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Quantum information science may lead to technological breakthroughs in computing, cryptography, and
sensing. For the implementation of these tasks, however, complex devices with many components are needed
and the quantum advantage may easily be spoiled by the failure of only a few parts. A paradigmatic example
is quantum networks. There, not only do noise sources such as photon absorption or imperfect quantum
memories lead to long waiting times and low fidelity, but also hardware components may break, leading to
a dysfunctionality of the entire network. For the successful long-term deployment of quantum networks in
the future, it is important to take such deterioration effects into consideration during the design phase. Using
methods from reliability theory and the theory of aging, we develop an analytical approach for characterizing
the functionality of networks under aging and repair mechanisms, also for nontrivial topologies. Combined with
numerical simulations, our results allow us to optimize long-distance entanglement distribution under aging
effects.
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I. INTRODUCTION

Modern experimental science is based on complex techni-
cal devices for measuring and manipulating physical systems.
Examples are the Large Hadron Collider for testing the limits
of the standard model and the observatory LIGO for detect-
ing gravitational waves. All these experimental setups consist
of many different parts, which must be functional for the
whole device to be operational. In quantum technologies, typ-
ical setups include quantum computers or quantum networks
which consist of many smaller quantum systems. Not only are
these constituents prone to decoherence and noise, but they
may also fail completely. To overcome this, redundancy and
quantum error correction can be used and there is a trade-off
between the required redundancy and the quality of the ele-
mentary devices. This trade-off is also relevant for comparing
different quantum computing platforms, such as solid-state
systems with many qubits and relatively short coherence times
with ion traps, which have fewer but long-lived qubits [1,2].
For the long-term success, developing different approaches
towards quantum technologies is important, but an advanced
theory for analyzing the pros and cons of different implemen-
tation strategies is needed.

Besides quantum computers, quantum networks are a cen-
tral paradigm of quantum technologies [3,4]. The aim of
these networks is to enable global quantum communica-
tion, but they are also useful for distributed sensing [5–7],
clock synchronization [8], and blind quantum computation
[9]. Consequently, there are many theoretical proposals for
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robust and efficient networks, using techniques such as quan-
tum repeaters [10–13], multiplexing [14–17], and advanced
quantum state encodings [18–20]. In recent years, different
building blocks of quantum networks have been experimen-
tally demonstrated, such as quantum teleportation between
non-neighboring nodes [21], satellite to ground communica-
tion [22], and multiplexing [23,24]. All these implementations
are, apart from the ubiquitous noise and photon loss, subject
to deteriorating effects: Devices may be defect from the be-
ginning or get destroyed during the experiment. In practice,
devices may also fail only temporarily, due to, for example,
overheating. While noise and loss in networks have been
discussed in detail and may be overcome by entanglement
purification, error correction, and other heralded procedures
[20], the effects of aging, breaking, and repairing of hardware
components are rarely studied. The present literature closest
to this topic focuses on the waiting times and quantum-state
quality for the functionality of a chain [14,25–34], where
temporary hardware failure and recovery are absent, or global
success probabilities for networks [35,36], where the topo-
logical structure of a specific network is often not taken into
account. For a full characterization of aging effects and relia-
bility, three main difficulties arise. First, the devices are highly
dependent on each other due to feedback loops. Second, the
topologies of networks are inherently more complicated than
simple repeater chains. Third, the temporary failures of single
devices may lead to temporal dependences of the working
probability and correlations in time.

The goal of this paper is twofold. First, we show how
ideas and concepts from reliability theory [37–39], known
from sociology and the theory of aging, can be applied to
the analysis of quantum networks. Second, we develop an
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analytical theory for discussing temporary failure and repair-
ing in quantum networks. In contrast to classical networks,
where adding redundant hardware is cheap, current quantum
hardware is fragile, so it is essential to have a complete under-
standing of the network behavior to find the optimal protocols
for it. Our approach differs from network percolation theory
[40–42] by focusing on the temporal failure and recovery and
is in line with recent work on fabrication defects in planar
quantum computers [43]. The presented methods lead to var-
ious results. First, depending on a given figure of merit for
the entire network, we can specify which type and quantity of
redundant devices like quantum memories and entanglement
sources are needed. Second, we can characterize the temporal
correlations of a quantum network depending on the failure
and repairing of each single device. Third, our results lead to
improved cutoff times for key-generation protocols performed
on these networks. As a main example we use the suggested
configuration for a real quantum network in the Netherlands
[44], but our results are easily extendable to more complex
topologies.

The article is structured as follows. First, we explain in
Sec. II the necessary concepts of quantum networks and in
Sec. III the theory of aging and reliability theory. In Sec. IV
we then apply reliability theory to quantum networks in gen-
eral and demonstrate this approach for two different network
topologies. In Sec. V we introduce the concept of repairing
components in quantum networks and in Sec. VI we analyze
the temporal correlations of broken components via different
correlation measures. In Sec. VII we use our results to obtain
improvements for quantum protocols performed on two dif-
ferent topologies of imperfect quantum devices.

II. QUANTUM NETWORKS

It is the general aim of a quantum network to generate
entanglement in two distinct, far apart stations. However, the
loss probability when exchanging entangled particles through
a glass fiber increases exponentially with the distance. There-
fore, one can use the concept of a quantum repeater [10–12],
where several intermediate repeater stations are built between
the end stations (see Fig. 1). Entanglement is first created and
stored between adjacent repeater stations and then converted
to long-range entanglement via Bell measurements within the
stations. This setup allows one to overcome the exponential
loss scaling. More generally, a quantum network may consist
of many nodes which are connected by edges in various ways,
leading to a complicated topology.

In order to explain our main ideas, we first focus on a
simple network, the so-called repeater chain, consisting of
M + 1 nodes connected with M edges in a linear configuration
(see also Fig. 1). We allow multiplexing within the edges,
meaning that each edge consists of N physical connections.
Each connection can be seen as a physical system, where
entanglement may be established, e.g., a spatial or spectral
mode of a fiber for photons. The concept of multiplexing
was introduced to allow for higher entanglement generation
rates [14].

Our main aim is to characterize at which times the network
is functional if some devices or connections break down per-
manently or become dysfunctional for a certain time, e.g., due

FIG. 1. (a) Schematic view of a multiplexed repeater chain, with
M + 1 = 5 nodes and M = 4 edges, each edge having a multiplicity
of N = 3. (b) Alternative approach for the implementation of a
similar repeater chain, where initially N = 6 physical connections
are established within the edges, but some of them are not function-
ing from the beginning. In this example, on average three physical
connections are working. In the depicted example, there are two
connections between the end nodes (as one edge contains only two
working connections), so the flux of the entire chain is 2. Interest-
ingly, both approaches, although being initially on average the same,
can exhibit fundamentally different behavior on a long timescale.

to ice formation on a chip in a cryostat, overheating, or me-
chanical failures. So instead of describing the entanglement
generation process and its timescales (as it has been done in
Refs. [14,27,35], for example), we want to describe the func-
tionality of the entire network depending on the functioning
of each single device.

III. THEORY OF AGING

Biological and technical systems typically consist of many
parts, with a complex structure of functional dependences.
This raises the question of how long the entire system is
functional, if some of the parts fail. The description of the
reliability of such a complex system is the main goal of
reliability theory [37,39]. The two main quantities are the
reliability function

S(t ) = P(T > t ), (1)

which denotes the probability for a failure to occur at the
failure time T after time t , so it describes the probability for
the system to work at least until time t . This directly allows
one to compute the mean time to failure via 〈T 〉 = ∫

dt S(t ).
The failure rate

μ(t ) = −∂t S

S
= −∂t ln S(t ) (2)

describes the probability of a failure in the next time interval
given the survival of the system until time t . Characteristic
of the phenomenon of aging is the fact that the failure rate
increases with time.

