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Metrology in the presence of thermodynamically consistent measurements
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Thermodynamically consistent measurements can preserve either statistics (unbiased) or marginal states
(noninvasive) but not both. Here we show the existence of metrological tasks which unequally favor each of
the aforementioned measurement types. We consider two different metrology tasks, namely, the weak value
amplification technique and repeated metrology without resetting. We observe that unbiased measurement
is better than noninvasive measurement for the former and the converse is true for the latter. We provide
finite-temperature simulations of transmon sensors which estimate how much cooling, a resource for realistic
measurements, is required to perform these metrology tasks.
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I. INTRODUCTION

Quantum metrology employs nonclassical resources for
tasks such as parameter estimation [1–3], state discrimina-
tion [4,5], and hypothesis testing [5]. The sensitivity of a
metrological task achieves quantum advantage based on the
nonclassical resources in probe states and the choice of mea-
surement. Generally, such probe states are considered to be
pure, and measurements are considered to be ideal. In the
experiment, the probe states and measurement device are at
finite temperatures. This implies that preparing a pure state
consumes infinite thermodynamic resources [6–10]. As a con-
sequence, two varieties of realistic measurements emerge,
namely, unbiased (UB) and noninvasive (NI) measurements
[11]. Incorporating these thermal resources in realistic metrol-
ogy requires further study.

Hence, a natural question that arises for a given metro-
logical task is which type of realistic measurement is more
suitable. We answer by studying the utility of nonideal mea-
surements on different metrological schemes. It is known that
a UB measurement protects the statistics and a NI measure-
ment protects the postmeasurement state [11]. Here we show
that a task that places a premium on statistics prefers the UB
measurement, and a task for which the postmeasurement state
is important prefers the NI measurement. First, we briefly
review nonideal measurements. We then provide the afore-
mentioned examples and analyze why a measurement type is
preferred over another. Finally, we summarize and discuss our
results.

II. NONIDEAL MEASUREMENT

Following von Neumann [12] and Lüder [13], measure-
ments and the role that pointers play in the act of measurement
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have garnered intense interest. This has led to the idea of
nonideal measurements, which was studied extensively in
[11,14,15]. In this paper we briefly review the properties of
ideal measurements and discuss why such measurements are
not feasible following the work of [11].

Consider the quantum system to be in state ρS and the mea-
suring device (pointer) ρP. To make an ideal measurement on
the system, the eigenstates of the system observable {|i〉} are
correlated to the orthogonal states of a pointer {|ψ i

n〉}n. This
is done by jointly evolving the system and pointer from state
ρS ⊗ ρP → ρSP. Following this, a projective measurement is
performed on the pointer using �i = ∑

n |ψ i
n〉〈ψ i

n|, and the
system state is inferred. If the correlation is perfect and the
pointer is observed in |ψ i

n〉, we conclude that the system is
in state |i〉. Such ideal measurements have three fundamental
properties, namely, unbiasedness, noninvasiveness, and faith-
fulness [11]. A measurement is said to be nonideal if any one
of the properties is not satisfied.

The unbiased property states that the premeasurement
statistics of the system are accurately reflected by the post-
measurement pointer statistics, i.e.,

Tr[I ⊗ �iρSP] = Tr[|i〉〈i|ρS] ∀ i, ρS. (1)

The second property desired for ideal measurements is
noninvasiveness. This property says that the measurement
interaction should not change the measurement statistics for
the system, namely,

Tr[|i〉〈i| ⊗ IρSP] = Tr[|i〉〈i|ρS] ∀ i, ρS. (2)

Finally, a measurement is faithful if there is a one-to-one
correspondence between the pointer outcome and the post-
measurement system state, namely,

C(ρSP ) =
∑

i

Tr[|i〉〈i| ⊗ �iρSP] = 1. (3)

This property suggests there should be perfect correla-
tion between system eigenstates {|i〉} and pointer states
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FIG. 1. An illustration of the change in the probabilities of the
system and pointer states in a fixed basis across a measurement as
described in the text. The probability vector associated with the sys-
tem statistics (gray) and that for the pointer (blue) are shown across
a correlating unitary followed by a measurement. In the space of the
system statistics, the statistics pRS of the reduced state is the same as
the system statistics q for NI measurements (green dashed line) and
points to a different probability vector for UB measurements (orange
solid line). In the case of the pointer, the pointer statistics p correctly
points to q for UB but not for NI.

{|ψ i
n〉}n. Such measurements are possible only if rank(ρP) �

dim(ρP)/dim(ρS) [11]; i.e., an ideal measurement requires
a non-full-rank pointer state. As the laws of thermody-
namics forbid the preparation of a non-full-rank state with
finite resources, a realistic measurement is always nonideal.
At finite temperature, the system and the pointer evolve
jointly to get maximum faithfulness, but the correlation will
not be perfect [C(ρ) < 1]. A measurement cannot be unbi-
ased and noninvasive because both properties together would
also imply faithfulness [11,16]. Hence, a maximally faith-
ful measurement can either be unbiased or noninvasive. The
UB measurement replicates the system statistics through the
pointer but changes the statistics of the reduced system after
measurement. As a result, the system needs to be discarded
or reset to measure again. On the other hand, the NI mea-
surement preserves the statistics of the system in the reduced
system state postmeasurement at the expense of the pointer
statistics being different from the system statistics, which is
shown in Fig. 1. These properties associated with different
nonideal measurements make them favorable in different sce-
narios. To compare the effect of nonideal measurements in a
metrological task, we identify a figure of merit and use it to
discuss cases in which each measurement type is favored.

