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Single-photon interference is the essential key for the recently well-known twin-field quantum key distribution
(TF-QKD) to break the linear rate-distance limit and requires beams with identical polarizations. Inspired by
this fact and aiming to improve the secret key rate, we propose a hybrid high-dimensional QKD named the
interfering-or-not-interfering QKD (INI-QKD), in which both the polarization and phase degrees of freedom
(DOFs) are adopted as information carriers. The protocol’s security proof is analyzed based on entanglement
distillation and three defined effective events, X1, X2, and X3. The simulation shows that the X1 event, from which
only the phase information is extracted, exceeds TF-QKD’s variants, while the X2 and X3 events, in which both
types of information are decoded, can achieve twice the secret key rate as measurement-device-independent QKD
(MDI-QKD). It is also proven that by adding the polarization DOF, INI-QKD obtains more resistance to phase
mismatch than TF-QKD. Remarkably, these can all be achieved by simply altering the TF-QKD’s measurement
setup to that of MDI-QKD.
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I. INTRODUCTION

Based on information-theoretic security guaranteed by
quantum physics mechanics [1–3], quantum key distribution
(QKD), one of the maturest quantum information implemen-
tations, has gone through rapid development [4–9]. In 2012,
measurement-device-independent QKD (MDI-QKD) [10,11],
in which the measurement site is placed in the middle,
was proposed to prevent detection attacks and leakage of
side-channel information. However, due to the transmission
loss of photons, most of the protocols’ performances are
bounded by the rate-distance limit of a repeaterless QKD,
or, in other words, the Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) bound [6]. It was not until 2018 that a MDI-type
phase-encoding scheme called twin-field QKD (TF-QKD)
was presented and showed the capacity of beating the PLOB
bound [12]. TF-QKD’s variants, such as phase-matching
QKD (PM-QKD) [13–15], no-phase-postselection TF-QKD
(NPP-TF-QKD) [16,17], and sending-or-not-sending TF-
QKD (SNS-TF-QKD) [18,19], inherit its capacity of over-
coming the limit with simpler procedures and more complete
security analysis. Proof-of-principle experiments for them
have all been implemented [20–24].

Despite the breakthroughs, the limited secret key rate
has always been an obstacle to the requirement of current
high-speed communication. One possible solution is the high-
dimensional QKD (HD-QKD), which uses d-dimensional
(d > 2) quantum states (qudits). It is shown that a qudit can
carry more information and is more robust to eavesdropping
compared with a qubit [25,26]. There have been extensive
studies on various physical degrees of freedom (DOFs) to
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realize HD-QKD, such as orbital angular momentum [27–29],
spatial modes [30], spin-orbit hybrid states [31], temporal
modes [32], and so on. However, these protocols may be
difficult to realize in practice because it is challenging to
prepare and measure discrete HD states. Some of the schemes’
switching speeds of the encoding and decoding devices are
relatively low, limiting their ability to achieve a high secret
key rate. Moreover, there has rarely been any HD-QKD re-
search in the form of TF-QKD. So far, the polarization and
phase are the most popular DOFs used in QKD schemes,
and the related technologies have become mature. Multiple
protocols based on these two DOFs have been proposed and
experimentally implemented [10,20–24,33]. However, for all
these QKD protocols, only one DOF is utilized, and the other
one is not, which is wasteful and inefficient.

In this paper, we propose a so-called interfering-or-
not-interfering QKD (INI-QKD) protocol to overcome the
problem mentioned above, in which the key information is
encoded in both the polarization and phase DOFs, and their
corresponding bits are named the polarization bit and the
phase bit. In the protocol, three effective events, X1, X2, and
X3, are defined according to the detection results. The users
decide whether to extract both types of key bits or just the
phase bit based on the three events. Also, the security is an-
alyzed based on entanglement distillation [1,2]: Suppose that
the users each have local qubits entangled with the prepared
states and they measure these qubits after the interference to
see their correlations.

