we have
determined the optimal values of c ∈ R, σ 2 � 0 [as defined
in Eq. (18)], collective rotation angles, and total squeezing
magnitude χt � 0 that maximize the fidelity F . Moreover,
to simulate and analyze the impact of decoherence during
the PS state protocol, we incorporate experimentally relevant
decoherence channels [19,28].

Our goal is to demonstrate that with relevant experimen-
tal decoherence, for increasing system size N , the PS state
protocol yields increasingly superior fidelity results when
compared to the MSS generating protocol. The MSSs are a
class of entangled states deterministically generated by spin
squeezing the coherent spin state (see Ref. [19]). For even N ,
a subsequent Ĵx rotation by π/2 of the MSS, followed by a
local phase gate S := (1 0

0 i ) on the N th qubit, yields the GHZ
state given by Eq. (1). The MSS is therefore local unitary (LU)
equivalent to the GHZ state, thus yielding entangled quantum
states with GHZ overlap fidelity of unity, which we denote by
FMSS = 1.

We will show that the PS state protocol is a robust scheme
for generating highly entangled quantum states, and a suit-
able alternative to the deterministic unitary MSS scheme for
generating GHZ states. In this way, the MSS scheme serves
as a benchmark for comparing the efficacy of the PS state
protocol. The PS states have a significant advantage over this
benchmark in terms of their total spin squeezing requirements,
which are substantially reduced. This implies that, in princi-
ple, the PS state protocol should perform better in the presence
of decoherence since it is exposed for a shorter duration. Upon
comparing the PS state protocol with the MSS scheme, we
confirm that this is indeed the case.

The inclusion of the quantum measurement described in
step 5 introduces nonunitary dynamics, which implies proba-
bilistic nondeterministic postmeasurement states. To this end,
we must consider the success rates of postselecting desired PS
states. We look at this in detail.
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FIG. 3. The PS state and GHZ state Husimi distributions H for N = 10.

For N = 10, Fig. 3 compares Husimi distributions of an
optimized PS state with the target GHZ state. The identified
optimal total evolution of χt ≈ 0.15, optimal postselected
measurement outcome of c ≈ −2.5, and optimal measure-
ment parameter of σ 2 ≈ 1 [see Eq. (18)]1 generates a PS
state with a favorable GHZ overlap fidelity of F > 0.99. The
probability lobes on the top and bottom of the Bloch sphere
are a characteristic feature of highly entangled GHZ-type
states. The identified evolution of χt = 0.15 is notably shorter
than the χt = π/2 required by unitary single-axis twisting to
generate MSSs, by more than an order of magnitude.

In the decoherence-free setting, the computational results
indicate that for N ∈ {4, 6, 8, 10, 12}, the evolution of χt =
0.15 and optimal measurement of c = −2.5 yield PS states
with F � 0.98. While this optimal measurement outcome
is not necessarily unique for a given N , it is beneficial to
fix some optimal measurement for the purpose of numeri-
cal optimization. We consider a measurement optimal if it
yields F > 0.98 in the decoherence-free setting. In Fig. 4 we
present the identified optimal measurement parameter σ 2 that
characterizes the optimal measurement operator Âc defined by

1In the projector probability distribution of Eq. (18), σ 2 ≈ 1 corre-
sponds to an ability to measure the number of qubits in the spin-down
state at the level of 1 or 2 qubits.

FIG. 4. The identified optimal measurement outcome c and mea-
surement parameter σ 2 for generating PS states with maximal F , for
N ∈ {4, 6, 8, 10, 12}.

Eq. (17). The optimal σ 2 depends on the chosen postselected
measurement outcome c and system size N . For increasing N ,
a clear upward monotonic trend is observed.

For N = 4 and 10, the postselection probability density
functions (PDFs) for measurements c ∈ [−6, 6] and total evo-
lution of χt ∈ {0.15, 0.5, π/2} are presented in Figs. 5 and
6, respectively. In Fig. 5 it is apparent that an increase from
χt = 0.15 to π/2 results in an increased probability of obtain-
ing outcomes about the identified optimal measurement c =
−2.5. The increased squeezing distributes the probability am-
plitudes such that the postmeasurement state has an increased
probability of producing high-fidelity PS states. With total
evolution of χt = 0.15, Figs. 2(c), 5, and 6 demonstrate that
we achieve sufficient squeezing to induce wrapping around
the Bloch sphere for a positive measurement projection about
the optimal outcome c = −2.5. As a result, with χt = 0.15,
the optimal postselection probabilities are distributed asym-
metrically about c = −2.5. Note that even though the PDFs
are peaked at c ≈ 2 and 4.5, for N = 4 and 10, respectively,
projections about these values do not lead to desirable states.
An increase in total evolution results in a more desirable prob-
ability profile, suggesting a tradeoff, since an increase also
requires more time and thus exposes the quantum state to fur-
ther decoherence. Given this tradeoff, we consider the fidelity
as the primary indicator of an optimal measurement outcome.
The PS protocol can therefore reduce the time needed at the

FIG. 5. The postselection probability density function (PDF)
for N = 4 and σ 2 = 1.1, with varied spin squeezing of χt ∈
{0.15, 0.5, π

2 }. The dashed vertical at c = −2.5 denotes the identified
optimal measurement.

052614-6



ROBUSTNESS OF THE PROJECTED SQUEEZED STATE … PHYSICAL REVIEW A 109, 052614 (2024)

FIG. 6. The postselection probability density function (PDF)
for N = 10 and σ 2 = 1.6, with varied spin squeezing of χt ∈
{0.15, 0.5, π

2 }. The dashed vertical at c = −2.5 denotes the identified
optimal measurement.

expense of repeated runs of the protocol to obtain the desired
value of c (or close to it) upon measurement. We will discuss
this tradeoff and variable range of c in more detail. The post-
selection PDF for measurements c ∈ [−10, 10] and system
size N ∈ {4, 6, 8, 10, 12} is presented in Fig. 7. The observed
trend indicates that as N increases, the measurement outcome
associated with the most probable result also increases. Simul-
taneously, the maximum probability associated with N tends
to decrease, while the width of the parabolic function about
the maximum value increases.