Starting from these two quantities, reliability theory offers
a vast spectrum of results and algorithms. The reliability of a
complicated system can be calculated, e.g., by a connection to
repairable flow networks, for which many efficient algorithms
are known [45]. Another main point in reliability theory is the
effect of maintenance on the reliability of a system, consider-
ing pre-agreed strategies as well as adaptive strategies [46].
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The starting point of our analysis arises from the sug-
gestion of Gavrilov and Gavrilova to explain the different
observed failure rates of technological devices [given by the
Weibull power law μ(t ) = atb [47]] and biological systems
[growing exponentially according to the Gompertz-Makeham
law μ(t ) = A + Beλt [48,49]] by using two different notions
of redundancy (see Fig. 1). In technical systems (e.g., an air-
craft), each subcomponent (e.g., the measurement devices of
the air speed) appears in a fixed degree of redundancy and can
be assumed to work in the beginning due to supervision and
testing. In biological systems, however, the subcomponents
(e.g., the organs) have a varying degree of redundancy, since
some of their cells may not work right from the beginning.
(See Ref. [50] for a criticism of the conclusions from these
models in Refs. [38,51].)

IV. AGING THEORY FOR CHAINS AND NETWORKS

The methods from Ref. [38] can directly be extended to
study the repeater chain. As implementation (a), correspond-
ing to Fig. 1(a), we consider M edges with multiplicity N ,
working perfectly in the beginning, but affected by some
failure rate μ, which describes the probability of a single
edge to break down in the next time interval. As implemen-
tation (b), corresponding to Fig. 1(b), we consider the M
edges connected with a higher multiplicity N ′ > N , where,
however, with a certain probability 1 − p, each connection is
not working in the beginning. In practice, this may be caused
by a lower quality of the devices, which are still favorable
due to a lower price. In this case, the devices are affected by
some failure rate μ′. For these two implementations, we are
interested in the total number of parallel connections between
the end nodes; this so-called flux corresponds to the minimum
of the working connections taken over all edges. The flux de-
scribes the capacity for communication from one point to the
other; it is therefore a crucial quantity in the real implemen-
tation of a network to analyze, e.g., the transmission delays
for quantum communication [52,53]. Extending the methods
from Ref. [38], any of the mentioned quantities can be fully
determined analytically (details are given in Appendix A).

Naively, one may expect that the two implementations
behave similarly, if N ′ p = N and μ′ = μ, that is, the number
of initially working connections in the second implementation
equals on average the number in the first implementation. This
is however not the case. As a concrete example, we consider
implementation (a) with M = 6, N = 3, and μ = 1/2 and im-
plementation (b) with M = 6, varying p, and varying μ′. Then
we ask how large N ′ in implementation (b) needs to be such
that implementation (b) has the same mean time to failure 〈T 〉
as implementation (a). This is depicted as the blue surface in
Fig. 2 and one finds that N ′ p is typically significantly larger
than N , even for μ′ = μ = 1/2.

Furthermore, in implementation (b) it is not guaranteed at
all that the chain works from the beginning. So we ask (for the
same parameters) how large N ′ p needs to be to guarantee that
implementation (b) has in the beginning a working probability
of at least pthres = 0.9 (green surface in Fig. 2). Clearly, the
lower the probability that a single connection is functioning,
the higher the multiplicity needed for an initially working
chain. Interestingly, for much lower failure rates μ′ < μ this

FIG. 2. Comparison between the implementations (a) and
(b) (see Fig. 1) with respect to two different figures of merit: minimal
multiplicity N ′ p required in implementation (b) to reach the desired
functionality in terms of lifetime and initial working probability as
in implementation (a) with N = 3 and μ = 1/2. The constant red
half-transparent surface is given by N ′ p = 3. Note that the green
surface given by the initial condition is constant with respect to μ′.
The sawtoothlike pattern of steps is a direct consequence of the fact
that N ′ is an integer number. See the text for more details.

is also the determining factor for N ′, if both conditions are to
be satisfied. Hence we arrive at two different effects, relevant
in different parameter regimes, that can be useful in determin-
ing which devices to consider when building a new network.
Cheaper and imperfect devices with the same failure rate may
seem tempting if the price of N ′ = N/p devices compared to
the price of N “perfect” devices is lower. However, as derived
above, one actually needs a much higher number of cheaper
devices than one would naively think.

While the repeater chain may be considered as a sim-
ple toy model, future quantum networks will have complex
topologies [44]. Similarly, the components of other quantum
technological devices are likely to exhibit more complicated
functional dependences than the ones underlying the repeater
chain. In order to demonstrate that our methods are capable
of dealing with these, we consider a network as in Fig. 3(b),
which can be seen as a structural approximation of an opti-
mized network under realistic conditions [44]. In Appendix B
we derive a formalism to deal with this type of topology using
the method of indicator functions instead of probabilities.

We now demonstrate in some detail the methods described
above on two different examples, one of them being the topol-
ogy of Fig. 3. To summarize briefly, we see that there is a
difference between the following two models.

(a) Each edge has a multiplicity of N , where every physical
connection works perfectly in the beginning; however, the
connections are affected by an exponential decay with failure
rate μ.

(b) Each edge has a multiplicity of N ′, where each physical
connection is not working in the beginning with a certain
probability 1 − p; the connections are also affected by an
exponential decay with failure rate μ′.

In Fig. 4 we plot now the two resulting reliability func-
tions and failure rates for these two models and two different
topologies. The first topology is again a chain consisting of

052611-3



LISA T. WEINBRENNER et al. PHYSICAL REVIEW A 109, 052611 (2024)

(a)

(b)

FIG. 3. (a) Optimized network topology for a network relying on
the the Dutch telecom infrastructure (figure taken from Ref. [44]).
(b) Structural approximation of this network for a connection from
Delft to Groningen. This network consists of five nodes and six
connections.

M = 6 edges, compared to the simplified topology of the
network in Fig. 3, which also consists of six edges. The results
for the network are obtained using indicator functions as de-
scribed in Appendix B. There are several observations. First,
the reliability functions according to model (b) have a negative
offset at t = 0. This should be expected, as there is a nonzero
probability that the whole system is not functional right from
the start as each connection is only functional with probability
p. However, the offset is smaller in the case of the network
since there are more possible end-to-end paths. Analogously,
the failure rates for model (b) do not start at 0 for t = 0.
A second observation shows that the two models behave the
same in the long run. If the individual connections start to fail,
then at some point one cannot distinguish anymore between
an initially broken connection and a connection which just
broke in the last few seconds. However, in the short time range
model (a) performs better. The last observation concerns the
different topologies. It is not surprising that the network shows
a more stable behavior, that is, a slower decreasing reliability
and a slower increasing failure rate. The chain will fail as soon
as one of the edges fails; the network, however, is robust to the
failure of up to three edges as long as a path still exists from
end to end.

V. REPAIRING COMPONENTS IN NETWORKS

Here we consider multiplexed networks or repeater chains,
where the physical connections may break down according to
the models discussed above, but broken connections can be
repaired. We assume that the repairing process takes several
time steps.