The advantages of this protocol are as follows: (1) INI-
QKD utilizes both the polarization and phase DOFs as
information carriers, so that INI-QKD has a higher secret-
key-rate performance. (2) The protocol’s four-dimensional
encoding system makes it leak less information under Eve’s
attack than two-dimensional protocols. (3) INI-QKD uses a
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FIG. 1. Schematic diagram of INI-QKD: WCP, weak coherent
pulse; Pol-M, polarization modulator; PM, phase modulator; IM, in-
tensity modulator; BS, beam splitter; PBS, polarization beam splitter.

specific phase value and cuts off phase postselection and phase
randomization, which can simplify the protocol’s process and
avoid intrinsic misalignment error caused by continuous phase
postselection. (4) The protocol can rely less on the stabi-
lization of phases than TF-QKD variants like PM-QKD. (5)
INI-QKD’s experimental structure is basically a combination
of MDI-QKD and the phase-locking technique, which is uti-
lized to lock the frequencies and phases of the users’ lasers.
This will make the protocol’s practical implementation within
the reach of current technologies.

The structure of this paper is organized as follows: A
schematic description of the INI-QKD is presented in Sec. II.
Section III demonstrates numerical simulations of the pro-
tocol’s performance. Finally, Sec. IV summarizes the whole
work.

II. PROTOCOL

A. Detailed description

The idea of INI-QKD protocol originates from the fact
that two coherent light beams with the same polarizations
can interfere, whereas the interference cannot occur if the
two beams’ polarizations are orthogonal. This distinguishable
results makes it possible to simultaneously utilize both the
polarization and phase DOFs as information carriers during
the key distribution. A schematic diagram of INI-QKD is
shown in Fig. 1. The authorized users prepare weak coher-
ent pulses (WCPs), and each uses a polarization modulator
and phase modulator to encode their polarization and phase
bits into the pulses. Different light intensities in both bases
are modulated by the intensity modulators. After traveling
through two independent channels, the pulses from both sides
interfere at a 50:50 beam splitter (BS) whose output arms each
have a polarizing beam splitter (PBS) attached to project the
light into two orthogonal polarization states in the rectilinear
basis. Four single-photon detectors, DH1 , DV1 , DH2 , and DV2 ,
are employed to detect the photons. The protocol’s detailed
procedures are as follows.

Step 1. Alice (Bob) randomly decides whether the coherent
states in each round should be prepared in the X basis or Z
basis. In both bases, she (he) should choose the polarization
bit κ

pol
a(b) and the polarization bit κ

ph
a(b) from {0, 1} with a priori

probability distribution {0.5, 0.5}. Once the X basis is chosen,

Alice (Bob) prepares |√μeiπκ
ph
a 〉A+ (|√μeiπκ

ph
b 〉B+ ) if κ

pol
a(b) =

0. Likewise, if κ
pol
a(b) = 1, she (he) should prepare |√μeiπκ

ph
a 〉A−

(|√μeiπκ
ph
b 〉B− ). Similarly, the states prepared in the Z basis

should be |√μAeiπκ
ph
a 〉AH (|√μBeiπκ

ph
b 〉BH ) or |√μAeiπκ

ph
a 〉AV

(|√μBeiπκ
ph
b 〉BV ). Here, the subscripts H , V , +, and − denote

the polarization states in rectilinear and diagonal bases, re-
spectively. It should be noted that the intensities μA and μB

are not fixed and are randomly chosen from a predetermined
set.

Step 2. The states prepared by the authorized users are
sent to the measurement site controlled by Charlie, who can
be malicious. Charlie then performs measurements using the
devices shown in Fig. 1 and reports only one of the following
effective events:

(1) In the X1 event, only DH1 or DH2 responds.
(2) In the X2 event, detection event (DH1 , DV1 ) or (DH2 , DV2 )

happens.
(3) In the X3 event, detection event (DH1 , DV2 ) or (DV1 , DH2 )

happens.
Step 3. The users along with Charlie repeat the above steps

for sufficient times.
Step 4. The users announce their choices of bases for each

round. They keep those rounds with the effective events in
the same basis. X -basis effective events are used to generate
the raw key bits, while those in Z basis help monitor Eve’s
eavesdropping.