IV. SYMMETRIC DICKE SUBSPACE

The ideal decoherence-free PS state protocol is well de-
fined in the symmetric Dicke subspace (see Ref. [23]),

FIG. 7. The postselection probability density functions (PDFs)
for varied system sizes of N ∈ {4, 6, 8, 10, 12} and χt = 0.15. The
dashed vertical at c = −2.5 denotes the identified optimal measure-
ment, even though the distributions peak at increasing values of
c > 0, as a function of N .

spanned by the Dicke basis states∣∣∣∣N

2
,

N

2
− m

〉

:=
√

m!(N − m)!√
N!

∑
j1<···< jm

| ↑ · · · ↓ j1 · · · ↓ jm · · · ↑〉.

(20)

The dimension of the Dicke subspace scales linearly with
system size ∼N + 1. This favorable scaling allows access to
higher N as compared to modeling in the total Hilbert space,
but it becomes necessary to consider the total Hilbert space
when including certain decoherence channels.

In the next section, we present a quantum trajectories
approach [28,51], which is a numerical method for reduc-
ing the computational complexity by essentially modeling
N -independent state vector realizations, as opposed to the
corresponding density operator evolution. The set of N pure
states are then used to compute the expectation value of cho-
sen observables. We exploit the reduction in computational
complexity by evaluating, with the inclusion of decoherence
channels, quantum metrological observables of interest, such
as the overlap fidelity with the GHZ state, as well as the
QFI. The convexity of the QFI as described by (8) yields the
inequality

Q(ρ, Ĥ ) � 1

N

N∑
i=1

Q(ρi, Ĥ ) =: Q(ρ, Ĥ ), (21)

for some mixed state ρ = 1
N

∑N
i=1 ρi, where N represents the

number of independent trajectories. Consequently, the average
QFI denoted by Q(ρ, Ĥ ) serves as an upper bound of the QFI.
As a consequence, Eq. (11) provides a lower bound in terms
of the estimator variance.

Considering the computational server resources at our dis-
posal, we have determined that a system size of N = 12
represents an approximate upper bound for accurate modeling
within a reasonable time frame while achieving a sufficient
trajectory count for the utilization of the quantum trajectory
method [52–54]. As we look to the future, to simulate sys-
tems beyond N = 12, we will explore computational software
packages designed specifically for the efficient simulation of
large-scale quantum systems, allowing us to potentially reach
system sizes up to N = 32 [55–58].

V. QUANTUM TRAJECTORY METHOD

For the purpose of numerically simulating the nonunitary
dynamics of the PS state protocol with decoherence, we as-
sume Markovian evolution described by the Lindblad form of
the master equation [2,28,59,60]

dρ

dt
= − i

h̄
[Ĥs, ρ] − 1

2

∑
j

{L̂†
j L̂ j, ρ} +

∑
j

L̂ jρL̂†
j , (22)

where Ĥs denotes the system Hamiltonian, and {L̂ j} j∈M a
set of Lindblad jump operators, with {·, ·} denoting the anti-
commutator operator. The relevant decoherence channels that
characterize the set of M jump operators are determined by
the experimental setting. The first term of Eq. (22) describes
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the standard unitary time evolution of a state ρ, while the
remaining terms generate the dissipative dynamics character-
ized by {L̂ j} j∈M.

Let us now consider the quantum trajectory method [28],
used to simulate the preparation of the PS state with decoher-
ence. By defining a non-Hermitian effective Hamiltonian

Ĥeff := Ĥs − ih̄

2

∑
j

L̂†
j L̂ j, (23)

we can recast the first two terms of Eq. (22) as

− i

h̄
[Ĥs, ρ] − 1

2

∑
j

{L̂†
j L̂ j, ρ} = − i

h̄
[Ĥeffρ − ρĤ†

eff]. (24)

An effective non-Hermitian Hamiltonian is an operator that
describes the dynamics of a quantum system in the presence
of decoherence [28,60]. To first order of the infinitesimal time
step dt , the solution to Eq. (22) is given by the Kraus operator
(or operator sum) [60,61] formalism

ρ(t + dt ) =
∑

j

M̂ j (dt )ρ(t )M̂†
j (dt ), (25)

where the Kraus operators are defined as

M̂0 := 1̂ − i
dt

h̄
Ĥeff (26)

for j = 0, and

M̂ j :=
√

dtL̂ j (27)

for j > 0.
When including decoherence, the typical formalism used

to describe the evolution of mixed quantum states is given in
terms of density operators [2]. For large systems, simulating
the 2N × 2N density operator evolution given by Eq. (25) can
become computationally expensive. This motivates the use of
the quantum trajectory method, which allows us to instead
independently simulate N pure states of dimension 2N .

The numerical methods are applicable to various physical
systems, but in this study our focus is on physical real-
ization of the PS state protocol with a Penning ion trap
[19,45,49,50,62]. To this end, because the squeezing step is
known to be the most susceptible to the disruptive effects of
decoherence, we assume negligible decoherence during the
collective rotation steps. During the spin squeezing step, the
system Hamiltonian is

Ĥs := h̄χ Ĵ2
z , (28)

where χ � 0 regulates the squeezing magnitude (see
Sec. III B of Ref. [7]). The total evolution time t is partitioned
into Nt = t/dt steps. During each time step, the probability
that some composite state |ψ〉 undergoes a jump (or decays)
resulting from the jth jump operator is given by

d p j = 〈ψ |M̂†
j M̂ j |ψ〉, (29)

where j ∈ M. At most one jump per dt time step is permit-
ted, the validity of which depends on the form of the jump
operators and their associated decay rates, in addition to how
many channels of the form given in Eq. (22) are present. These
factors, which influence the accuracy of the approximation
of Eq. (22), also determine the required duration of the time

interval, denoted as dt , needed to obtain a sufficiently accurate
approximation. We will come back to this point later when
discussing the simulations.

Had the state |ψ〉 undergone a jth jump during dt , the
resultant state reads as

M̂ j |ψ〉
‖M̂ j |ψ〉‖ , (30)

where ‖ · ‖ denotes the norm. If no jump occurs, the resultant
state is

M̂0|ψ〉
‖M̂0|ψ〉‖ . (31)

For each dt time step, the computational scheme (see
Ref. [28]) used to employ the quantum trajectory method
proceeds by first generating a random number ε ∈ U[0,1],
where U[0,1] denotes the uniform probability distribution cho-
sen from the interval [0, 1] ⊂ R. If ε � ∑

j d p j , a single L̂ j

jump occurs, with j > 0. The j ∈ M is chosen such that
d p j−1 � ε � d p j−1 + d p j holds. For j = 1, we set d p0 =
0. The resultant state, given that the jth jump occurred, is
given by Eq. (30). Otherwise, if ε >

∑
j d p j , the state under-

goes evolution by the non-Hermitian Hamiltonian given by
Eq. (26), leading to the state given by Eq. (31). This process
is independently repeated for Nt = t/dt iterations, for each of
the N trajectories, yielding a set of N final pure states. In
this way the quantum trajectory method realizes (or unravels)
the master equation in Eq. (22) by stochastically evaluating
the corresponding state vector |φi〉 over a specified number
of independent trajectories i ∈ {1, . . . ,N }, yielding N pure
states.