In local quantum metrology the Fisher information has
been identified as the figure of merit [17,18]. Given the
convexity of the Fisher information, this figure of merit is
maximum for ideal optimal measurements on pure states. It
should be noted that the convexity of the quantum Fisher
information does not imply that generic pure states have more
Fisher information than generic mixed states. Consider the
following example in which the system is initialized in the
pure state |0〉 and evolved with U = eiθσz ; the final state has no
parameter encoded in it and has zero Fisher information. For
generic nonmaximally mixed states with finite coherence, the
corresponding quantum Fisher information is always greater
than zero. To formalize the role of purity, let us consider

a density matrix represented as a generalized Bloch vector.
Unitary parametrization encodes the parameter by rotating the
generalized Bloch vector. While holding the direction of the
Bloch vector constant, we can show that the quantum Fisher
information for unitary parametrization is monotonous to the
purity (see Appendix A). Hence, given the choice between
two states with different purities but with generalized Bloch
vectors pointing in the same direction, we will get more Fisher
information from the state with higher purity. This is one of
the key intuitions of this paper.

The final observation is that states on a generalized Bloch
sphere lose their length while preserving their direction as
temperature is increased. Hence, it follows that for generic
thermal maps parameterized by temperature, increasing the
temperature reduces the underlying quantum Fisher informa-
tion. The purity of the system states is not the only issue with
quantum metrology in the presence of finite resources. If we
presuppose mixed initial states but pure pointer states, then
measurements that saturate the quantum Fisher information
are plausible. Given the fact that such pure-state pointers
also violate the third law, we can conclude that the classical
Fisher information associated with any given mixed-pointer
state and any optimal measurement will still be less than
the corresponding quantum Fisher information. Hence, it is
important to understand the role of the two measurement
schemes outlined in [11] for quantum metrology.

The two thermodynamically consistent measurements dis-
cussed above can either preserve reduced system statistics or
reveal system statistics through the pointer. According to the
figure of merit, if revealing system statistics is more important
than preserving reduced system statistics, the UB measure-
ment is favored over the NI measurement. In Sec. III, we show
this by considering an example by applying nonideal mea-
surements with weak value amplification (WVA), where the
figure of merit is the postselected Fisher information. On the
other hand, if preserving reduced system statistics leads to a
higher postmeasured pointer purity than revealing the system
statistics, then the NI measurement is favored over the UB
measurement. This is discussed in Sec. IV by considering an
example of a repeated metrological scheme without resetting.

III. WEAK VALUE AMPLIFICATION
FAVORS UNBIASED MEASUREMENTS

WVA is a metrological scheme that uses postselection
to amplify small signals [19]. It involves preparing quan-
tum states and postselecting the evolved state in a specific
final state. It has a well-known trade-off between postse-
lection probability and amplified weak value [20]. Although
rejected measurements leave out some quantum information
[21], WVA has demonstrated better metrological performance
in the presence of certain noises [22]. WVA has proven
useful in disparate experiments, such as amplifying opti-
cal nonlinearities [23], measuring ultrasmall time delays of
light [24], detector saturation, and measuring low frequencies
[25], maintaining its relevance in modern quantum metrology.
From a thermodynamic perspective, the reliance of WVA
on pure states precludes us from implementing it in finite-
dimensional physical systems, as explained below. We hence
investigate WVA with constraints in the preparation of states
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and realistic nonideal measurements. For this reason, we sum-
marize WVA in a way that readily generalizes to mixed states.

The parameter g is coupled through system A and an ancilla
degree of freedom known as meter B via the Hamiltonian
H = gA ⊗ B. We note that this meter degree of freedom ac-
cumulates the effect of postselection and is separate from the
pointer introduced to model thermodynamic resource costs of
performing measurements. The system and meter are prepared
in an initial state ρs ⊗ ρm and are evolved for a short time τ ,
where gτ � 1 under the influence of the Hamiltonian above.
The system is postselected by a nearly orthogonal pure state
|ψ f 〉 (generalized below to mixed states), such that the aver-
age of the expected spin can be larger than the mean:

Aw = 〈ψ f |Aρs|ψ f 〉
〈ψ f |ρs|ψ f 〉 = 〈ψ f |Aρs|ψ f 〉

Ps
. (4)

This effectively evolves the meter state as
exp(−igτAwB)ρm exp(igτAwB). The postselection of the
system state in |ψ f 〉 depends on a projective measurement
onto a pure state, which, as noted above, is thermodynamically
inconsistent.

To include the effect of nonideal measurements, we in-
troduce a pointer degree of freedom. Our setup consists of
three parts, i.e., a system ρS of dimension dS , a meter ρm of
dimension dm, and a pointer ρP of dimension dP. The system
and pointer are governed by local Hamiltonians HS and HP,
respectively, where

HS = ES|ψ⊥
i 〉〈ψ⊥

i |, HP = EP|ψ⊥
f 〉〈ψ⊥

f |. (5)

To postselect the system through a pointer, the dimension
of the pointer should be an integer multiple of the system.
The system is weakly correlated to the meter and strongly
correlated to the pointer. The strong projective measurement
and postselection by the pointer gives the amplified reading in
the meter. To simulate nonideal measurement we prepare the
initial system and pointer in a thermal state,