Step 5. Some raw key bits are sampled for error tests. The
rest are distilled for the final key bits after error correction and
privacy amplification.

Note that to simplify the protocol’s process and avoid
possible intrinsic misalignment error, phase postselection
operation and phase randomization are cut off. And the
phase-locking technique used in TF-QKD is also required for
INI-QKD.

It should also be noted that only when two detectors
respond can Alice and Bob correlate each other’s polariza-
tion and phase information; i.e., if the two detectors are on
the same side, interference happens, but if both sides have
one responding detector with orthogonal polarizations, e.g.,
(DH1 , DV2 ), no interference occurs. These two cases corre-
spond to the X2 event and the X3 event. In such events, the
users can judge their polarizations’ relation: They are identical
(orthogonal) when the X2 (X3) event happens. After that, the
users can relate their phases. However, if only one detector
among the four clicks, the users will no longer confirm the
correlation between their polarizations. When only DH1 or DH2

clicks, which corresponds to the X1 event, the users can only
correlate each other’s phases. Thus, even though two sets of
bit information are encoded in each WCP, it cannot be ensured
that both sets are extracted in all effective events. In other
words, the X2 and X3 parts of the protocol can be treated as a
HD-QKD protocol, but the X1 event cannot. That is the reason
why INI-QKD is a hybrid HD-QKD protocol. In step 4, to
generate raw key bits, the users correlate only their phase bits
or both bits based on different X -basis effective events. Under
certain events Bob should flip one or even both of his bits
because the users’ bits are anticorrelated. The details are given
in Table I.
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TABLE I. The correlations between users’ polarization and
phase bits under different effective events. “None” means that no
related information can be extracted. “Same” indicates that Alice
and Bob share the same bit. “Opposite” indicates that Alice and Bob
share the opposite bit, and Bob should flip his bit.

Effective events

Key X1 event X2 event X3 event

bits DH1 DH2 (DH1 , DV1 ) (DH2 , DV2 ) (DH1 , DV2 ) (DV1 , DH2 )

κ
pol
a(b) None None Same Same Opposite Opposite

κ
ph
a(b) Same Opposite Same Opposite Same Opposite

As can be seen, Alice and Bob can correlate both their
polarization bits and phase bits when X2 or X3 events happen.
But they can only extract phase information when X1 event
happens.

B. Secret key rate

As mentioned above, there are three effective events de-
fined in the proposed protocol. Since the cases for the three
events are different, the total secret key rate can be estimated
from three parts, which can be calculated separately, similar to
those discussed in Refs. [34,35]. Based on the security analy-
sis using entanglement distillation, INI-QKD’s secret key rate
can be given as

R =
3∑

i=1

RXi , i ∈ {1, 2, 3},

RXi = QXi
μ

[
1 − H

(
Eph,Xi

μ

) − IU
E − f H

(
Ebit,Xi

μ

)]
, (1)

where R is the secret key rate per pulse; Qμ, Eph
μ , and

Ebit
μ denote the overall gain, phase-error rate, and quantum-

bit-error rate (QBER), respectively; H (x) = −x log2(x) −
(1 − x) log2(1 − x) is the binary Shannon entropy function;
and the superscripts Xi (i ∈ {1, 2, 3}) represent the three
effective events. It should be noted that there is an up-
per bound of mutual information IU

E in Eq. (1) that the
eavesdropper Eve could have (on users’ key bits) by us-
ing beam-splitting attack. For simplicity, the transmission
loss is neglected when the security is analyzed. How-
ever, since the secret bits are encoded into the polarization
and phase, Eve may obtain the information by collect-
ing and measuring the states lost during transmission. The
beam-splitting attack is one of the possible attack strategies

TABLE III. The parameters adopted in the simulations. Pd is the
detectors’ dark-count rate, ηd is the detection efficiency, α is the
channel’s loss rate, f denotes the error-correction efficiency, and M
represents the number of phase slices over [0, 2π ) in PM-QKD.