As N → ∞, and assuming sufficiently small dt , averaging
over the N trajectories recovers the classical probability co-
efficients of the corresponding density operator sum evolution
given by Eq. (25). For the PS state protocol, to recover the
final PS state density operator from the corresponding set of
pure state realizations, we are required to weight each pure
state by its respective postselection conditional probability

P(i|c) = P(c|i)Pi/P(c), (32)

with Pi = 1/N , P(c|i) = 〈φi|Â†
cÂc|φi〉, and P(c) =∑

i P(c|i)Pi, where i is the trajectory count and c the
measurement outcome (see Appendix B for further details).

To achieve an acceptable level of statistical precision, the
required number of trajectories N is taken as the approxi-
mate number for which the sample standard deviation (SD)
of the set of overlap fidelities F stabilizes around certain
fixed values. By choosing a suitable trajectory count N , we
are afforded some control over the total computation time.
This is a useful computational feature when simulating large
systems. With each trajectory being independent, the quantum
trajectory method lends itself well to the implementation of
parallel computing techniques and the utilization of special-
ized computing infrastructure. This reduction in computation
time enables access to larger system sizes.

To approximate the expectation value of some Hermitian
operator Â, we consider the mean of the expectation values
of the N pure states. The expectation value of Â follows by
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taking the limit as N → ∞,

〈Â〉 = Tr(Âρ) = lim
N→∞

1

N

N∑
i=1

〈φ̃i|Â|φ̃i〉, (33)

where |φ̃i〉, defined by |φi〉 weighted by P(i|c), i.e., |φ̃i〉 =√
P(i|c)|φi〉, denotes the state vector realized by the ith tra-

jectory after measurement outcome c is obtained.

VI. NUMERICAL ANALYSIS

Quantum decoherence, in general, tends to degrade quan-
tum correlations. In Ref. [19], a study is undertaken to
investigate the effects of decoherence on an N-body quantum
system. The system is subjected to an assumed long-range
Ising Hamiltonian, which we will use for our spin squeezing
step. The Hamiltonian is defined as

Ĥ := 1

N

∑
i< j

h̄Ji j σ̂
z
i σ̂ z

j , (34)

where

Ji j := J|�ri − �r j |−ζ (35)

parametrizes the spin-spin interaction with chosen scalar pa-
rameters J and ζ . The ith qubit position vector, in lattice
units, is denoted by �ri. Trapped-ion systems with 0 < ζ < 3
have been shown to be a feasible means of realizing the
Hamiltonian specified by Eq. (34) (see Refs. [16,49,63,64]).
We set Ji j = J for ζ = 0, which is implemented by an optical
dipole force tuned to be nearly resonant with the center-of-
mass mode of a trapped-ion crystal [49]. For the purpose of
simulating these types of experimental setups, we consider the
dephasing, amplitude damping, and spontaneous excitation
channels, which we will define by their respective state-bath
mappings in the next section. The Hamiltonian presented
in Eq. (34) constitutes the essential interaction for the spin
squeezing step within the PS state protocol [refer to Eqs. (28)
and (15)]. We will provide a clearer explanation of the re-
lationship between Eqs. (34) and (28) after introducing the
decoherence channels.

It is important to note that Eq. (34) is a simplification
of a transverse-field Ising spin model, which usually has an
additional term ĤB = ∑N

i=1 Bμσ̂
μ
i (see Refs. [49,65]), where

Bμ is a transverse magnetic field in the μ direction. Usually,
Bx and By are used for implementing rotations and set to zero
during the spin squeezing step of the protocol which we are
concerned with. The Bz term represents a local contribution
originating from the magnetic field of the trap, leading to the
energy splitting of the ion’s spin states. In our simulation, we
utilize Ĥ in Eq. (34) within the rotating frame, excluding the
Bz term. In Appendix C we show that the measurements Âc

are equivalent in the rotating frame and original or laboratory
frame. The decoherence channels we consider also do not
change the form of Eq. (22) in this rotating frame [66].

In an experiment, collective rotations about the x or y axis
can be performed in the rotating frame of the spins by setting
the phase of the applied resonant microwave field [67,68].
Thus, there is no need to adjust these rotations for the labo-
ratory frame.

A. Dephasing

The Kraus operators of Eqs. (26) and (27) are characterized
by the chosen decoherence channels. The dephasing channel,
which is equivalent to the phase flip channel of a single qubit
coupled to a bath, is defined by the state-bath mappings

|0〉S ⊗ |0〉B 	→
√

1 − p|0〉S ⊗ |0〉B + √
p|0〉S ⊗ |1〉B

and

|1〉S ⊗ |0〉B 	→
√

1 − p|1〉S ⊗ |0〉B − √
p|1〉S ⊗ |1〉B, (36)

where we assume that the bath is initially in the state |0〉B,
with probability p = �depdt that a phase flip occurs during a
dt time step, where �dep is the dephasing rate. Tracing out the
bath yields the corresponding dephasing Kraus operators

M̂0 =
(√

1 − p 0
0

√
1 − p

)
and M̂1 =

(√
p 0

0 −√
p

)
.

(37)
The dephasing state-bath mappings given by Eq. (36) are an
effective model, where |0〉B and |1〉B denote orthogonal states
that result from an elastic scattering process with no energy
transfer. Reference [66] provides the full model, with a more
rigorous description.

This Kraus operator method for a single qubit approxi-
mates the master equation in Eq. (22) with a single jump
operator L̂ j obtained by substituting M̂1 in Eq. (27). The
approximation is valid assuming dt is much less than the
timescales relevant for the evolution of the system ∼1/�dep. In
other words, if �depdt = p � 1, one can then apply the chan-
nel in Eq. (25) iteratively to recover the dynamics over time t .
The same approach is also utilized for the amplitude damping
and spontaneous excitation channels, with their respective
definitions presented next. This Kraus operator method is used
for low N . For high N we employ the quantum trajectory
method.