ρS = q|ψi〉〈ψi| + q̄|ψ⊥
i 〉〈ψ⊥

i |,
ρP = p|ψ f 〉〈ψ f | + p̄|ψ⊥

f 〉〈ψ⊥
f |, (6)

where q̄/q = e−βES , p̄/p = e−βEP , and β = 1/T. Here we
choose dS = dP = 2, but it should be noted that the result
can be generalized to any values of dS � 2 and dP � 2. Prior
to performing a measurement, we correlate the system and
pointer in the measurement basis using a suitable unitary
matrix. To perform a suitable NI (UB) measurement, we
use Ucorr = Im ⊗ ∑

j | j〉〈 j| ⊗ Ũ j (Ucorr = Im ⊗ ∑
i j |i〉〈 j| ⊗

| j〉〈i|Ũ j). The unitary Ũj is adjusted such that the measure-
ment is maximally faithful. The nonideal measurement is then
simulated by doing a projective measurement on the pointer,
which is an instance of our Heisenberg’s cut [26]. Given that
the pointer is not pure, the desired near-orthogonal projec-
tion of the system state happens probabilistically; the other
outcome is less favorable and is governed by the nonzero-
temperature pointer. This causes the postselected meter state
to be a convex mixture of two outcomes, one which we term
the true positive (kicked state) and one which we label the
false-positive state. This is given by

ρPS(NI)
m = (pqPs + p̄q̄Ps)η1 + (pq̄P̄s + p̄qP̄s)η2. (7)

Here η1 = exp(igAwB)ρm exp(−igAwB) is the weak value
amplified meter state, and η2 = exp(igA⊥

wB)ρm exp(−igA⊥
wB)

is the nonamplified meter state, where

A⊥
w = 〈ψ⊥

f |Aρs|ψ⊥
f 〉

〈ψ⊥
f |ρs|ψ⊥

f 〉 . (8)

A detailed calculation of the kicked state is given in Ap-
pendix B. Likewise, for the unbiased measurement, the
postselected meter state will be

ρPS(UB)
m = qPsη1 + q̄P̄sη2. (9)

As A⊥
w � Aw, we can approximate η2 ≈ ρm. The postselected

states in Eqs. (7) and (9) will have reduced amplification
compared to the ideal scenario.

From Eq. (9), we can see that the trade-off between the
postselection probability and amplified weak value implied
in Eq. (4) still persists. This trade-off further depreciates in
Eq. (9) because the initial state is prepared in the mixed state
and nonideal measurements for postselection are performed.
In addition, another variety of trade-off is represented by
the fact that postselection implies that some measurements
outcomes are ignored. Measuring the system in a rarely posts-
elected state and ignoring other possible final states leads to
discarding potential information available from the system.
This leads to suboptimal information-theoretic performance
of the WVA scheme compared to the conventional scheme
in which the information from all possible final states is
collected. To measure performance in the ideal scenario,
the quantum Fisher information for the postselected scheme
IPS(g) and the total quantum Fisher information I (g) due
to the initial state are compared. Hence, the quantum Fisher
information obtained with the WVA scheme will always be
less than I (g), and the ratio IPS(g)/I (g) is always less than
unity [20]. In a similar spirit, we can compare the ratio of
the quantum Fisher information in the presence of thermal
resources ITH(g) to the ideal postselected IPS(g).

The quantum Fisher information is evaluated from
the Bures distance between ρg and ρg+dg [17], defined

as D2
B(ρg, ρg+dg) = 2[1 −

√
F (ρg, ρg+dg)], where ρg

is the state containing the information about param-
eter g and F (ρg, ρg+dg) is the fidelity, defined as

F (ρ1, ρ2) = [tr(
√√

ρ1ρ2
√

ρ1)]2. The quantum Fisher
information as a measure of sensitivity is related to the
curvature of the Bures distance at the parametric value g by
the formula I (g) = −∂2

g D2
B(ρg, ρg+dg). For the ideal WVA

process, we assume 〈B〉 = 0, and IPS(g) [27] is given by

IPS(g) = 4Ps|Aw|2[1 − |gAw|2Var(B)], (10)

where Var(B) is with respect to the initial meter state. The
postselected Fisher information IPS(g) is always less than
unity due to the rarity of the desired measurements. Now
for nonideal measurements, ITH(g) is calculated as (see Ap-
pendix B)

ITH(g) ≈ 4PM |A′
w|2[1 − |gA′

w|2Var(B)]. (11)
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Here A′
w is true weak value amplification, defined as

A′
w = Aw

1 + δM
, (12)

where δM =
⎧⎨
⎩

q̄P̄s

qPs
for unbiased measurements,

p̄qP̄s+pP̄sq̄
pqPs+p̄q̄Ps

for noninvasive measurements.
(13)

As δM > 0 at any nonzero temperature, the true amplification
is always less than the ideal amplification. The postselection
probabilities PM also depend on the system and pointer as

PM =
{

qPs for unbiased measurements,

pqPs + p̄q̄Ps for noninvasive measurements.
(14)

In summary, WVA is, in general, affected by the rare
postselection given in Eq. (4). In addition, the initial mixed
state and the choice of nonideal measurements performed
at the postselection further decrease the amplification given
in Eq. (12). From Eqs. (12) and (13), we observe that the
amplification due to the UB measurement depends only on
the system temperature, and for NI measurements it depends
on both system and pointer temperatures. To compare these
measurement schemes in a concrete setting, we consider the
original thought experiment [28] by Aharonov et al. in which
the result of a measurement of a component of a spin-1/2
particle was amplified by 100, now implemented with thermal
resources. Furthermore, we situate this thought experiment
in the IBM transmon qubit and investigate the amplification
obtained for different nonideal postmeasurements.