Parameter

Pd ηd α f M

Value 8 × 10−8 0.145 0.2 1.15 16

for the proposed protocol. The details are analyzed in Ap-
pendix B.

Device imperfections along with the environment may not
allow the right effective events, which leads to bit errors.
Since those errors could happen in both the polarization bit
and phase bit or only one of them, all possible situations
should be analyzed under different encoded bit combinations
to calculate the QBER. Without loss of generality, one may
consider only two polarization bit combinations with κ

ph
a =

κ
ph
b = 0 because of the symmetry. Table II lists the accuracy of

decoded bits under certain encoded information combinations
and effective events. It is helpful for calculating the protocol’s
QBER (see the details in Appendix C). For example, when
both users’ polarization bits are zero, the right detection event
is (DH1 , DV1 ) or only DH1 . Thus, if (DH1 , DV2 ) happens, a
bit-flip error will occur in the polarization bit.

III. SIMULATION

In this section, the numerical simulations of INI-QKD are
presented under the assumption of symmetrical lossy channels
and identical detectors. The simulation parameters are listed in
Table III. With the method of full optimization, the optimized
secret key rates for each effective event and the whole protocol
are presented. For comparison, the performance of three well-
known TF-QKD variants, NPP-TF-QKD (phase encoding,
no phase randomization, no phase postselection) [16], SNS-
TF-QKD (intensity encoding, phase randomization) [18], and
PM-QKD (phase encoding, phase randomization, phase post-
selection) [13], along with phase-encoding MDI-QKD [33],
is also presented. All the results are demonstrated in Fig. 2.
It should be noted that no optical misalignment is considered
during the simulation except that caused by phase postselec-
tion in PM-QKD.

The results in Fig. 2 show that the proposed protocol has
a considerably high secret key rate composed of three parts,

TABLE II. The accuracy of decoded bits under certain encoded information combinations and effective events.

Effective events

X1 event X2 event X3 event

(κpol
a , κ

pol
b ) DH1 DH2 (DH1 , DV1 ) (DH2 , DV2 ) (DH1 , DV2 ) (DV1 , DH2 )

(0,0) κ
pol
a(b): none

κ
ph
a(b): right

κ
pol
a(b): none

κ
ph
a(b): wrong

κ
pol
a(b): right

κ
ph
a(b): right

κ
pol
a(b): right

κ
ph
a(b): wrong

κ
pol
a(b): wrong

κ
ph
a(b): right

κ
pol
a(b): wrong

κ
ph
a(b): wrong

(0,1) κ
pol
a(b): none

κ
ph
a(b): right

κ
pol
a(b): none

κ
ph
a(b): wrong

κ
pol
a(b): wrong

κ
ph
a(b): right

κ
pol
a(b): wrong

κ
ph
a(b): wrong

κ
pol
a(b): right

κ
ph
a(b): right

κ
pol
a(b): right

κ
ph
a(b): wrong
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FIG. 2. The simulations of INI-QKD and all three of its effective
events’ secret-key-rate performances, along with those of NPP-TF-
QKD, SNS-TF-QKD, PM-QKD, and MDI-QKD. The PLOB bound
is also illustrated.

the X1, X2, and X3 events. The X2 and X3 events together
make up the high-dimensional part of INI-QKD and have
definitions similar to MDI-QKD. The simulation result shows
that the performance of each one is almost the same as that
of MDI-QKD. Thus, these two events may be treated as a
high-dimensional MDI-QKD. Compared to X2 and X3 events,
the X1 event provides a much higher secret key rate and can
surpass the PLOB bound. Therefore, the secrete-key-rate per-
formance of the proposed protocol is slightly higher than that
contributed by the X1 event. The reason is that the X1 event is a
one-photon-order detection event, while X2 and X3 events are
two-photon-order detection events, which causes their secret
key rates to be bounded by O(

√
η) and O(η), respectively.