B. Amplitude damping and spontaneous excitation

The amplitude damping (spontaneous deexcitation) chan-
nel of a single qubit coupled to a bath is defined by the
following state-bath mappings:

|0〉S ⊗ |0〉B 	→ |0〉S ⊗ |0〉B

and

|1〉S ⊗ |0〉B 	→
√

1 − p|1〉S ⊗ |0〉B + √
p|0〉S ⊗ |1〉B, (38)

where again we assume that the bath is initially in the vacuum
state |0〉B and p = �addt , with �ad the amplitude damping
rate. Tracing out the bath yields the corresponding amplitude
damping Kraus operators

M̂0 =
(

1 0
0

√
1 − p

)
and M̂1 =

(
0

√
p

0 0

)
. (39)

The spontaneous excitation channel [19] of a single qubit
coupled to a bath is defined by the state-bath mappings

|1〉S ⊗ |1〉B 	→ |1〉S ⊗ |1〉B
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and

|0〉S ⊗ |1〉B 	→
√

1 − p|0〉S ⊗ |1〉B + √
p|1〉S ⊗ |0〉B, (40)

where p = �sedt , with �se denoting the spontaneous exci-
tation rate. Tracing out the bath yields the corresponding
spontaneous excitation Kraus operators

M̂0 =
(√

1 − p 0
0 1

)
and M̂1 =

(
0 0√
p 0

)
. (41)

For each of the decoherence channels introduced, when the
Kraus operator method is used, M̂0 is modified in the presence
of spin squeezing in the protocol. This is taken into account
by redefining it using Eq. (26). More details regarding the
multiqubit case are given at the end of this section. Typical
experimental parameters for the NIST Penning ion trap work,
necessary for numerically simulating the unitary spin squeez-
ing steps of the PS state and MSS protocols with decoherence,
are provided in Ref. [19]. Note that χdt � 1 should be used if
χ > �, where χ is the strength of some operation, for Eq. (22)
to be well approximated, e.g., the spin squeezing strength in
Eq. (28). This also ensures �dt � 1 (see Ref. [66]).

For the dephasing, amplitude damping, and spontaneous
excitation channels, we employ decay rates consistent with
experimental work conducted at NIST, where these decay
rates, along with the Hamiltonian parameter J mentioned in
Eq. (35) (see Appendix D and Refs. [19,50]) are related by

4�dep + �ad + �se = J/10, (42)

with �ad = �se and �dep = 2�ad, which leads to

{�dep, �ad, �se} = {J/50, J/100, J/100}. (43)

As such, it is clear that dephasing is the largest type of de-
coherence. The specifications, including laser detuning and
polarizations, that are specific to the NIST Penning ion trap
setup are addressed by Eqs. (42) and (43), as detailed in
Refs. [19,50].

The commutativity between the dephasing operator, as
given by Eq. (39), and the spin squeezing operator, as given
by Eq. (15), respectively, is particularly noteworthy. Conse-
quently, the presence of amplitude damping and spontaneous
excitation channels requires the adoption of the Kraus opera-
tor sum and quantum trajectory methods to effectively account
for these effects.

In Ref. [49], no evidence was found to suggest a signif-
icant role of motional decoherence. The primary source of
decoherence was identified as off-resonant light scattering.
While our study does not include an analysis of motional
decoherence, it is anticipated to only be relevant during the
application of single-axis twisting. Longer durations of single-
axis twisting are expected to exhibit greater sensitivity to
motional decoherence compared to shorter durations. Conse-
quently, incorporating an analysis of motional decoherence is
expected to strengthen the argument that the PS state protocol
offers resilience against environmental effects as the number
of qubits increases.

By reconciling the spin squeezing Hamiltonian given in
Eq. (28) with that of Eq. (34), we find the following relation

between the spin squeezing and Hamiltonian parameters:

χ = 2J/N. (44)

The parameter J only depends on laser parameters [49]. For
fixed laser parameters, Eq. (44) implies that an increase in N
results in a decrease in the squeezing parameter χ . Hence, for
a fixed χt (e.g., π/2 for MSS) we require an increase in the
total squeezing time t , as N increases.

For the dephasing channel, defined by the state-bath map-
pings of Eq. (36), the decay probability per qubit of an N-qubit
system during a dt time step, in terms of the squeezing param-
eter χ follows by considering Eq. (44) in Eq. (43), leading to

p1(x) := x�depdt = xNχ

100
dt, (45)

where we introduce the decay parameter x � 0 to control the
magnitude of the decay probability. The values of x used
in this study, specifically x = 1, align with the experimen-
tally motivated values mentioned in Refs. [19,50]. Similarly,
the decay probability per qubit of the amplitude damping
and spontaneous excitation channels, defined respectively by
Eqs. (38) and (40), reads as

p2(x) := xNχ

200
dt, (46)

and thus p2(x) = 1
2 p1(x). Hereafter, we assume that a chosen

x uniformly applies to all channels. We also assume the ex-
perimentally relevant value of J = 3300 s−1. This value was
found by calibrating J through measurements of the mean-
field spin precession [49].

For simulating the PS state and MSS generation with the
inclusion of relevant decoherence channels during the spin
squeezing step of each protocol, we utilized both the Kraus
operator and quantum trajectory methods. In cases where the
computational feasibility of the Kraus operator evolution of
Eq. (25) was constrained, we exclusively employed the quan-
tum trajectory method, particularly for N � 12. For the Kraus
method, as we have N qubits, we assume each qubit has its
own independent bath of the form given by Eqs. (37), (39),
and (41), and that at most one qubit should experience a jump
per dt time step. In general, the product of N channels of the
form given in Eq. (25) can give rise to terms with multiple
jumps per time step. However, for the channels described
by Eqs. (37), (39), and (41), there are a total of N terms
corresponding to individual jumps. Each of these terms rep-
resents the probability, denoted as �dt , that a single qubit will
undergo the jump. Therefore, the total probability for a single
jump to occur for a given channel is N� dt , and the probability
for two jumps is C(N, 2)(�dt )2, where C(N, 2) = N!