We initialize the system in a thermal state and perform
the nonideal measurement to estimate the steady-state tem-
perature to which the IBM transmon qubit has to be cooled
to get desired amplification. The IBM transmon qubit works
at the characteristic frequency of around 5–5.4 GHz [29] and
also consists of a dilution refrigerator that can cool the system
down to 15 mK [30]. We note that while we are taking 15 mK
as the lower limit for the current discussion, the real lower
limit of the temperature to which a given system can be cooled
depends on hardware constraints which should be appropri-
ately considered while applying our analysis to experiments.
The original thought experiment [28] discussed consists of
a system prepared in a pure state ρi = |↓〉〈↓|. The system
is then evolved by the Hamiltonian A = σx and finally post-
selected onto the state |ψ f 〉 = cos(θ )|↑〉 + sin(θ )|↓〉, giving
the amplification Aw = cot(θ ). With θ = 0.01, the parameter
g is amplified Aw ≈ 100 times. Performing this experiment
demands stringent cooling requirements. To demonstrate this,
we simulated the nonideal amplification obtained with the
WVA scheme performed on the IBM transmon setup as a
function of the temperatures of the system and pointer. Fig-
ure 2 shows the simulation for the NI measurement, and Fig. 3
shows the simulation for the UB measurement. The amplifi-
cation obtained from the NI measurement is affected by both
system and pointer temperatures, as shown in Eq. (13). The
pointer states prepared above 30 mK prove to be detrimental
for weak value amplification (A′

w < 1) even for a system state
prepared at very low temperature. For the UB measurement,
the initial system state prepared below 52 mK shows an

FIG. 2. Contour plot of true amplification for system and pointer
qubits composed of transmons at EP = ES = 5 GHz for NI measure-
ments. The amplification is denoted by the color bar and can be seen
to depend on both the initial-state and pointer temperatures plotted
along the two axes. The dotted line represents the lowest temperature
achievable by the dilution refrigerator. The achievable amplification
is hence the intersection of the region to the right of the vertical
dashed line and above the horizontal dashed line.

amplification (A′
w > 1), and states prepared below 20 mK

attain near-desired amplification. This amplification is irre-
spective of the temperature at which the pointer states are
prepared, as shown in Eq. (13). As cooling costs energy
[8,9,31], the resource cost for UB measurements is much more
favorable than for NI measurements.

FIG. 3. True amplification plotted as a function of the system
temperature for a UB measurement with EP = ES = 5 GHz. The
amplification depends only on the initial-state temperature in the UB
measurement as discussed in the text. The true amplification A′

w < 1
for TS > 52 mK, which is shaded brown and denotes deamplification
due to the effect of temperature. The red region shows the tempera-
ture range unattainable in the experiment considered in the text.
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In summary, we can observe that UB measurements are
favored over NI measurements, which can be concluded from
the figure of merit given in Eq. (11). This observation is fur-
ther supported by the resource requirements associated with
cooling quantum systems. This is a consequence of proper-
ties of UB measurements, in which the pointer replicates the
system statistics irrespective of its own temperature. From
Eqs. (13) and (14) it can be observed that true amplification
and postselection probability do not depend on pointer statis-
tics, as also shown in Fig. 1. Hence, the UB measurements are
preferred when getting the correct statistics of the system is
more important according to the figure of merit. In contrast,
there are metrology protocols which prioritize reduced states
over measurement statistics. In the next section, we consider
one such example and show how NI measurements have an
operational advantage over UB measurements.

IV. SEQUENTIAL METROLOGY
FAVORS NONINVASIVE MEASUREMENTS

While conveyer-belt models of metrology [32] imply that
the initial state is an infinite free resource, sequential metrol-
ogy schemes that prevent resetting account for the role played
by the initial coherences of the state. The sequential metrology
scheme without resetting involves initializing the probe state
once, followed by cycles of evolution and measurement of the
final state. This is different from repeated-interaction schemes
in which an initial probe state interacts with the parameter
repeatedly before being measured once [33]. Recently, a se-
quential metrological scheme without resetting was proposed
to beat the shot-noise limit without exploiting entanglement
resources in probe states [34]. A similar scheme was used in
estimating the temperature of the thermal reservoir by sequen-
tially measuring the probe states in contact with the reservoir
without resetting [35]. In such settings, the statistics need to
be preserved for the system and conveyed through a pointer
before the next measurement. Simultaneously, the postmea-
surement state of the system needs to be able to continue to
acquire information about the unknown parameter, which is
affected by the type of realistic measurement used. Hence,
a natural question that arises is whether sequential metrol-
ogy without resetting places a natural preference on statistics
or reduced states. We now compare sequential metrology
with different thermodynamically consistent measurements
discussed before.

Once again, we consider the transmon qubit initially in
the thermal state with a transition frequency of 5 GHz at
temperature TS = 100 mK. The system is evolved according
to the Hamiltonian H = θσx, acquiring an unknown phase
θ whose inference proceeds through a measurement by cor-
relating it with a pointer. As outlined above, the sequential
nature of this metrology scheme is the repeated interaction and
measurement. We start with a system initialized in state ρS,0

which will be evolved and measured repeatedly with measure-
ment operators M1,2 = [|↓〉〈↓|, |↑〉〈↑|] acting on the pointer
state. Each sequence consists of a pair of unitary evolutions
which gains phase, followed by a measurement event. There
are Ns sequential measurements performed on each initialized
system, and this whole sequence of measurements is repeated
ν times for statistical inference. For instance, ρS,i represents