Several questions can be asked in this situation. The first
one concerns the probability that, at a given point in time, the
network is functional. Second, one can ask for the probability

FIG. 4. Reliability function S(t ) and failure rate μ(t ) of a net-
work [blue (dark gray)] or chain [orange (light gray)] depending on
the time t , both consisting of six edges; the solid lines denote the
results for model (a), where each edge has a multiplicity of N = 3,
and the dashed lines denote the results for model (b), where each
edge has a multiplicity of N ′ = 6 and an initial failure probability
of 1 − p = 1/2. For the description of the models see Fig. 1 and
Sec. IV.

that the entire network is broken for several consecutive time
steps. Formally, this is related to the calculation of waiting
times for entanglement generation in networks with finite
memory [14,26] and is challenging due to the complicated
temporal dependences of the model. In the following, how-
ever, we will develop a method to tackle this.

We use for our calculations the following discrete instead
of continuous model. Each connection can break in a single
time step with constant probability p↓, so the breaking of the
connection is geometrically distributed, which can be seen as
the discrete analog of the exponential distribution with the
mean value 1/p↓. If the connection now breaks, it remains
nonfunctional for exactly τ time steps, where τ is a constant
set in advance. After this, it is functional with probability
1 − p↓, but with probability p↓ it breaks directly again, leav-
ing it broken for at least 2τ consecutive time steps.

Since the expectation value of a geometric distribution is
given by 1/p↓, the connection is on average functional for
1/p↓ − 1 time steps before breaking. The connection is thus
broken on τ out of on average 1/p↓ − 1 + τ time steps, so
the average probability of a single connection to be broken is
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FIG. 5. Four different correlation measures demonstrating the
dependences in the temporal behavior of two network models. Solid
lines show the results for the network in Fig. 3 and the dashed lines
show results for a repeater chain similar to Fig. 1(a) with M = 6
connections. Both network structures have a multiplicity of N = 3
and a repairing time of τ = 7.

given by τ/(1/p↓ − 1 + τ ). For a repeater chain with M edges
of multiplicity N this leads to an average working probability
of

q =
⎡
⎣1 −

(
τ

1
p↓

− 1 + τ

)N
⎤
⎦

M

. (3)

By using more subtle counting arguments we can also cal-
culate the probability that a chain or network displays a certain
behavior in t consecutive but arbitrarily chosen time steps. For
the exact calculations we refer the reader to Appendix C. Our
results can be used to characterize the time dependences of
the system and in particular to calculate the probability for a
given network to be functional conditioned on the time step(s)
before.

VI. CORRELATION MEASURES

Here we give an example how the results described above
can be used to analyze the temporal correlations in various
network structures. In Fig. 5 we present in detail the behavior
in up to three consecutive time steps of a multiplexed network
and a multiplexed repeater chain with repairing. The chain
consists again of M = 6 edges, and for both topologies we
have a multiplicity of N = 3 and a repairing time of τ = 7.
The total state of each of the networks can assume two values,
S = 0 for not working and S = 1 for working. The analytical
results (see Appendix C) for this random variable allow one
to calculate various correlations at different times.

We first consider the normalized temporal correlation

Cor(ta, tb) = 〈S(ta)S(tb)〉 − 〈S(ta)〉〈S(tb)〉
σ (S(ta))σ (S(tb))

(4)

for two consecutive time steps t1 and t2 or with one time step
in between t1 and t3, where σ (S(tx )) denotes the standard devi-
ation. Then we consider two established measures of genuine
tripartite correlation. The first one is the joint cumulant C3

[54], which for three random variables A, B, and C is defined
as

C3 = |〈ABC〉 − 〈A〉〈BC〉 − 〈B〉〈AC〉 − 〈C〉〈AB〉
+ 2〈A〉〈B〉〈C〉|.

If the joint cumulant is nonzero, then none of the three random
variables is independent of the other two. However, the other
direction does not always hold.

The second measure D3 of tripartite correlations is based
on exponential families and an extension of the multi-
information, which is used in the analysis of complex systems
[55–57]. The Kullback-Leibler distance

D(P||Q) =
∑

j

p j log2(p j/q j ) (5)

describes how surprising the probability distribution P is if
one had expected the distribution Q. Then the correlation
measure D3 of a three-variable distribution is given by the
minimal distance to all probability distributions Q ∈ E2 which
are thermal states of two-body Hamiltonians, that is,

D3(P) = inf
Q∈E2

D(P||Q).

This describes genuine three-party correlations and is used in
the analysis of complex systems [55].

Looking at the results in Fig. 5, the first observation is that
the repeater chain shows high time dependences for smaller
breaking probabilities p↓ than the network. This is somewhat
intuitive: If a complete failure of a system rarely but at least
sometimes happens, then it is more probable that the system
is broken for a few time steps in sequence than in randomly
chosen time steps, leading to high time dependences. Since
the network is more robust to breaking, this behavior occurs
for the network for higher breaking probabilities. Second,
the joint cumulant C3 tends to zero if the system is equally
often broken as functional. Around this point the correlation
measure D3 reaches its maximum. Third, every correlation
measure tends to 0 for high p↓, since in that case the systems
remain broken most of the time.

VII. APPLICATIONS IN ENTANGLEMENT DISTRIBUTION

Now we use our results to derive improvements for quan-
tum protocols run on these setups. We consider entanglement
generation and subsequent quantum key distribution with
quantum repeaters as described above. One problem in these
schemes is that the quality of existing entangled links de-
creases when stored, due to decoherence. These weakly
entangled links do not lead to high-fidelity long-range entan-
glement anymore and block the generation of fresh entangled
pairs, so it may be useful to restrict the duration of an en-
tanglement generation attempt by a cutoff time and erase all
created links after this time [14,58]. The cutoff time should be
chosen in such a way that the secret-key rate achieved by this
protocol is optimal [28,32,59].

We aim to find a strategy for optimizing the cutoff time
for the network in Fig. 3 without multiplexing and for a chain
of M = 6 edges with multiplicity N = 3. We assume two dif-
ferent timescales: On the longer timescale devices break and
are repaired; on top of that and on a much shorter timescale,
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(a) (b)

FIG. 6. Secret-key rate (bits per second) (a) in the simplified Netherlands network with N = 1 and (b) on a chain with M = 6 edges with
N = 3, depending on the chosen cutoff time. See the text for more details.

entanglement is probabilistically distributed according to the
protocol above. For the secret-key rates we now simulate the
repeater protocol, assuming perfect Bell measurements and a
entanglement generation probability of Pgen = 0.01. Decoher-
ence is modeled as depolarizing noise with a coherence time
of Tcoh = 1 s and the duration of one time step for the quantum
protocol is 2

3 × 10−3 s. (For the motivation for these numbers
and more details, see Ref. [60] and Appendix D.)

The results of our simulations are shown in Fig. 6. In
Fig. 6(a) the thin lines denote the secret-key rates achieved on
the five different configurations of the Netherlands network
depending on the chosen cutoff time. Assuming that a single
edge of the network has an average working probability of
q = 0.8 or 0.2, one can calculate the probabilities for the
network to be in a certain configuration and from this the
average secret-key rate achieved on the network. Clearly,
these average key rates are lower than the one achieved on
the complete network, so the classical defects of the technical
devices have a significant impact on the quantum efficiency. A
second observation is that the secret-key rate reaches a differ-
ent maximum for each configuration, with the largest distance
between two maxima given by �tcut = tcut,2 − tcut,1 = 168 −
144 = 24, corresponding to a relative change from configu-
ration 1 to configuration 2 of around 17%. So knowing the
characteristics of the technical devices leads to a better choice
of the cutoff time.