2!(N−2)! .
Thus, the relative probability for two jumps to occur compared
to one jump is (N − 1)� dt/2. We restrict our consideration
to N � 12, and choose � dt = p such that the probability
of more than one jump per time step dt in a single channel
is negligible. This approach is equivalent to the independent
channel model given in Ref. [28], which approximates the
master equation in Eq. (22) when written as a summation of
jump operators acting independently on each qubit for each
channel type.
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FIG. 8. Evaluating F and FMSS (the dashed horizontals) with
the Kraus operator formalism given by Eq. (25), where x ∈
{0, 0.1, 1, 2, 5} for N = 4 [see Eqs. (45) and (46)].

Practically, the above is achieved by using M̂ j for j > 0
in Eq. (25), formed by taking all N permutations of M̂ (1)

1 ⊗
1̂

(2) ⊗ · · · ⊗ 1̂
(N )

from each damping channel, and M̂0 from
Eqs. (26) and (23), i.e.,

ρ(t + dt )

= M̂0ρ(t )M̂†
0+

∑
perm. of dep.

M̂1 ⊗ 1̂ . . . 1̂ρ(t )(M̂1 ⊗ 1̂ . . . 1̂)†

+
∑

perm. of ad.

M̂1 ⊗ 1̂ . . . 1̂ρ(t )(M̂1 ⊗ 1̂ . . . 1̂)†

+
∑

perm. of se.

M̂1 ⊗ 1̂ . . . 1̂ρ(t )(M̂1 ⊗ 1̂ . . . 1̂)†. (47)

For the quantum trajectory method, we use the same M̂ j as in
the Kraus method, but follow the steps described in Eqs. (28)–
(31), again allowing only one jump per time step which gives
an unraveling of the Kraus and master equation approaches.
This approach yields a set of pure states with vectors of size
2N (as opposed to matrices of size 2N × 2N in the Kraus
method), and as such allows access to the dynamics of larger
systems.

C. Computational results

An analysis of a PS state with N = 4 and 10, generated us-
ing χt = 0.15, and x ∈ {0, 0.1, 1, 2, 5} as defined by Eqs. (45)
and (46), is presented in Figs. 8 and 9, respectively. Moreover,
we compare the overlap fidelity of the PS state and GHZ
state, denoted by F , with the overlap fidelity of the MSS and
GHZ state, hereafter denoted by FMSS. For the PS state, we
observe a symmetry of the fidelity about the optimal iden-
tified measurement of c ≈ −2.5. There is a clear downward
monotonic trend as the decay rate x increases from x = 0 to
5 for the PS and MSS generating protocols. For increasing
values of x � 1, we observe an increasingly superior fidelity
F > FMSS, demonstrated by the PS state compared to the
MSS. A notable enhancement in the relative performance of

FIG. 9. Evaluating F and FMSS (the dashed horizontals) with the
Kraus operator formalism given by Eq. (25), where x ∈ {0, 0.1, 1, 2}
for N = 10 [see Eqs. (45) and (46)].

the PS state protocol is observed when scaling the system size
from N = 4 to 10, compared to the MSS protocol.

The measurement step of the PS state protocol dis-
tinguishes it from the deterministic MSS generation by
introducing nonunitary evolution, as such, we must con-
sider the associated postselection probabilities. For N ∈
{4, 6, 8, 10, 12}, Table I in Appendix E presents a postse-
lection analysis of the PS state generation with x ∈ {0, 1},
as well as the corresponding FMSS for comparison. We em-
ploy the Kraus operator method, incorporating decoherence
channels, to investigate the PS state protocol for system sizes
up to N = 10. Additionally, we examine the N = 12 case
without decoherence (x = 0). To account for decoherence in
the N = 12 case, we utilized the quantum trajectory method.
In Table I, we analyze various measurement intervals of the
form [−2.5, ·]. These asymmetric intervals around the optimal
measurement outcome c = −2.5 are chosen due to the known
asymmetry in the postselection probability density functions
(PDFs), as depicted in Figs. 5 and 7, for spin squeezing of
χt = 0.15. Table I suggests that for decay parameters x ∈
{0, 1}, the success rate of postselecting measurements c ∈
[−2.5,−1.5] remains relatively constant at about 0.004 for
N ∈ {4, 6, 8, 10, 12}. For each considered N , there is a slight
increase observed in obtaining the desired postselected out-
come from [−2.5, 1.5] when including decoherence with x =
1, relative to no decoherence (x = 0). The minimum and max-
imum fidelity values obtained for the specified measurement
intervals tend to decrease with the inclusion of decoherence
channels for all considered N .

By postselecting on a sufficiently small interval, it is clear
that F > FMSS can be obtained for all N when including
relevant decoherence channels with x = 1, where the superior
fidelity becomes more pronounced with increasing system
size N (see Table I). This further promotes PS states as ro-
bust entangled resources that are practically feasible, as their
efficacy improves when scaling to larger systems.

In Table I, consider the results for N = 10, x = 1, and
c ∈ [−2.5, 1.5]. Notably, the evolution time for the PS state
is 0.15/(π/2) ≈ 1/10 of that required by the MSS, while the

052614-11



ALEXANDER, BOLLINGER, AND TAME PHYSICAL REVIEW A 109, 052614 (2024)

FIG. 10. Postselection analysis for x = 0 (left) and x = 1 (right)
for N = 10. The point denotes the median of the measurement inter-
val [−2.5, 1.5], the median of the resultant F , and the postselection
probability Pr[−2.5 � c � 1.5]. The planes denote the FMSS values
of 1 and 0.17. The vertical and horizontal bars represent intervals and
are not error bars.

success rate for postselecting from [−2.5, 1.5] is also approx-
imately 1/10. Assuming that the time interval required for
evolution by single-axis twisting is considerably longer than
the other steps in the protocol,2 the rate of obtaining a GHZ-
type state with the PS protocol is approximately equivalent to
the unitary evolution of the MSS. Moreover, the fidelity of the
PS state postselected from [−2.5, 1.5] varies between a min-
imum of 0.20, and maximum of 0.71, exceeding the fidelity
of 0.17 for the MSS. Due to the reduced one-axis twisting
requirements, the PS state’s superior robustness allows for a
more efficient generation of higher fidelity GHZ-type states,
even when obtaining less favorable postselection results from
this interval. The comparative advantage is anticipated to be-
come more pronounced with increasing N . We will discuss
this in more detail in subsequent sections. In Fig. 10, we
depict the postselection results of N = 10 for measurements
c ∈ [−2.5, 1.5], for x = 0 (left plot) and x = 1 (right plot).
The coordinates of the point, respectively, denote the median
c = −0.5 of the chosen measurement interval [−2.5, 1.5]
(represented by the horizontal bars), the median of the resul-
tant fidelity set {Fc : c ∈ [−2.5, 1.5]}, where the vertical bars
represent the corresponding range of fidelity values, and, fi-
nally, the probability of postselecting from [−2.5, 1.5], which
take values of 0.06 and 0.08 as indicated on the respective
plots. The horizontal planes represent the comparative FMSS

values of 1 and 0.17.