FIG. 4. Maximum-likelihood-estimation (MLE) average and
standard deviation for a number of measurements for the case of
sequential metrology without resetting. Here the system and pointer
states taken to be at 5 GHz are prepared in the initial thermal state
corresponding to TS = 100 mK. The state of the system is evolved
by the Hamiltonian H = θσx , where θ = π/100 and is measured
along the z direction. MLEs corresponding to the UB measurement
(orange), NI measurement (green), and ideal measurement (teal)
are presented alongside a dashed line that represents the true value
(π/100). Note that the trajectories corresponding to UB measure-
ments are displaced by +π/100, and likewise, the trajectories of
ideal measurement are displaced by −π/100, as indicated on the
plot for clarity. Note that the UB estimate converges to the wrong
value, and its standard deviation, given by the orange shaded region,
is large. On the other hand, the ideal and NI measurements converge
to the correct mean with low standard deviations, and the ideal
outperforms the NI measurement.

the initial system state at the ith step of the sequence of evo-
lution and measurements. The total number of measurements
performed Nsν results in N sequences γ (i) = {ν (i)

↑ /ν, ν
(i)
↓ /ν},

which represent experimental frequencies. In the case of ideal
measurements, since the system state and the pointer statistics
are both unchanged at the end of the measurement, Ns copies
of the ideal measurement statistics γ

(i)
id are received at the

detectors. In contrast, the situation is different for nonideal
measurements. In the case of NI measurements, while the
reduced system state remains the same at the end of each
measurement, the pointer statistics γ

(i)
NI are slightly different

owing to the finite temperature discussed to this point. This
case is exactly reversed for UB measurements, where the
reduced state of the system is modified at the end of each
measurement, whereas the pointer statistics γ

(i)
UB remains un-

altered. Hence, each measurement considered above might
acquire information about the unknown phase at a different
rate. To study all three schemes fairly using the same analyti-
cal technique, we estimate the unknown phase by employing
a maximum-likelihood estimator (MLE) [36] which consid-
ers all collected measurement statistics to infer the unknown
parameter.

In Fig. 4 we present the MLE estimate of parameter θ̌

as a function of the number of measurements N . The log-
likelihood function l (θ ) := ∑

α γα loge[pα (θ )] is defined in
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terms of the observed statistics γ and the parametrized prob-
ability distribution p(θ ) corresponding to the outcome index
by α. This likelihood function can also be seen as the second
term in a Kullback-Liebler divergence D[γ ‖p(θ )] and hence
derives meaning as the minimization of a divergence between
probability distributions. We note that for multiple measure-
ments γ (i) resulting from potentially different parametrized
probability distributions p(i)(θ ) defined as a function of the
same unknown parameter θ , the divergence compares the
product distributions of the statistics and the parametrized
distributions, leading to a log-likelihood function l (θ ) :=∑

i

∑
α γ (i)

α loge[p(i)
α (θ )]. The estimate θ̌ maximizes l (θ ), and

the standard deviation is computed via the curvature of the
log-likelihood function as {−E[∇2l (θ̌ )]}− 1

2 .
In Fig. 4, we estimate the parameter whose true value

is θ = π/100 using the MLE method for the sequential
metrological scheme discussed above for ideal, NI, and UB
measurements. In the case of ideal measurements, we observe
that θ̌ saturates to θtrue after a few measurements. Further-
more, the standard deviation in the estimate also converges
to attainable sensitivity after a few iterations. This serves as
a benchmark for the performance of the other two nonideal
measurement schemes. On the other hand, the estimated value
from the UB measurement saturates to an incorrect value.
We understand this as a result of the reduced system state
approaching the maximally mixed state after repeated mea-
surements. For instance, the purity of the postmeasurement
states after Ns = 120 measurements is ≈0.8 for the NI mea-
surement, whereas it is ≈0.5 for the UB measurement up to
numerical accuracy. Hence, its ability to acquire the correct
information about the parameter deteriorates after each mea-
surement. The standard deviation of the estimator is also very
large for the same reason. Finally, for the NI measurement,
the system state is unchanged after each measurement, so
the estimated value converges to θtrue. The standard devia-
tion of the estimator also approaches better sensitivity after
a few measurements, but less than the ideal measurement
case. In summary, NI measurements favor schemes such as
repeated metrology without resetting. This is because pre-
serving the statistics of the states after each measurement
is more important for such schemes as it maximizes the
figure of merit.

V. DISCUSSION AND CONCLUSION

An ideal measurement is thermodynamically inconsistent
because it requires infinite resources. The inclusion of thermo-
dynamics gives rise to two different realistic measurements,
namely, UB and NI measurements. We showed that for the UB
measurement, WVA shows better amplification by consuming
fewer resources, which is the result of the pointer replicating
system statistics. Due to this fact, the amplification depends
only on the system temperature for the UB measurement and
depends on both system and pointer temperatures for the NI
measurement. We also considered a single-shot sequential
metrological scheme in which the NI measurement shows
an advantage over the UB measurement. This is because we
considered a scheme without resetting the probe state, and
we saw that preserving the purity of the reduced state of the

system is important to the task of acquiring information about
the phase over successive runs.

We discussed the strict constraints that thermodynamically
consistent measurements place on quantum experiments, even
though such experiments were performed before [25,37,38]
and require some discussion. It should be noted that the
imperfect correlation between the system and the pointer is
a consequence of a full-rank finite-dimensional pointer at
nonzero temperature. This analysis can hence be circum-
vented by the use of an infinite-dimension pointer [11] such as
a harmonic oscillator or by cooling to a low enough temper-
ature, as noted in Fig. 2. In reality, using infinite-dimensional
pointers such as mechanical or light modes is not guaranteed,
and further care has to be taken.