In the same way as above, we simulated the achievable key
rates on a repeater chain with M = 6 edges with multiplicity
N = 3. For the breaking probability we chose p↓ = 1/105
and for the repairing time s = 15. The resulting average key
rates can be seen in Fig. 6(b). Here we took the state of the
repeater chain in the previous time step into consideration
and conditioned the probabilities for the different functional
configurations on whether the repeater chain was functional
or broken in the previous step. One can see a clear difference
between the key rates in these two different cases, which is
to be expected. If the chain was functional in the time step
before, then the configurations with a higher multiplicity in
the edges are more probable than if the chain was broken in the
previous step. So the knowledge about the previous behavior
of the repeater chain can be used to choose an appropriate
cutoff time for the current experiment and the breaking effects
of the used technical devices can be mitigated by adapting the
cutoff time of the quantum protocol to the current situation.

VIII. CONCLUSION

We developed analytical methods to treat failure and de-
fects of classical devices in quantum networks and which can
be used to study temporal correlations arising from failure-
and-repair mechanisms. Based on our results, we showed
that these classical effects have an impact on the performed
quantum protocol and give rise to new criteria for an optimal
cutoff time in repeater protocols. Our methods are also di-
rectly applicable to recent experimental implementations. One
example is the four-party network implemented in [61], where
different errors in the state generation or in the experimental
equipment can directly be translated to failures of nodes or
edges in our framework. Our methodology can also be applied
to give additional constraints for developing new repeater ar-
chitectures as in [62], where a potentially multiplexed repeater
chain is considered.

While our methods were developed in the quantum net-
work paradigm, it seems promising to adapt them to other
examples of quantum technologies. A concrete example is
segmented ion traps [63,64]. Here ions are shuttled on a
chip from one interaction zone to the other to build quantum
circuits with high fidelity. Failures of interaction or shuttling
procedures can directly be modeled with our approach and
consequently the design of these ion traps can be optimized.
On a more fundamental level, our results can be used to opti-
mize entanglement distribution in networks [36,65] as well as
multipartite cryptographic protocols [66]. Finally, it would be
interesting to exploit the further results and methods from reli-
ability theory [45,46,67,68] to today’s quantum technologies.

The code can be found online [69]. The computed data can
be made available upon reasonable request.
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APPENDIX A: RELIABILITY THEORY
FOR REPEATER CHAINS

In this Appendix we describe how one can apply reliability
theory to repeater chains. First, we give a short introduction
to the basics of reliability theory and the main quantities. Sec-
ond, we derive some results for the easiest network structure,
the repeater chain. We start by considering a single connection
and then an edge or block, which consists of N parallel con-
nections. Here we differentiate between a block consisting of
N initially perfect connections and N connections which may
be broken in the beginning with probability 1 − p. Finally,
these blocks of connections are combined into a chain. All the
results are purely analytical.

1. Basics of reliability theory

The reliability function S(t ) describes the probability that
a system fails after a certain time t and is functional up to this
point. If T is the random variable describing the failure time
of the system then

S(t ) = P(T > t ). (A1)

Using the cumulative distribution function

F (t ) = P(T � t ), (A2)

one can express the reliability function as

S(t ) = 1 − P(T � t ) = 1 − F (t ). (A3)

The failure rate of the system is given by the logarithmic
derivative of the reliability function

μ(t ) = − d

dt
ln S(t ) = − 1

S(t )

d

dt
S(t ) = 1

S(t )

d

dt
F (t ). (A4)

Sometimes it is easier to express the failure rate using the
probability density function

f (t ) = d

dt
F (t ) = − d

dt
S(t ). (A5)

It then holds that

μ(t ) = f (t )

S(t )
. (A6)

2. Results for repeater chains

One block consists of a fixed number of N parallel connec-
tions. Each of these connections can be functional or broken.
The block has a flux of f if at least f of the N connections
are functional. We want to calculate the probability to have
a certain flux f depending on the time t . The calculation
follows the strategy of Gavrilov and Gavrilova [38], with some
modifications to avoid the underlying implicit assumption of
small timescales (see also Ref. [50]). The important difference
is that in their calculations a block fails if all connections are
destroyed. In our calculation the block “fails” if N − (f − 1)
connections are destroyed, because then a flux of f is not
possible anymore.

a. Single connection

A single connection has a fixed failure rate μ(t ) = k =
const, so it decays exponentially. Let T be the random variable
which describes the failure time of a single connection. For the
exponential distribution it holds that

S(1, k, t ) := P(T > t ) = 1 − F (t ) = e−kt =: α (A7)

and

F (1, k, t ) := P(T � t ) = 1 − e−kt = 1 − α. (A8)

Note that the following holds:

dα

dt
= −ke−kt = −kα. (A9)

b. Block with initially perfect connections

One block consists of a fixed number of connections N .
In the beginning all N of these connections are functional.
We want to calculate the probability to have a certain flux f

depending on the time t .
Proposition 1. Given a block of N working connections

which each fail according to a constant failure rate μ(t ) = k,
the reliability function of the block b for a flux f at time t is
given by

Sf

b(N, k, t ) =
N−f∑
i=0

(
N

i

)
(1 − α)iαN−i (A10)

and the failure rate is given by

μ
f

b(N, k, t ) =
kf

(N
f

)
(1 − α)N− f αf∑N−f

i=0

(N
i

)
(1 − α)iαN−i

(A11)

with α = e−kt .
Proof. Denote the failure time of the block by Tb and the

failure time of the ith connection by Ti. The failure times of
the connections are independent and identically distributed, so
the probability for the failure of i arbitrary connections is the
same as for the connections 1, . . . , i. The block fails in time
Tb � t and therefore has a flux less than or equal to f − 1, if at
least N − (f − 1) of the connections fail before t :

F f

b (N, k, t ) = P(Tb � t )

=
N∑

i=N−(f−1)

(
N

i

)
P(T1, . . . , Ti � t )

× P(Ti+1, . . . , TN > t )

=
N∑

i=N−(f−1)

(
N

i

)
P(T1 � t ) · · ·P(Ti � t )

× P(Ti+1 > t ) · · ·P(TN > t )

=
N∑

i=N−(f−1)

(
N

i

)
[F (1, k, t )]i[S(1, k, t )]N−i

=
N∑

i=N−(f−1)

(
N

i

)
(1 − α)iαN−i
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=
N∑

i=0

(
N

i

)
(1 − α)iαN−i−

N−f∑
i=0

(
N

i

)
(1 − α)iαN−i

= 1 −
N−f∑
i=0

(
N

i

)
(1 − α)iαN−i. (A12)

The reliability function is then given by

Sf

b(N, k, t ) = P(Tb > t ) = 1 − F f

b (N, k, t )

=
N−f∑
i=0

(
N

i

)
(1 − α)iαN−i. (A13)

For the failure rate we calculate first the probability density function

f fb (N, k, t ) = − d

dt
Sf

b(N, k, t ) (A14)

= −dα

dt

d

dα

N−f∑
i=0

(
N

i

)
(1 − α)iαN−i

= kα

[
N−f∑
i=0

(
N

i

)
(1 − α)i(N − i)αN−i−1 +

N−f∑
i=1

(
N

i

)
(−1)i(1 − α)i−1αN−i

]

= kα

[
N−f∑
i=0

(
N

i

)
(N − i)(1 − α)iαN−i−1 −

N−f−1∑
i=0

(
N

i + 1

)
(i + 1)(1 − α)iαN−(i+1)

]
. (A15)

Then it holds that (
N

i + 1

)
(i + 1) = N!