D. Kraus operator and quantum trajectory method
for F and FMSS

A comparative fidelity study is shown in Fig. 11, where F
and FMSS are evaluated using the Kraus operator and quantum

2For the NIST experimental setup in Ref. [49] the duration of the
single-axis twisting step for χt = 0.15 and N = 10 is about 5%
of the duration of a single experiment. However, the duration of
other steps can be reduced in principle, making the assumption valid.
Furthermore, in general the single-axis twisting time grows linearly
with N , while other steps, such as motional cooling and spin-state
detection, have times independent of N .

FIG. 11. The Kraus operator and quantum trajectory method,
used for a F vs FMSS study with c = −2.5, where N ∈
{4, 6, 8, 10, 12} and x ∈ {0, 1}. For N = 12, to simulate the PS and
MSS generating protocols with x = 1, we utilized the quantum tra-
jectory method with N = 200. Thus, there are error bars (SD and
SE) for the final point of the MSS plot (N = 12). The “SD of {F}”
denotes fidelity spread among trajectories, F represents the mean
fidelity for each N , and the “SE of {F}” quantifies sampling variation
in mean fidelity across trajectory sets.

trajectory methods. This evaluation includes the dephasing,
amplitude damping, and spontaneous excitation channels dur-
ing spin squeezing. For all examined values of N , we observe
that F > FMSS when x = 1 and the postselected measurement
outcome is set optimally at c = −2.5. Notably, this difference
grows with increasing N .

The quantum trajectory method enables us to obtain re-
sults, with decoherence included, for system sizes as large
as N = 12. Depending on the system size being evaluated
and the associated computation time, we assume a trajectory
number of 200 � N � 6000. As we obtain F values from the
independent trajectories, we evaluate the corresponding sam-
ple standard deviation (SD) of this set, up to and including the
trajectory being evaluated (the final value is represented by the
error bar “SD of {F}”). The relatively large final standard de-
viation of the set of F values shown in Fig. 11 for the PS state
protocol using the quantum trajectory method when there is
decoherence (x = 1) is a result of fluctuations of the obtained
fidelity values, indicating a certain level of sensitivity to the
decaying effects of the decoherence channels. The mean of F
for the sample, which we simply denote by 〈F〉, is the fidelity
of the final state ρ. Similarly, we have a running evaluation of
SD/

√
N , known as the standard error (SE), and represented

by the error bars “SE of {F}.” The standard error is a measure
of the variability in the estimate of the overlap fidelity statistic
due to the natural variation that occurs when taking multiple
samples from the same population (see Sec. III B of Ref. [69]).
An acceptable level of statistical precision, and thus a suitably
high N , is indicated by yielding consistent SD values with
minimal deviation.

The iterative process stops when the SD reaches a steady-
state criterion. The number of trajectories required for
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FIG. 12. A comparative QFI study of the PS and MSS generating
protocols with c = −2.5, where N ∈ {4, 6, 8, 10, 12} and x ∈ {0, 1},
using the quantum trajectory method with 200 � N � 6000. The
“SD of {Q}” denotes QFI spread among trajectories, Q(ρ, Ĵz ) rep-
resents the mean QFI for each N , and the “SE of {Q}” quantifies
sampling variation in mean QFI across trajectory sets.

sufficient convergence depends on the system’s specifics, but
is typically a trajectory count that yields SE/〈F〉 � 1 (see
Ref. [69]). In practical applications, it is crucial to also take
into account the computational resources at hand.

E. Quantum trajectory method for the QFI

As shown in the preceding section, when accounting for
decoherence, the class of PS states outperforms the MSS
unitary generation scheme in fidelity, thereby establishing it as
a promising resource for phase estimation in quantum metrol-
ogy. This task involves estimating a unitary parameter θ � 1
of a state that has undergone some unitary evolution as given
by Eq. (6). To this end, we assume that after generating the
PS state (and independently the MSS), it undergoes a unitary
evolution which encodes the phase θ . Assuming the unitary
transformation is characterized by the Hamiltonian operator
Ĥ := Ĵz, the GHZ state is known to achieve the Heisenberg
limit for (�θ )2 (see Ref. [40]), due to the maximum possible
QFI attainable for all N ,

Q
(|GHZ〉〈GHZ|) = N2. (48)

In this context, Fig. 12 compares the QFI of the PS states,
MSSs and GHZ states for N ∈ {4, 6, 8, 10, 12}, taking into
account the effects of decoherence as described by Eqs. (37),
(39), and (41) with x = 1. In line with the fidelity analysis, we
ascertain the sample standard deviation values for the QFI set
while computationally examining the trajectories. It is clear
that the class of PS states demonstrate a consistently superior
QFI, and are therefore more suitable resource states for phase
estimation.

To summarize, our findings suggest that PS states exhibit
greater resilience to the effects of experimentally relevant de-
coherence than MSSs, as demonstrated by consistently higher
GHZ fidelity and QFI outcomes.

VII. DISCUSSION

For an N-qubit system with an assumed infinite-range Ising
interaction, characterized by ζ = 0 in Eq. (35), the required
time for quantum correlations to become significant scales
with system size N (see Ref. [19]) as t ∼ N1/3 for spin squeez-
ing, t ∼ N1/2 for transverse-spin relaxation, and t ∼ N for
the generation of MSSs. The PS state protocol works to a
large extent due to transverse spin relaxation generated by
one-axis twisting, which causes the state to wrap around the
Bloch sphere for χt � N−1/2 (see Sec. III of Ref. [7]). With
the evolution of χt = 0.15 used by the modified protocol, we
find that a full wrap around the Bloch sphere is not required.
While we have used χt = 0.15 in this study, the transverse
spin relaxation time relative to the MSS state generation time
decreases as N increases. The optimal projected squeezed
state evolution time is expected to scale with that of the trans-
verse spin relaxation with tPS � N1/2/2J , where χ = 2J/N .
On the other hand, for MSSs the optimal time is t = π/2χ

(see Ref. [7]), which gives tMSS = πN/4J . Therefore, the ratio
of the optimal evolution times for the PS state and the MSS
generation scales as ∼N1/2/N = N−1/2.