Hence, our analysis suggests that realistic metrological
tasks with thermodynamically consistent measurements can
be classified into two categories based on whether the pointer
statistics or the reduced states of the system are impor-
tant. Finally, we note that optimizing over other figures of
merits might posit schemes which use UB and NI measure-
ments together to achieve optimal performance. Our results
hence contribute to the general task of designing realistic
quantum metrology tasks with thermodynamically consistent
resources and could guide such experimental design in the
future.
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APPENDIX A: QUANTUM FISHER INFORMATION
DEPENDENCE ON PURITY

In this Appendix we briefly derive the form of the quantum
Fisher information (QFI) as described in [39] and prove that
for unitary parametrization, if the direction of the Bloch vector
is kept the same, then the QFI increases with the increase in
the purity of the state.

Consider the Bloch representation of a general d-level
quantum system (qudit) as follows [39]:

ρ = 1

d
Id + 1

2

d2−1∑
i=1

ωiη̂i. (A1)

Here Id is a d × d identity operator, η̂ = {η̂1, η̂2, . . . , η̂d2−1}
are the generators of the Lie algebra su(d), and ωi are the
components of the Bloch vector ω = (ω1, ω2, . . . , ωd2−1)T .

Now if the system is evolved with a parameter-dependent
unitary Uλ = e−i(r·η̂)λ, where r is a constant Bloch vector, we
will get

ρλ = UλρU †
λ = 1

d
Id + 1

2

d2−1∑
i=1

ωi(λ)η̂i

⇒ ρλ = 1

d
Id + 1

2
ω(λ) · η̂. (A2)
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The purity of the state ρλ is given by Tr(ρ2
λ ) = Tr(ρ2) =

(1/d + |ω|2/2). The QFI for the state ρλ is defined as

Iλ = Tr
(
ρλL2

λ

) = Tr [(∂λρλ)Lλ]. (A3)

Here Lλ is the symmetric logarithmic derivative (SLD) opera-
tor and is determined by

∂λρλ = 1
2 {ρλ, Lλ}, (A4)

where {·, ·} is the anticommutator. To find Lλ we expand it in
terms of su(d ) generators as follows:

Lλ = aId + b · η̂. (A5)

To determine a and vector b = {bi} we use Eqs. (A2) and (A5)
in Eq. (A4) to get

1

2
[∂λω(λ)] · η̂ = 1

2
{ρ, L} = 1

2

({
I

d
, aI + b · η̂

}{
1

2
ω(λ) · η̂, aI

}
+

{
1

2
ω(λ) · η̂, b · η̂

})

⇒ 1

2
[∂λω(λ)] · η̂ = 1

d
[a + ω(λ)Tb]I +

d2−1∑
k=1

⎛
⎝ 1

d
bk + 1

2
aωk (λ) + 1

2

d2−1∑
i, j=1

gi jkωi(λ)b j

⎞
⎠η̂k . (A6)

Here gi jk are the completely symmetric structure constants of
the su(d) algebra, defined as

gi jk = 1
4 Tr({η̂i, η̂ j}η̂k ). (A7)

Now by comparing both sides of Eq. (A6) we get

a + ω(λ)Tb = 0,

[∂λω(λ)] · η̂ = 2

d
b · η̂ + (aω) · η̂ + (Gb) · η̂, (A8)

where G is a d × d matrix with elements defined as Gi j =∑d2−1
k=1 gi jkωk (λ). To simplify Eq. (A8), we can find the value

of a by writing Lλ in terms of eigenvalues and eigenvectors
of ρλ [40,41] and comparing it to Eq. (A5). The parame-
terized state ρλ can be written in its eigenbasis, i.e., ρλ =∑

i Ci|ψi〉〈ψi|. Using this form of ρλ, the SLD operator Lλ can
be written as

Lλ = 2
∑
i, j

〈ψi|∂λρλ|ψ j〉
Ci + Cj

|ψi〉〈ψ j |, (A9)

and the summation goes over all i, j such that Ci + Cj �= 0.
For unitary evolution, we have ∂λρλ = −i[r · η̂, ρλ]; using it
in Eq. (A9) will give

Lλ = −2i
∑
i, j

〈ψi|[r · η̂, ρλ]|ψ j〉
Ci + Cj

|ψi〉〈ψ j |

or

Lλ = 2i
∑
i, j

〈ψi|r · η̂|ψ j〉(Ci − Cj )

Ci + Cj
|ψi〉〈ψ j |. (A10)

Comparing Eq. (A10) with Eq. (A5), we get

aId + b · η̂ = 2i
∑
i, j

〈ψi|r · η̂|ψ j〉(Ci − Cj )

Ci + Cj
|ψi〉〈ψ j |. (A11)

Taking the trace on both sides in Eq. (A11) gives

Tr(aId + b · η̂)

= Tr

(
2i

∑
i, j

〈ψi|r · η̂|ψ j〉(Ci − Cj )

Ci + Cj
|ψi〉〈ψ j |

)

⇒ ad = 2i
∑
i, j

〈ψi|r · η̂|ψ j〉(Ci − Cj )

Ci + Cj
δi j

⇒ ad = 0 or a = 0. (A12)

Using this, we can simplify Eq. (A8) as

a = ω(λ)Tb = 0,

∂λω(λ) =
(

2

d
I + G

)
b

⇒ b =
(

2

d
I + G

)−1

[∂λω(λ)]. (A13)

Now from Eqs. (A5) and (A3) we can determine the Fisher
information to be Iλ = [∂λω(λ)]Tb. Using the value of b from
Eq. (A13), we get

Iλ = [∂λω(λ)]T

(
2

d
I + G

)−1

[∂λω(λ)]. (A14)

The inverse of the matrix may not exist in Eq. (A14); hence,
we define the inverse only in support of the matrix. Now we
can take ω = |ω|(ω̂1, ω̂2, . . . , ω̂d2−1)T = |ω|ω̂, where |ω| is
the length of the Bloch vector and {ω̂i} are the components of
the unit vector. The matrix G can then be written as G = |ω|G̃,

and elements of G̃ will be given as G̃i j = ∑d2−1
k=1 gi jkω̂k (λ).