(i + 1)!(N − i − 1)!
(i + 1) = N!

i!(N − i)!
(N − i) =

(
N

i

)
(N − i) (A16)

and therefore

f fb (N, k, t ) = kα

[
N−f∑
i=0

(
N

i

)
(N − i)(1 − α)iαN−i−1 −

N−f−1∑
i=0

(
N

i

)
(N − i)(1 − α)iαN−(i+1)

]

= kα

(
N

N − f

)
[N − (N − f)](1 − α)N−fαf−1

= kf

(
N

f

)
(1 − α)N−fαf. (A17)

The failure rate is then the fraction of the probability density
function and the reliability:

μ
f

b(N, k, t ) = f fb (N, k, t )

Sf

b(N, k, t )

=
kf

(N
f

)
(1 − α)N−fαf∑N−f

i=0

(N
i

)
(1 − α)iαN−i

=
kf

(N
f

)
(α−1 − 1)N−f∑N−f

i=0

(N
i

)
(α−1 − 1)i

. (A18)

�

c. Block with probabilistic connections

In this model one block consists of a fixed number of con-
nections N . In the beginning, only n of these connections are
functional. The number n depends on some probability dis-
tribution qn with

∑N
n=0 qn = 1, e.g., the binomial distribution

qn = (N
n

)
pn(1 − p)N−n. The binomial distribution describes

the case where each single connection is functional with prob-
ability p. In general, the distribution qn can be arbitrary.

We want to calculate the probability to have a certain flux
f depending on the time t .

Proposition 2. Given a block of N connections of which
n connections are working in the beginning with probability
qn and denote the probability distribution by Q = {qn}. Each
working connection fails according to a constant failure rate
μ(t ) = k. Then the reliability function of the block for a flux
f at time t is given by

Sf

b(N, Q; k, t ) =
N∑

n=f

qnSf

b(n, k, t ) (A19)

and the failure rate is given by

μ
f

b(N, Q; k, t ) = 1

Sf

b(N, Q; k, t )

N∑
n=f

qnμ
f

b(n, k, t )Sf

b(n, k, t ).

(A20)

Proof. Using the law of total probability, it holds for the
reliability that

Sf

b(N, Q; k, t ) = P(Tb > t ) =
N∑

n=f

qnSf

b(n, k, t ). (A21)
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For the failure rate it then follows that

μ
f

b(N, Q; k, t ) = − 1

Sf

b(N, Q; k, t )

d

dt

N∑
n=f

qnSf

b(n, k, t )

= 1

Sf

b(N, Q; k, t )

N∑
n=f

qnSf

b(n, k, t )

×
(

− 1

Sf

b(n, k, t )

d

dt
Sf

b(n, k, t )

)

= 1

Sf

b(N, Q; k, t )

N∑
n=f

qnSf

b(n, k, t )μf

b(n, k, t ).

(A22)

�
In Ref. [38] they use at this point implicitly an approxima-

tion for small timescales by calculating the failure rate for a

flux of f = 1 without the weights S1
b (n,k,t )

S1
b (N,Q;k,t )

:

μ1
b(N, Q; k, t ) =

N∑
n=1

q̃nμ
1
b(n, k, t ). (A23)

The probabilities q̃n are normalized such that the probability
q̃0 for a failure right in the beginning is 0. In this case, the
reliabilities S1

b (N, Q; k, 0) = 1 and S1
b (n, k, 0) = 1 cancel for

t = 0 (since the device is surely functional in the beginning).
However, for larger times t the weights become relevant and
lead to a very different behavior than in Ref. [38].

d. Chain

Proposition 3. Given a chain of M blocks with respec-
tive reliability functions Sbj (t ) and failure rates μb j (t ), j =
1, . . . , M, the reliability function and failure rate of the whole
chain are given by the product or sum, respectively:

Schain =
M∏

j=1

Sbj (t ), μchain(t ) =
M∑

j=1

μb j (t ). (A24)

Proof. Let Tchain be the failure time of the chain and Tbj

the failure time of block j = 1, . . . , M. The failure times
of the blocks are independent but not necessarily identically
distributed. The whole chain fails if at least one of the blocks
fails. Therefore, it holds that

Schain(t ) = P(Tchain > t ) = P(Tb1 , . . . , TbM > t )

=
M∏

j=1

P(Tbj > t ) =
M∏

j=1

Sbj (t ) (A25)

and

μchain(t ) = − d

dt
ln Schain(t ) = − d

dt
ln

M∏
j=1

Sbj (t )

=
M∑

j=1

(
− d

dt
ln Sbj (t )

)
=

M∑
j=1

μb j (t ). (A26)

�

If the blocks are all independent and identically distributed,
then it simply holds that

Schain(t ) = [Sb(t )]M (A27)

and

μchain(t ) = Mμb(t ). (A28)

APPENDIX B: PROBABILITIES IN MORE
COMPLEX TOPOLOGIES

To calculate the probabilities for a network to be functional
or not, one has to consider the different possible paths in this
network that lead to a resulting connection from one point
of the network to another. This type of probability can be
computed, e.g., using the principle of inclusion and exclusion.
Another easier and more clear option is the use of indicator
functions. This idea can be found in, e.g., Ref. [70]. We use
indicator functions of the type

1X =
{

1 if X is functional
0 if X is broken.

(B1)

Then it holds that

E[1X ] = 1 × P(X is functional) + 0 × P(X is broken)

= P(X is functional). (B2)

So to calculate the probability for the whole system to be
functional we first calculate the indicator function and then
take the average value.

If A and B are two components, which are connected in
series to get the larger component X , then X is functional if
and only if A and B are functional. The indicator function of
X then reads

1X =
{

1 if 1A = 1B = 1
0 otherwise

= 1A × 1B (B3)

and the probability is therefore (since A and B are indepen-
dent)

P(X is functional) = E[1X ] = E[1A] × E[1B]

= P(A is functional) ×P(B is functional).

(B4)

FIG. 7. Simplification of the network in Ref. [44] from Delft to
Groningen. The network consists of three components in series: a
square network (with one diagonal connection c) from Delft up to
node T , the node T itself, and a single connection f to Groningen.

052611-9



LISA T. WEINBRENNER et al. PHYSICAL REVIEW A 109, 052611 (2024)

If the components are connected in parallel, the indicator function of X instead reads

1X =
{

1 if 1A = 1 or 1B = 1

0 otherwise
= 1 − (1 − 1A) × (1 − 1B) (B5)

and the probability is (since A and B are independent)

P(X is functional) = E[1X ] = 1 − (1 − E[1A]) × (1 − E[1B]) = 1 − P(A is broken) × P(B is broken).