As a result, with the inclusion of relevant decoherence
channels, the PS state protocol is expected to show improved
efficacy, with increasing N , in producing GHZ-type states
with higher fidelity when compared to the unitary MSS gen-
eration. The numerical results suggest that this advantage
becomes more pronounced when increasing the per-qubit de-
cay rates given by Eqs. (45) and (46). This is a consequence
of the PS state protocol’s reduced evolution time, when com-
pared to that of the MSS. The significantly shorter evolution
time produces a state with lower-order spin correlations com-
pared to the MSS, making them less sensitive to decoherence.
It is important to acknowledge that although MSSs possess a
deterministic natural advantage, the more pronounced impact
of decoherence offsets this advantage. In the presence of de-
coherence, the class of PS states exhibit superior robustness.

This work serves as a motivation for exploring studies
involving even larger N . Although such studies might seem
prohibitively challenging for general forms of spin deco-
herence, restricting spin decoherence to dephasing, which
commutes with the Ising σ̂ z

i σ̂ z
j interaction in Eq. (34),

could facilitate investigations with significantly larger N (see
Ref. [19]). Also, more comprehensive studies with larger
levels of decoherence can further document the apparent ad-
vantage of the PS protocol observed in Figs. 8 and 9, as the
level of decoherence is increased.

In summary, for the purpose of extending the PS state
protocol to the total Hilbert space, improving its efficiency
by reducing the required spin squeezing, and ultimately yield-
ing PS states with more favorable GHZ overlap fidelity and
QFI, we presented a modification of the protocol described in
Ref. [23]. By including an additional collective Ĵx rotation, a
reduced squeezing magnitude of χt ≈ 0.15 became feasible
for low N , as opposed to the assumed χt ≈ 0.40 of Ref. [23].
These modifications yield PS states with superior F and QFI.
By employing numerical methods we were able to reduce the
required computational resources and, in doing so, identified
optimal measurement parameters for producing high-fidelity
PS states for varied system sizes. Our comparative assessment
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of the QFI further highlights the utility of the PS state as a
resource for phase estimation schemes. More generally, our
findings promote PS states as viable resources for quantum
information processing applications.
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APPENDIX A: MODIFIED MEASUREMENT OPERATORS

In the absence of decoherence, the original protocol and its
modification presented here produce identical postmeasure-
ment states after step 5, as both protocols are well defined in
the symmetric Dicke subspace. Reference [23] introduces the
original set of measurement operators defined by

Âc :=
∑

m

√
Pr(M|c)

∣∣∣∣N

2
, M

〉〈
N

2
, M

∣∣∣∣, (A1)

where M = N
2 − m is the spin projection in the z direction,

and m is the number of spin-down qubits. Pr(x|c) is given by
Eq. (18), and the Dicke basis states by Eq. (20):∣∣∣∣N

2
,

N

2
− m

〉

:=
√

m!(N − m)!√
N!

∑
j1<···< jm

| ↑ . . . ↓ j1 . . . ↓ jm . . . ↑〉.

In the ideal decoherence-free setting, the rotated squeezed
coherent spin state generated during step 4 of the protocol is
well-defined in the subspace spanned by the Dicke basis states
[23], and we can therefore represent it as a linear combination
thereof,

|ψ〉 = exp

(
i
π

2
Ĵx

)
ÛSq(χt )|CS〉 =

∑
m

am

∣∣∣∣N

2
,

N

2
− m

〉
,

(A2)

where am ∈ C. Both sets of measurement operators, as de-
fined by Eqs. (17) and (A1), lead to identical postmeasurement
states of the form

Âc|ψ〉 =
∑

m

am

√
Pr

(
N

2
− m

∣∣∣c)∣∣∣∣N

2
,

N

2
− m

〉
. (A3)

Hence, the probability of obtaining outcome c is identical
and can be expressed as P(c) = Tr[Â†

cÂcρ] = 〈ψ |Â†
cÂc|ψ〉 =∑

m |am|2Pr(N/2 − m|c). Thus, in the assumed decoherence-
free setting, the measurement operators defined by Eqs. (17)
and (A1) are equivalent.

APPENDIX B: QUANTUM TRAJECTORY METHOD
POSTSELECTION

Consider the premeasurement rotated squeezed state ρ =∑
i pi|ψi〉〈ψi|, where pi = 1/N , obtained by employing the

quantum trajectory method during the spin squeezing step
of the PS state protocol. Measurement outcome c yields the
postmeasurement state described by the mapping

ρ 	→ ÂcρÂ†
c

Tr[ÂcρÂ†
c]

=
∑

i

pi
Âc|ψi〉〈ψi|Â†

c

Tr[Â†
cÂcρ]

(B1)

=
∑

i

P(i|c)P(c)

P(c|i)
Âc|ψi〉〈ψi|Â†

c

Tr[Â†
cÂcρ]

(B2)

=
∑

i

P(i|c)
Âc|ψi〉〈ψi|Â†

c

Tr[Â†
cÂc|ψi〉〈ψi|]

(B3)

=
∑

i

P(i|c)|ψc
i 〉〈ψc

i |, (B4)

with P(i|c) and P(c|i) denoting the conditional probabilities,
and where ∣∣ψc

i

〉 = Âc|ψi〉
〈ψi|Â†

cÂc|ψi〉1/2
(B5)

denotes the postmeasurement state of the ith trajectory, given
measurement outcome c.

APPENDIX C: MEASUREMENTS IN THE ROTATING
REFERENCE FRAME

Consider a pure state in the laboratory reference frame

|ψL〉 = Û |ψR〉, (C1)

where Û (t ) := exp(−it Ĥ/h̄). The state |ψR〉 corresponds to
the state |ψL〉 in the rotating reference frame, which is charac-
terized by the unitary transformation Û .