We note that the matrix G̃ is the same for any two Bloch
vectors with same-direction cosines. Let the spectral decom-
position of G̃ be G̃ = ∑

i g̃iviv
T
i , where {g̃i} and {vi} are

eigenvalues and eigenvectors of G̃, respectively. The QFI can
then be expressed as

Iλ = [∂λω(λ)]T
d2−1∑
i=1

viv
T
i

2/d + |ω|g̃i
[∂λω(λ)]. (A15)

Since we define the inverse only in support of the matrix, we
sum over only the terms that are well defined in Eq. (A15),
i.e., 2/d + |ω|g̃i �= 0.
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Now for unitary transformation Uλ, we have

∂λρλ = −i[r · η̂, ρλ]

= −i

[
r · η̂,

1

d
Id + 1

2
ω(λ) · η̂

]

⇒ ∂λω(λ) · η̂ = 1

2

d2−1∑
i, j=1

riω j (λ)[η̂i, η̂ j]

⇒
d2−1∑
k=1

∂λωk (λ)η̂k =
d2−1∑
k=1

d2−1∑
i, j=1

riω j (λ) fi jk η̂k

⇒ ∂λωk (λ) =
d2−1∑
i, j=1

riω j (λ) fi jk = |ω|
d2−1∑
i, j=1

riω̂ j (λ) fi jk

⇒ ∂λωk (λ) = |ω|∂λω̂k (λ)

or

⇒ ∂λω(λ) = |ω|∂λω̂(λ). (A16)

Here the term fi jk denotes completely antisymmetric structure
constants of the su(d) algebra, defined as

fi jk = 1
4 Tr([η̂i, η̂ j]η̂k ). (A17)

Using Eq. (A16) in Eq. (A15), we get

Iλ =
d2−1∑
i=1

∣∣vT
i [∂λω̂(λ)]

∣∣2|ω|2
2/d + |ω|g̃i

. (A18)

Hence, from Eq. (A18) we can say that if the unknown param-
eter (λ) is acquired from unitary evolution, then the QFI of
this process depends on the length of the Bloch vector, which
depends on the purity of the state. To see how the QFI changes
with purity, we evaluate the first derivative of QFI with respect
to |ω| as follows:

dIλ

d (|ω|) =
d2−1∑
i=1

∣∣vT
i [∂λω̂(λ)]

∣∣2 4|ω|/d + g̃i|ω|2
(2/d + |ω|g̃i )2

= Iλ

|ω| +
d2−1∑
i=1

2d
∣∣vT

i [∂λω̂(λ)]
∣∣2|ω|

(2 + d|ω|g̃i )2
. (A19)

Since QFI is always positive, from Eq. (A19) we can say
that dIλ

d (|ω|) � 0 ∀|ω| > 0. Therefore, if the state ρ acquires
the phase related to the unknown parameter λ via unitary
transformation, from Eqs. (A18) and (A19) we can conclude
that the QFI increases with an increase in the purity of the state
provided the direction cosines of the parameter-independent
Bloch vector of the initial state are kept constant.

APPENDIX B: PROOF OF NONIDEAL WEAK VALUE

In this Appendix, we evaluate the kicked state for nonideal
measurements. Consider the initial state of the system pre-
pared in the thermal state,

ρs = q|ψi〉〈ψi| + q̄|ψ⊥
i 〉〈ψ⊥

i |, (B1)

where q̃/(1 − q̃) = exp(−βEs). The combination of the sys-
tem and meter state is

ρsm = q̄e−igA⊗B(|ψi〉〈ψi| ⊗ ρm)eigA⊗B

+ q̄e−igA⊗B(|ψ⊥
i 〉〈ψ⊥

i | ⊗ ρm)eigA⊗B. (B2)

Using the Gram-Schmidt orthogonalization procedure and
writing the initial state in terms of final states, we get

|ψi〉 = a|ψ f 〉 + b|ψ⊥
f 〉,

|ψ⊥
i 〉 = b∗|ψ f 〉 − a∗|ψ⊥

f 〉, (B3)

where a = 〈ψ f |ψi〉. Finally,

|ψi〉〈ψi| = |a|2|ψ f 〉〈ψ f | + ab∗|ψ f 〉〈ψ⊥
f |

+ a∗b|ψ⊥
f 〉〈ψ f | + |b|2|ψ⊥

f 〉〈ψ⊥
f | (B4)

and

|ψ⊥
i 〉〈ψ⊥

i | = |b|2|ψ f 〉〈ψ f | − ab∗|ψ f 〉〈ψ⊥
f |

− a∗b|ψ⊥
f 〉〈ψ f | + |a|2|ψ⊥

f 〉〈ψ⊥
f |. (B5)

The total system-meter state can be rewritten in terms of
the final state and the state orthogonal to the final state,

ρsm = q[(|a|2|ψ f 〉〈ψ f | + |b|2|ψ⊥
f 〉〈ψ⊥

f |) ⊗ ρm − ig(ba∗|ψ f 〉〈ψ f | − ab∗|ψ⊥
f 〉〈ψ⊥

f |) ⊗ Bρm + ig(a∗b|ψ⊥
f 〉〈ψ⊥

f |
− ab∗|ψ f 〉〈ψ f |) ⊗ ρmB] + q̄[(|b|2|ψ f 〉〈ψ f | + |a|2|ψ⊥

f 〉〈ψ⊥
f |) ⊗ ρm + ig(ba∗|ψ f 〉〈ψ f | − ab∗|ψ⊥

f 〉〈ψ⊥
f |) ⊗ Bρm

− ig(ab∗|ψ⊥
f 〉〈ψ⊥

f | − a∗b|ψ f 〉〈ψ f |) ⊗ ρmB] + off-diagonal terms. (B6)