(B6)

The idea to use indicator functions instead of probabilities becomes more interesting when considering more difficult
networks. For the simple square network with one diagonal connection (see Fig. 7, where the square contains the connections
from Delft to the node T , including nodes R and S) the indicator function becomes

1square =
{

1 if 1aRd = 1 or 1aRcSe = 1 or 1bSe = 1 or 1bScRd = 1

0 otherwise

= 1 − (1 − 1aRd ) × (1 − 1aRcSe) × (1 − 1bSe) × (1 − 1bScRd ), (B7)

where 1aRd is the short notation for 1a1R1d . Using the fact
that 12 = 1, one obtains

1square = 1aR(1d + 1cSe − 1decS )

+ 1bS (1e + 1cRd − 1ecdR)

− 1abRS (1de + 1cd + 1ce − 2 × 1ced ). (B8)

Note that all the indicator functions in the products are inde-
pendent. Therefore, one can just calculate the average value
of each single term to get the average value of 1square. In the
special case that the edges and nodes all have the same respec-
tive probabilities for failures P(edge is broken) = 1 − e and
P(node is broken) = 1 − n, the probability for the network to
be functional is simply

P(square is functional)

= E[1square]

= en(e + e2n − e3n) + en(e + e2n − e3n)

− e2n2(e2 + e2 + e2 − 2 × e3)

= 2e2n + e3n2(2 − 5e + 2e2). (B9)

The network in Ref. [44] from Delft to Groningen is then a
series of a square network, a node T , and a single connection
f . Therefore, the indicator function for the connection from
Delft to Groningen reads

1X = 1square × 1T × 1 f . (B10)

APPENDIX C: REPAIRING BROKEN DEVICES
AND RESULTING NON-MARKOVIAN EFFECTS

In the following we model the behavior of a network in
which the connections not only break after some time, but also
get repaired. We assume that the repairing takes some time.
Mathematically speaking, the connections can break in each
time step with probability p↓, e.g., the breaking is geometri-
cally distributed. If a connection is broken it gets repaired after
τ time steps. After this repairing time, the repaired connection
can either break directly again with probability p↓ or stay
functional with probability 1 − p↓. Note that this means that

it is not guaranteed that after τ time steps the connection is
functional again; it can well happen that it is broken for 2τ or
even more multiples of τ .

We want to calculate the probability that a block of N
connections or a network behaves in a certain way in t ar-
bitrarily chosen consecutive time steps. To reach this goal
we first calculate the probabilities for a single connection to
behave in a certain way in up to three consecutive time steps.
Then we show how these probabilities can be used to describe
the behavior of a block of N connections and more complex
networks.

1. Single connection

We start by calculating all needed probabilities for a single
connection.

Proposition 4. The probability for a single connection with
failure probability p↓ and repairing time τ to be broken in an
arbitrarily chosen time step is given by

pb
eff = τ

1/p↓ − 1 + τ
. (C1)

Proof. Since the breaking of a connection is geometrically
distributed, the first break will happen on average in time
step 1/p↓. Thus, the connection is on average functional for
1/p↓ − 1 time steps and then broken for another τ time steps.
The probability that the connection is broken in an arbitrarily
chosen time step is thus

pb
eff = τ

1/p↓ − 1 + τ
(C2)

and the probability that the connection is functional is

pf
eff = 1/p↓ − 1

1/p↓ − 1 + τ
= 1 − pb

eff. (C3)

�
In the next step we want to calculate the probability that

a single connection is broken in not only one arbitrarily cho-
sen time step but instead in 1 � t � τ consecutive arbitrarily
chosen time steps.

Proposition 5. The probability for a single connection with
failure probability p↓ and repairing time τ to be broken in
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(a)

(b)

FIG. 8. Possible states of a connection with repairing time τ =
5 to be broken in t = 3 arbitrarily chosen consecutive time steps.
(a) If the first of the consecutive time steps coincides with one of the
first τ − t + 1 = 3 broken steps of the connection, the connection is
broken throughout the three consecutive time steps. (b) If the first
of the consecutive time steps coincides with one of the last t − 1 =
2 broken steps of the connection, then the connection has to break
again directly after being repaired to remain broken through the three
consecutive time steps.

1 � t � τ arbitrarily chosen consecutive time steps is given
by

m(t ) = pb
eff

(
1 − t − 1

τ
(1 − p↓)

)
. (C4)

Proof. The probability for the connection to be broken in
t consecutive time steps m(t ) can be calculated in a similar
way as in Proposition 4 (see also Fig. 8). We saw there that
a connection is on average functional for 1/p↓ − 1 time steps
and then broken for another τ time steps. Thus, the first of
the t consecutive time steps has to coincide with one of the τ

broken steps of the device. If it coincides with one of the first
τ − t + 1 broken steps of the device then the device remains
surely broken for the following t − 1 time steps. If it coincides
with one of the t − 1 last broken steps of the device then the
device has to break again directly after being repaired to stay
broken in the remaining t − 1 consecutive time steps. This
happens with probability p↓. One therefore gets

m(t ) = τ − t + 1

1/p↓ − 1 + τ
× 1 + t − 1

1/p↓ − 1 + τ
× p↓

= τ

1/p↓ − 1 + τ

(
1 − (t − 1)(1 − p↓)

τ

)
. (C5)

�

FIG. 9. Possible states of a connection with repairing time τ = 5,
which is broken, functional, and broken again in t = 3 arbitrarily
chosen consecutive time steps. The first of the consecutive time steps
has to coincide with the last of the broken steps of the connection.
After being repaired, the connection has to stay functional and then
break again.

We now use the short notation + or − if the respective
system is functional or not functional in a given time step
and ∗ if the state of the system is arbitrary or not known.
The probability that a connection is broken in three consec-
utive time steps would then be denoted by m(3) = p−−−

c and
the effective probability for one time step by pb

eff = m(1) =
p−

c . For a single connection all probabilities pi1,...,it
c for the

behavior i1, . . . , it in t consecutive time steps can be calcu-
lated in the same fashion as above by counting all possible
states of the connection. One last example for this type of
calculation, the probability p−+−

c , is given below, since this
probability is needed in the next section treating blocks of N
connections.

Proposition 6. The probability for a single connection with
failure probability p↓ and repairing time τ to be broken,
functional, and broken again in three arbitrarily chosen con-
secutive time steps is given by

p−+−
c = (1 − p↓)p↓

1/p↓ − 1 + τ
. (C6)

Proof. The connection is on average functional for 1/p↓ −
1 time steps and then broken for another τ . For the connection
to be broken, functional, and broken again the first of the three
consecutive time steps has to coincide with the last time step
of the repairing time (see Fig. 9). This happens with probabil-
ity 1

1/p↓−1+τ
. After that, the connection stays functional with

probability 1 − p↓ and breaks again with probability p↓. All
in all it holds that

p−+−
c = 1

1/p↓ − 1 + τ
× (1 − p↓) × p↓. (C7)

�
Note that probabilities of the type p−∗−

c are given by the
sum of all possible cases:

p−∗−
c = p−+−

c + p−−−
c . (C8)

2. Block of N connections

To calculate now the probabilities for a block of N con-
nections to be in a certain state in t consecutive time steps,
we use two main ingredients. First, we notice that a block is
broken if and only if every single connection is broken. So
all probabilities for combinations of − and ∗ can be directly
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calculated by raising the respective probability for a single
connection to the power of N . For example, it holds that

p−−− = (p−−−
c )N , p−∗− = (p−∗−

c )N . (C9)

Second, we can start computing the probabilities for t = 1
arbitrary time step and then recursively calculate the still miss-
ing probabilities for more time steps (the ones which contain
at least one +) by using the marginals. For example, it holds
that p+− + p−− = p∗− = p−. For one time step we get

p+ = 1 − p−, (C10)

for t = 2 time steps

p+− = p−+ = p− − p−−, (C11)

p++ = p+ − p+−, (C12)

and for t = 3 time steps

p+−− = p−−+ = p−− − p−−−, (C13)

p−+− = p−∗− − p−−−, (C14)

p−++ = p++− = p−+ − p−+−, (C15)

p+−+ = p+− − p+−−, (C16)

p+++ = p++ − p++−. (C17)