Mutual information obtained by a potential eavesdropper
using the beam-splitting attack is considered in the proto-
col. Its upper bound can be calculated based on the largest
probability of Eve unambiguously discriminating the prepared
states, which is IU

E = 1 − 1
9 [e−2(1−ηt )μ + 2e−(1−ηt )μ]2. Note

that IU
E remains in all three effective events. That is because

both the polarization and phase DOFs are implemented in
INI-QKD, and there are four total states prepared by the users.
Even when the X1 event happens and only the phase bit is
extracted, from Eve’s perspective, she still cannot judge the
users’ polarization choices and needs to identify the states
she has out of four states. Meanwhile, just like X1 event,
TF-QKD and its variants all have a secret key rate which
is bounded by O(

√
η). Compared with TF-QKD’s notable

variants (NPP-TF-QKD, SNS-TF-QKD, and PM-QKD), the
X1 event performs better. The reason is that there is a big
difference between them. Take PM-QKD as an example. The
users encode only one bit of information into phases of each
WCP, and that means Eve needs to distinguish between only
two states after phase postselection. This indicates that INI-
QKD has more uncertainty than PM-QKD; i.e., INI-QKD’s
states are less likely to be identified by Eve than PM-QKD’s
counterparts. The greatest information that Eve can get from
PM-QKD through the beam-splitting attack is IPM,U

E = 1 −
e−4(1−ηt )μ [13], which is clearly larger than IU

E , meaning the
PM-QKD may leak more information than INI-QKD (see the
details in Appendix B). This result can be similarly applied to
TF-QKD’s other variants.

Furthermore, we discuss the secret key rate’s relationships
with the polarization misalignment as well as the phase mis-
match. Here, we adopt the model in Ref. [36] to describe
the polarization misalignment error. Because of the chan-
nels’ symmetry, we assume that sin2(θA) = sin2(θB) = ed/2,
where θA(B) is the polarization-rotation angle and ed is the
total polarization-misalignment-error rate. Thus, there are two
cases from this assumption, that is, θA = θB = arcsin

√
ed/2

(case I) and θA = −θB = arcsin
√

ed/2 (case II). From
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FIG. 3. Secret key rate against the polarization-misalignment-error rate ed of all three of INI-QKD’s effective events in both cases. (a) Case
I. (b) Case II.
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FIG. 4. Secret key rate against the phase mismatch δ of all three
of INI-QKD’s effective events and PM-QKD.

Appendix C, it can be seen that the light intensities of the
detectors are not relevant to the global phases of both sides
(φA and φB), but their difference φδ = φB − φA. So we use
φδ = δπ to represent phase mismatch in the following. We
first demonstrate the secret key rate of the proposed INI-QKD
against the polarization-misalignment-error rate ed with the
communication distance fixed at 150 km in Fig. 3, where
Fig. 3(a) shows case I and Fig. 3(b) shows case II. It is
shown that, for case I, the X3 event is most robust against the
polarization misalignment, while the X2 event’s performance
drops sharply with increasing ed . When ed exceeds 0.54, the
X3 event has a larger secret key rate than that of the X1

event. For case II, as shown in Fig. 3(b), the performance
by the X1 event is the same as that in case I, while the X2

event is most robust against polarization misalignment, and
the secret-key-rate performance of the X3 event drops quickly.
Moreover, we demonstrate the secret-key-rate performance
against phase mismatch at a distance of 150 km in Fig. 4.
The simulation of PM-QKD is also plotted for comparison.
The results show that the phase-mismatch tolerances of the X2

and X3 events are mostly the same. But the X1 event’s secret-
key-rate performance drops a little slower than that of the X2

or X3 event when δ becomes larger. The results also show
that the performance of PM-QKD completely vanishes when
δ reaches 0.2, while the phase mismatches for the X1 event
and the X2 and X3 events are 0.336 and 0.285, respectively.
This hints that INI-QKD has a little more robustness against
phase mismatch than the TF-QKD variants.