Here and below off-diagonal terms do not appear in the calcu-
lations because they are eliminated after measurement. Now
we take a thermal pointer state and correlate it with the system
only in a system-meter state by using either the unbiased
method or noninvasive method. The correlation matrix for the
unbiased method is

UUB =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎤
⎥⎥⎦, (B7)

and the correlation matrix for the noninvasive method is

UNI =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤
⎥⎥⎦. (B8)

Then correlating the joint system and meter with the evolution
gives

ρpsm = UUB/NI(ρp ⊗ ρsm)U †
UB/NI. (B9)
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For the unbiased method, the correlated state is

� ps(ρpsm) = pPsq̄|ψ f 〉〈ψ f | ⊗ |ψ f 〉〈ψ f | ⊗ η1 + pP̄sq̄|ψ f 〉〈ψ f | ⊗ |ψ f 〉〈ψ f | ⊗ η2 + p̄Psq̄|ψ f 〉〈ψ f | ⊗ |ψ⊥
f 〉〈ψ⊥

f | ⊗ η1

+ p̄P̄sq̄|ψ f 〉〈ψ f | ⊗ |ψ⊥
f 〉〈ψ⊥

f | ⊗ η2 + off-diagonal terms. (B10)

For the NI measurement, the correlated state is

� ps(ρpsm) = pPsq̄|ψ f 〉〈ψ f | ⊗ |ψ f 〉〈ψ f | ⊗ η1 + pP̄sq̄|ψ f 〉〈ψ f | ⊗ |ψ f 〉〈ψ f | ⊗ η2 + p̄P̄sq̄|ψ f 〉〈ψ f | ⊗ |ψ⊥
f 〉〈ψ⊥

f | ⊗ η1

+ p̄Psq̄|ψ f 〉〈ψ f | ⊗ |ψ⊥
f 〉〈ψ⊥

f | ⊗ η2 + off-diagonal terms, (B11)

where η1 = exp (−igAwB)ρm exp (igAwB) and η2 = exp
[−i(g/Aw)B]ρm exp[+i(g/Aw)B], such that (g/Aw) �
gAw � 1.

Finally, measurement in pointer onto |ψ f 〉 state, the post-
measurement meter state for the UB measurement is

ρPS(UB)
m = Trp

(
�unb

pm

) = (qPs)η1 + (P̄sq̄)η2, (B12)

and that for the NI measurement is

ρPS(NI)
m = Trp

(
�ni

pm

)
= (pqPsη1 + p̄q̄Psη̃1) + (pP̄sq̄ + p̄qP̄s)η2, (B13)

where η̃1 = exp(igAwB)ρm exp(−igAwB), which is a Gaus-
sian centered at x = −gAw.

We see that the amplification will be better for the UB
measurement compared to the NI measurement because the
accurate amplification will be a weighted average of the
spread in the meter space. For the UB measurement,
the weighted average lies between x = 0 and x = gAw. For
the NI measurement, the weighted average is close to x = 0.
If we imagine the meter state is a Gaussian function in the
position basis, we see two Gaussians, one centered at x = 0
due to η2 and another Gaussian centered at x = gAw due to
η1.

Now we calculate the Fisher information for a nonideal
measurement and compare it to Fisher information obtained
from an ideal measurement. The postselected state for a non-
ideal measurement state can be rewritten as

ρ(g) = PM (e−igAwBρmeigAwB) + PMδMρm. (B14)

Now diagonalizing Eq. (B14) so that we can calculate the
Bures distance easily,

ρ(g) = PM

2
[|gAw|2 2δM

δM + 1
|ψ1〉〈ψ1|

+ (δM + 1)
|gAw|2
δM + 1

|ψ2〉〈ψ2|]. (B15)

Now the Bures distance can be calculated from the fidelity
between ρg and ρg+dg,

F (ρg, ρg+dg) = |gAw||(g + dg)Aw| δM

δM + 1

+ (δM + 1)
√

[1 + |gAw/(δM + 1)|2]

×
√

[1 + |(g + dg)Aw/δM + 1|2]. (B16)

Computing the negative second derivative of g of the Bures
distance gives us the Fisher information:

I (g) = −∂2
g {2[1 − F (ρg, ρg+dg)]}, (B17)

ITH(g) = 4PM |A′
w|2(1 − |gA′

w|2), (B18)

where the weak value is

A′
w = Aw

1 + δM
(B19)

and δM is

δM =
⎧⎨
⎩

q̄P̄s

qPs
for the unbiased measurement,

pP̄sq̄+p̄qP̄s

pqPs+p̄q̄Ps
for the noninvasive measurement

(B20)

and PM is

PM =
{

qPs for the unbiased measurement,

pqPs + p̄q̄Ps for the noninvasive measurement.
(B21)

These are Eqs. (10)–(14) in the main text. The amplifica-
tion is bad for both noninvasive and unbiased measurements
compared to an ideal measurement. If we compare the NI
method with the UB method, the Fisher information obtained
from the UB measurement is better than that from the other
method because the amplification depends only on the system
purity, not on the pointer purity. In the UB measurement,
the pointer replicates the system statistics, which is more
important in a weak value amplification procedure. The NI
procedure preserves only the states of the system, and the sys-
tem statistics are changed; hence, we get better amplification
through the UB measurement procedure compared to the NI
measurement.
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