3. Chain or network

To calculate the probability for a chain or a network
to be in a given state in t consecutive time steps we use
the approach explained in Appendix B. If the functionality
of the system is described by the random variable X we
include the time dependence by describing the system in the
time steps 1, . . . , t by the random variables X1, . . . , Xt . The
system is then functional in time step k if and only if 1Xk = 1.
The system being functional in the first step, in an arbitrary
state in the second step, and being broken in the third step can
be expressed, e.g., by the indicator function

1+∗−
S = 1X1 × 1 × (1 − 1X3 ) (C18)

and the according probability can be calculated using

p+∗−
S = P(X1 = 1, X2 ∈ {0, 1}, X3 = 0)

= E[1X1 × 1 × (1 − 1X3 )]. (C19)

If 1X is an expression containing different indicator functions,
then each of these needs to get indexed by the time steps. So,
e.g., two components in series in time step k are described by
1Xk = 1Ak × 1Bk . The only thing one has to keep in mind is
that different components (e.g., A and B) may be independent,
but the same component in different time steps Ak and Aj ,
j �= k, is not. We have to use the probabilities for a single
block described in the preceding section. For example, it holds
for a block A that

E[1A11A3 ] = p+∗+ �= p+ p+ = E[1A1 ]E[1A3 ]. (C20)

APPENDIX D: DESCRIPTION OF THE MODEL
AND THE NUMERICAL CALCULATIONS

In the main text we asked whether technical devices are
working or not, that is, whether we could in principle estab-
lish an entangled connection between two nodes or not. As

an application, we simulated the actual generation of entan-
gled links on such not perfectly working repeater chains and
networks. In this simulation, to establish an entangled link
between two far away parties, we first create shorter entangled
links between repeater stations and then connect these by
Bell measurements. In our model, we assume deterministic
entanglement swapping. Therefore, it is sufficient to create
one link on each segment on the way between the two end
nodes. We further assume that established links experience
decoherence while waiting for other links to get established;
this decoherence motivates a potential cutoff after a certain
time, as the entanglement in the links becomes too weak or
disappears. We are interested in the secret-key rates achiev-
able on a chain or network depending on the functionality
of the technical devices. In the following, we discuss details
about the simulation program (written in PYTHON) and chosen
simulation parameters.

We compute the waiting time as follows. We first simulate
the waiting time for each individual connection using Monte
Carlo simulation (see, for example, Ref. [71]). In the case of
multiplexing, we determine the waiting time of a block by
taking the minimum waiting time of all connections associ-
ated with that block. The waiting time of the full chain is the
maximal waiting time among all blocks. In the network case,
the waiting time of the full network is the waiting time of the
path which gets established first.

We model memory decoherence as depolarization noise as
follows. Each entangled pair is modeled as a Werner state

ρ(w) = w|	−〉〈	−| + (1 − w)14 , (D1)

where w is the visibility (or Werner parameter) and |	−〉 is
a perfect Bell state. We assume that the sources distribute
maximally entangled states, i.e., w = 1, but stored entangled
states experience decoherence. At time t after establishing the
entangled link, the visibility becomes w(t ) = e−t/Tcoh , where
Tcoh is the coherence time of the memories. The fidelity
F = 〈	−|ρ(w)|	−〉 is given by F = 1+3w

4 . An entanglement
swapping operation using two Werner states ρ(wA) and ρ(wB)
yields a Werner state ρ(wA × wB).

For the chosen simulation parameters we assume the dis-
tance from the source to the repeater to be L = 100km. For
attenuation losses of 0.2 dB/km, i.e., an attenuation length
Latt ≈ 22km, the probability to generate a link successfully
is given by Pgen = e−L/Latt ≈ 0.01. The length of one time step
is limited by tTS = 2

c L ≈ 2
3 × 10−3 s, where c is the speed of

light. We assume a memory coherence time of Tcoh = 1 s =
1500tTS. (For the motivation for the simulation parameters,
see Ref. [60].)

We simulate the behavior of a network and a chain. We
consider failure of devices on a different timescale (hours or
days) than link generation (seconds). Therefore, we assume
that for the time of one entanglement generation attempt the
network or the chain has a fixed configuration of working
and nonworking devices. The considered network is shown in
Fig. 3 and no multiplexing is used. Due to the aging process,
some links might not work, so one cannot establish entangle-
ment with them. Using symmetries, we need to consider five
different network configurations, which are shown in Fig. 10.
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FIG. 10. Possible network configurations allowing for entanglement distribution between the end nodes for the network in the Netherlands
(see Fig. 3) up to symmetries.

The chain is of the type shown in Fig. 1. It consists of
M = 6 segments with a multiplicity of N = 3. Due to fail-
ures, we might establish entanglement on segments with lower
multiplicity. Taking symmetries into account, we have 28 dif-
ferent functional configurations of multiplicities. This number
results from taking all combinations of one, two, and three
functional connections per edge up to symmetry. For example,
the first configurations would be (1,1,1,1,1,1), (1,1,1,1,1,2),
(1,1,1,1,1,3), and (1,1,1,1,2,2), where the first three all have
one functional connection in the first five edges and one, two,
and three connections in the last edge, respectively. The last
configuration has one connection in the first four edges and
two connections in the last two edges. Note that the second
configuration is symmetric to every permutation (1,1,1,1,2,1),
(1,1,1,2,1,1), etc., of it.

We modeled 6 × 106 data points for each configuration
of the network. Here each data point was generated by a
simulation of the process of entanglement generation until
success was achieved. Consequently, each data point consisted
of a time stamp and a fidelity of the distributed state. From the
obtained data we calculated the secret-key rate R = r/〈T 〉 of
the BB84 protocol, which was computed as the fraction of
the secret-key fraction r and the average waiting time 〈T 〉.
We give here a short overview; for a more detailed discussion
see Ref. [32]. The secret-key fraction for a Werner state with
visibility w is given by

r(w) = max

{
0, 1 + (1 − w) log2

1 − w

2

+ (1 + w) log2
1 + w

2

}
.

In order to characterize the effect of different cutoff times,
we consider the case that the entanglement generation attempt
is terminated after tcut time steps. If there is, after this time,
not in every edge an entangled link, then every existing link is
erased and a new generation attempt is started. Let T denote
the time when every entangled link exists so that the protocol
reaches a successful entanglement generation attempt. Then

pcut = P(T � tcut )

denotes the probability that the entanglement generation is
successful during tcut and∑tcut

t=1 tP(T = t )

pcut

is the average time until success during that attempt. The
average time for which the cutoff procedure is repeated until
the first successful attempt is reached is then geometrically
distributed with pcut and given by

tcut

∞∑
k=1

kpcut (1 − pcut )
k = tcut

1 − pcut

pcut
.

All in all, the average waiting time until entanglement gener-
ation is given by the sum of the time until the first successful
attempt and the waiting time for that success in that attempt:

〈T 〉 = tcut
1 − pcut

pcut
+

∑tcut
t=1 tP(T = t )

pcut
.

The resulting end-to-end Werner state has then a visibility
parameter W which is the product of the visibilities of the
single-connection Werner states in the connected path. Its
mean value is given by

〈W 〉 =
∑tcut

t=1 W (t )P(T = t )

pcut
.

From the obtained data we can now calculate the secret-
key rates Ri for every possible functional configuration i
of the network and the chain and every choice of tcut.
The average secret-key rate which can be achieved by
this protocol on the respective topology is then given by
the weighted sum of the different rates where the weights
are the probabilities P(configuration i) of the different
configurations.