The measurement operator in the laboratory frame, de-
noted by ÂL, undergoes a unitary transformation defined by
Û (t ), yielding the measurement operator in the rotating refer-
ence frame as

ÂR = Û †ÂLÛ . (C2)

Therefore, the act of measurement in the laboratory frame
using ÂL on |ψL〉 is equivalent to the act of measurement in
the rotating frame using ÂR on |ψR〉. Now consider the mea-
surement operators given by Eq. (17), with the Hamiltonian
Ĥ = h̄ωσ̂ z (which is equal to h̄ωσ̂+σ̂− up to a global phase
factor in state). The unitary operator is given by

Û (θ ) = exp

(
− i

θ

2

∑
j

σ̂ z
j

)
(C3)

=
∏

j

R̂ j
z (θ ), (C4)

where θ = 2ωt . Consider the measurement operators of
Eq. (17) having undergone the rotated reference frame trans-
formation given by Eq. (C2). The corresponding unitary
operator given by Eq. (C4) acts on the projector terms of the
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measurement operators as

Û †| | ↑ . . . ↓ j1 . . . ↓ jm . . . ↑〉︸ ︷︷ ︸
N − m spin up

=
∏

j

R̂ j
z (−θ )| ↑ . . . ↓ j1 . . . ↓ jm . . . ↑〉 (C5)

= eiθ (N−m)/2e−iθm/2| ↑ . . . ↓ j1 . . . ↓ jm . . . ↑〉 (C6)

and

〈↑ . . . ↓ j1 . . . ↓ jm . . . ↑ |Û
= 〈↑ . . . ↓ j1 . . . ↓ jm . . . ↑ |e−iθ (N−m)/2eiθm/2. (C7)

Given that the phases cancel in each term of the summation,
it follows directly that Âc,L = Âc,R. This shows that the mea-
surements given by Eq. (17) are equivalent in the laboratory
and rotating reference frames.

APPENDIX D: EXPERIMENTAL DECAY PARAMETERS

Let us examine the scenario of a single-qubit system to
provide context for Eq. (43), which establishes a connection
between the decay parameters �dep, �ad, �se and the Hamilto-
nian parameter J . In Ref. [19], an alternative representation of
the final term in the Lindblad master equation, as expressed in
Eq. (22), can be denoted as∑

j

L̂ jρL̂†
j = D(ρ)

h̄
, (D1)

where

D(ρ) := 2
∑
all J

J ρJ † (D2)

and

J ∈
{√

γdep

8
σ̂ z,

√
γad

2
σ̂−,

√
γse

2
σ̂+

}
. (D3)

TABLE I. The Kraus operator formalism given by Eq. (25), with x ∈ {0, 1}, dt = 1 × 10−7, and N ∈ {4, 6, 8, 10, 12}, for a comparative
GHZ overlap fidelity study of the PS state and MSS. The included dephasing, amplitude damping and spontaneous excitation channels are
characterized by Eqs. (45) and (46). We consider the range R(F ) (the minimum and maximum F ) over chosen measurement intervals, as
well as the comparative FMSS values. It is worth emphasizing that for each considered value of N , the maximum fidelity F is obtained when
c = −2.5. The probability of postselecting from an interval is denoted by Pr[·]. In Figs. 11 and 12, we investigate the N = 12 case with x = 1
using the quantum trajectory method, focusing on just the optimal outcome of c = −2.5 due to the computational challenge of including a
range as done for N = 4 to 10, in this table.

x = 0, N = 4, σ 2 = 1.1, FMSS = 1

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.21, 0.99] 0.34 [0.60, 0.99] 0.02 [0.90, 0.99] 0.003

x = 1, N = 4, σ 2 = 1.1, FMSS = 0.79

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.20, 0.87] 0.35 [0.53, 0.87] 0.02 [0.78, 0.87] 0.004

x = 0, N = 6, σ 2 = 1.3, FMSS = 1

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.19, 0.99] 0.17 [0.62, 0.99] 0.01 [0.88, 0.99] 0.003

x = 1, N = 6, σ 2 = 1.3, FMSS = 0.56

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.17, 0.82] 0.18 [0.51, 0.82] 0.02 [0.71, 0.82] 0.003

x = 0, N = 8, σ 2 = 1.5, FMSS = 1

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.22, 0.98] 0.10 [0.66, 0.98] 0.01 [0.88, 0.98] 0.003

x = 1, N = 8, σ 2 = 1.5, FMSS = 0.33

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.17,0.76] 0.11 [0.50,0.76] 0.01 [0.67,0.76] 0.003

x = 0, N = 10, σ 2 = 1.6, FMSS = 1

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.28, 0.98] 0.06 [0.74, 0.98] 0.01 [0.91, 0.98] 0.003

x = 1, N = 10, σ 2 = 1.6, FMSS = 0.17

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.20,0.71] 0.08 [0.52,0.71] 0.01 [0.65,0.71] 0.004

x = 0, N = 12, σ 2 = 1.8, FMSS = 1

R(F )c∈[−2.5,1.5] Pr[−2.5 � c � 1.5] R(F )c∈[−2.5,−0.5] Pr[−2.5 � c � −0.5] R(F )c∈[−2.5,−1.5] Pr[−2.5 � c � −1.5]
[0.34, 0.98] 0.05 [0.76, 0.98] 0.01 [0.92, 0.98] 0.004
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It follows that

D(ρ) = 1
4γdepσ̂

zρσ̂ z + γadσ̂
−ρσ̂− + γseσ̂

+ρσ̂+

= h̄�depσ̂
zρσ̂ z + h̄�adσ̂

−ρσ̂− + h̄�seσ̂
+ρσ̂+,

where

� :=
{

1

4

γdep

h̄
,
γad

h̄
,
γse

h̄

}
. (D4)

Let γ := 1
2 (γad + γse + γdep); typical experimental numbers

are quoted as γ = 0.05h̄J and γdep = 8γad = 8γse (see
Refs. [19,49]). Note that our J does not include h̄. For the
dephasing channel it follows that

0.05h̄J = 1

2

(
γdep

8
+ γdep

8
+ γdep

)
(D5)

= 5

8
γdep (D6)

= 5

2
h̄�dep. (D7)

This implies that

J = 50�dep. (D8)

Similar arguments apply when considering the amplitude
damping and spontaneous excitation channels, leading to
Eq. (43).

APPENDIX E: POSTSELECTION ANALYSIS

In Table I we provide a comparative analysis of the GHZ
overlap fidelity with the PS and MSS states in the ideal
(x = 0) and decoherence (x = 1) cases for increasing qubit
number N , together with the postselection success probability
for generating the PS state over a range of c values.
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