IV. CONCLUSION

In this paper, we proposed a hybrid-encoding QKD proto-
col named interfering-or-not-interfering QKD. The proposed
INI-QKD has a structure similar to MDI-QKD. However, its
information is encoded in both the polarizations and phases of
the coherent states. Three effective events, the encoding and
decoding principles and possible error-generating situations,
were well defined and discussed. The protocol’s security was
analyzed by using the entanglement distillation, and the mu-
tual information obtained by a potential eavesdropper using
the beam-splitting attack was discussed. The simulation re-
sults showed that the X1 event, in which only the phase bit is
encoded, performs better than the variants of TF-QKD, while
the X2 and X3 events, in which users decode both the polar-
ization and phase bits, obtain a secret key rate 2 times higher
than that of MDI-QKD. In addition, the relationships between
the protocol’s performance and polarization misalignment
along with phase mismatch were also discussed. When both
channels’ polarization-rotation angles are the same, the X3

event can endure high polarization misalignment. As for the
opposite-angle case, the X2 event has the ability to tolerate the
highest polarization misalignment. All three events are more
robust against the phase match than those of the TF-QKD vari-
ants. The protocol is a promising candidate for quantum key
distribution because of its high performance and experimental
feasibility under current technologies.
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APPENDIX A: SECURITY PROOF

In this Appendix, a security proof for the INI-QKD protocol based on entanglement distillation is presented. Suppose that the
users each have two local qubits entangled with the coherent light that they prepare. Since both the polarization bit and phase bit
are chosen with the a priori probability distribution {0.5, 0.5}, Alice’s prepared state can be written as

1
2

[ |0〉pol
a |0〉ph

a |√μ〉A+ + |0〉pol
a |1〉ph

a |−√
μ〉A+ + |1〉pol

a |0〉ph
a |√μ〉A− + |1〉pol

a |1〉ph
a |−√

μ〉A−

]
, (A1)

where |·〉pol
a and |·〉ph

a represent Alice’s polarization and phase qubits and |·〉A± denotes the coherent state prepared in one of the
diagonal polarizations. For simplicity, we shall express |·〉pol

a |·〉ph
a as |··〉a. Bob’s state has a similar expression.

For simplicity, we may neglect the effect of dark count and channel loss for now. Thus, after passing through the BS and
PBSs at the measurement site, the users’ states evolve as

1
4

[ |0000〉ab |√μ〉H1
|√μ〉V1

+ |0001〉ab |√μ〉H2
|√μ〉V2

+ |0010〉ab |√μ〉H1
|√μ〉V2

+ |0011〉ab |√μ〉V1
|√μ〉H2

+ |0100〉ab |−√
μ〉H2

|−√
μ〉V2

+ |0101〉ab |−√
μ〉H1

|−√
μ〉V1

+ |0110〉ab |−√
μ〉V1

|−√
μ〉H2

+ |0111〉ab |−√
μ〉H1

|−√
μ〉V2

+ |1000〉ab |√μ〉H1
|−√

μ〉V2
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+ |1001〉ab |−√
μ〉V1

|√μ〉H2
+ |1010〉ab |√μ〉H1

|−√
μ〉V1

+ |1011〉ab |√μ〉H2
|−√

μ〉V2

+ |1100〉ab |√μ〉V1
|−√

μ〉H2
+ |1101〉ab |−√

μ〉H1
|√μ〉V2

+ |1110〉ab |−√
μ〉H2

|√μ〉V2

+ |1111〉ab |−√
μ〉H1

|√μ〉V1

]
. (A2)

Since the coherent state can be expressed as

|√μ〉 = e− μ

2

∞∑
i=0

√
μi

i!
|i〉 = e− μ

2 |0〉 + e− μ

2

∞∑
i=1

√
μi

i!
|i〉 = e− μ

2 |0〉 + |
√

μ′〉 , (A3)

Eq. (A2) can be further derived. Take the |0000〉ab |√μ〉H1
|√μ〉V1

part as an example:

|0000〉ab |√μ〉H1
|√μ〉V1

= |0000〉ab

(
e−μ |0〉H1

|0〉V1
+ e− μ

2 |0〉H1
|
√

μ′〉V1
+ e− μ

2 |
√

μ′〉H1
|0〉V1

+ |
√

μ′〉H1
|
√

μ′〉V1

)
, (A4)

where |0〉H1
|0〉V1

causes no detectors to respond, |0〉H1
|√μ′〉V1

and |√μ′〉H1
|0〉V1

make only DV1 and DH1 click, respectively,
and |√μ′〉H1

|√μ′〉V1
makes both detectors click. With this method, the protocol’s security analysis can go forward according to

different effective events.