The simulation is single threaded but multiple simulations
are executed in parallel. The result is obtained by running
eight parallel simulations for one to two days on a computer
with the following specification: Intel Core i7-4790 CPU with
3.60 GHz running at four cores and eight threads with 16
GB of memory available. The computation is not memory
intensive.

[1] N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt,
K. A. Landsman, K. Wright, and C. Monroe, Proc. Natl. Acad.
Sci. USA 114, 3305 (2017).

[2] S. Blinov, B. Wu, and C. Monroe, AVS Quantum Sci. 3, 033801
(2021).

[3] H. J. Kimble, Nature (London) 453, 1023 (2008).

052611-13

https://doi.org/10.1073/pnas.1618020114
https://doi.org/10.1116/5.0058187
https://doi.org/10.1038/nature07127


LISA T. WEINBRENNER et al. PHYSICAL REVIEW A 109, 052611 (2024)

[4] S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288
(2018).

[5] T. J. Proctor, P. A. Knott, and J. A. Dunningham, Phys. Rev.
Lett. 120, 080501 (2018).

[6] X. Guo, C. R. Breum, J. Borregaard, S. Izumi, M. V. Larsen,
T. Gehring, M. Christandl, J. S. Neergaard-Nielsen, and U. L.
Andersen, Nat. Phys. 16, 281 (2020).

[7] P. Sekatski, S. Wölk, and W. Dür, Phys. Rev. Res. 2, 023052
(2020).

[8] P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J.
Ye, and M. D. Lukin, Nat. Phys. 10, 582 (2014).

[9] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A.
Zeilinger, and P. Walther, Science 335, 303 (2012).

[10] H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett.
81, 5932 (1998).

[11] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature
(London) 414, 413 (2001).

[12] N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, Rev.
Mod. Phys. 83, 33 (2011).

[13] K. Azuma, S. E. Economou, D. Elkouss, P. Hilaire, L. Jiang,
H.-K. Lo, and I. Tzitrin, Rev. Mod. Phys. 95, 045006 (2023).

[14] O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy,
Phys. Rev. Lett. 98, 060502 (2007).

[15] W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and
K. Nemoto, Nat. Photonics 4, 792 (2010).

[16] N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater,
M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon,
W. Sohler, and W. Tittel, Phys. Rev. Lett. 113, 053603
(2014).

[17] P. Dhara, A. Patil, H. Krovi, and S. Guha, Phys. Rev. A 104,
052612 (2021).

[18] K. Azuma, K. Tamaki, and H.-K. Lo, Nat. Commun. 6, 6787
(2015).

[19] J. Borregaard, H. Pichler, T. Schröder, M. D. Lukin, P. Lodahl,
and A. S. Sørensen, Phys. Rev. X 10, 021071 (2020).

[20] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin,
and L. Jiang, Sci. Rep. 6, 20463 (2016).

[21] S. L. N. Hermans, M. Pompili, H. K. C. Beukers, S. Baier, J.
Borregaard, and R. Hanson, Nature (London) 605, 663 (2022).

[22] J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang, J.-G.
Ren, W.-Q. Cai, W.-Y. Liu, S.-L. Li et al., Nature (London) 582,
501 (2020).

[23] Y. F. Pu, N. Jiang, W. Chang, H. X. Yang, C. Li, and L. M.
Duan, Nat. Commun. 8, 15359 (2017).

[24] J. Sperling, M. Bohmann, W. Vogel, G. Harder, B. Brecht,
V. Ansari, and C. Silberhorn, Phys. Rev. Lett. 115, 023601
(2015).

[25] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss, and B. Li, AVS
Quantum Sci. 3, 014101 (2021).

[26] L. Praxmeyer, arXiv:1309.3407.
[27] E. Shchukin, F. Schmidt, and P. van Loock, Phys. Rev. A 100,

032322 (2019).
[28] L. Kamin, E. Shchukin, F. Schmidt, and P. van Loock, Phys.

Rev. Res. 5, 023086 (2023).
[29] S. E. Vinay and P. Kok, Phys. Rev. A 99, 042313 (2019).
[30] W. Dai and D. Towsley, arXiv:2111.10994.
[31] S. Brand, T. Coopmans, and D. Elkouss, IEEE J. Sel. Areas

Commun. 38, 619 (2020).
[32] B. Li, T. Coopmans, and D. Elkouss, IEEE Trans. Quantum

Eng. 2, 4103015 (2021).

[33] T. Coopmans, S. Brand, and D. Elkouss, Phys. Rev. A 105,
012608 (2022).

[34] Á. G. Iñesta, G. Vardoyan, L. Scavuzzo, and S. Wehner, npj
Quantum Inf. 9, 46 (2023).

[35] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling, Phys.
Rev. Res. 1, 023032 (2019).

[36] L. Bugalho, B. C. Coutinho, F. A. Monteiro, and Y. Omar,
Quantum 7, 920 (2023).

[37] B. V. Gnedenko, Y. K. Belyayev, and A. D. Solovyev, Mathe-
matical Methods of Reliability Theory (Academic, New York,
2014).

[38] L. A. Gavrilov and N. S. Gavrilova, J. Theor. Biol. 213, 527
(2001).

[39] I. Bazovsky, Reliability Theory and Practice (Dover, New York,
2004).

[40] M. Newman, Networks (Oxford University Press, Oxford,
2018).

[41] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[42] B. C. Coutinho, W. J. Munro, K. Nemoto, and Y. Omar,

Commun. Phys. 5, 105 (2022).
[43] A. Strikis, S. C. Benjamin, and B. J. Brown, Phys. Rev. Appl.

19, 064081 (2023).
[44] J. Rabbie, K. Chakraborty, G. Avis, and S. Wehner, npj

Quantum Inf. 8, 5 (2022).
[45] M. T. Todinov, Flow Networks (Elsevier, Amsterdam, 2013).
[46] I. B. Gertsbakh, Reliability Theory: With Applications to Pre-

ventive Maintenance (Springer Science + Business Media, New
York, 2000).

[47] W. Weibull, J. Appl. Mech. 18, 293 (1951).
[48] W. M. Makeham, Assur. Mag. J. Inst. Actuaries 8, 301 (1860).
[49] B. Gompertz, Philos. Trans. R. Soc. 115, 513

(1825).
[50] D. Steinsaltz and S. N. Evans, Theor. Popul. Biol. 65, 319

(2004).
[51] L. A. Gavrilov and N. S. Gavrilova, The Biology of Life Span: A

Quantitative Approach (Harwood Academic, New York, 1991).
[52] S. DiAdamo, B. Qi, G. Miller, R. Kompella, and A. Shabani,

Phys. Rev. Res. 4, 043064 (2022).
[53] R. Mandil, S. DiAdamo, B. Qi, and A. Shabani, npj Quantum

Inf 9, 85 (2023).
[54] D. L. Zhou, B. Zeng, Z. Xu, and L. You, Phys. Rev. A 74,

052110 (2006).
[55] T. Kahle, E. Olbrich, J. Jost, and N. Ay, Phys. Rev. E 79, 026201

(2009).
[56] T. Galla and O. Gühne, Phys. Rev. E 85, 046209 (2012).
[57] N. Ay, J. Jost, H. Vân Lê, and L. Schwachhöfer, Information

Geometry, A Series of Modern Surveys in Mathematics, Vol.
64 (Springer, Cham, 2017).
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