1. X1 event

In this section, we mainly focus on those which can cause only DH1 to click as an example of an X1 effective event in Eq. (A2):

e
−μ

2
[ |0000〉ab |

√
μ′〉H1

|0〉V1
+ |0010〉ab |

√
μ′〉H1

|0〉V2
+ |0101〉ab |−

√
μ′〉H1

|0〉V1

+ |0111〉ab |−
√

μ′〉H1
|0〉V2

+ |1000〉ab |
√

μ′〉H1
|0〉V2

+ |1010〉ab |
√

μ′〉H1
|0〉V1

+ |1101〉ab |−
√

μ′〉H1
|0〉V2

+ |1111〉ab |−
√

μ′〉H1
|0〉V1

]
= 2e−μ

∞∑
m=1

√
μm

m!
|m〉H1

⊗
{

1√
2

( |00〉pol
ab + |11〉pol

ab

) ⊗ 1√
2

[ |00〉ph
ab + (−1)m |11〉ph

ab

]

+ 1√
2

( |01〉pol
ab + |10〉pol

ab

) ⊗ 1√
2

[ |00〉ph
ab + (−1)m |11〉ph

ab

]}

= 2
√

2e−μ

∞∑
m=1

√
μm

m!
|m〉H1

⊗
[

1√
2

( |	+〉pol
ab + |
+〉pol

ab

) ⊗ |	±〉ph
ab

]
. (A5)

It can be seen that the polarization bit’s correlation is not certain. That is the reason why the phase bit is decoded when X1

event happens. If we take away the polarization bit, Eq. (A5) can be further derived as

4
√

2e−μ

∞∑
m=1

√
μm

m!
|m〉H1

⊗ |	±〉ph
ab . (A6)

From Eq. (A6), it can be seen that an Einstein-Podolsky-Rosen pair, say, a Bell state, has been distilled. This means that in
INI-QKD when the X1 event occurs, a Bell-state measurement is implemented in the users’ phase bits. One can also see that
phase error occurs in the extracted Bell state when m, the number of photons arriving at detector DH1 , is even. The result is
similar to that derived in Ref. [14]. Thus, the phase-error rate of only DH1 responding can be presented as follows:

Eph,H1
μ = EQph,H1

μ

QH1
μ

= 1

QH1
μ

[
Pr

(
even, DH1 ,+ + ) + Pr

(
even, DH1 ,+ − ) + Pr

(
even, DH1 ,− + ) + Pr

(
even, DH1 ,− − )]

= 1

2QH1
μ

[
Pr

(
even, DH1 | + +) + Pr

(
even, DH1 | + −)]

, (A7)

where even means m ∈ even. Pr(even, DH1 | + +) and Pr(even, DH1 | + −) can be formulated as

Pr(even, DH1 | + +) = (1 − Pd )3PI++
V1

(0)PI++
H2

(0)PI++
V2

(0)
∞∑

m∈even

PI++
H1

(m)

= (1 − Pd )3 exp
( − I++

H1
− I++

V1
− I++

H2
− I++

V2

)[
cosh

(
I++
H1

) − 1 + Pd
]
,

Pr(even, DH1 | + −) = (1 − Pd )3 exp
( − I+−

H1
− I+−

V1
− I+−

H2
− I+−

V2

)[
cosh

(
I+−
H1

) − 1 + Pd
]
. (A8)

PIX (m) is the probability of the IX -intensity coherent light which arrives at detector DX containing m photons.
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TABLE IV. The distilled Bell states under different circum-
stances. m and n denote the photon number of the coherent light that
arrives at DH1 and DV1 , respectively.

n

m Odd Even

Odd |	−〉pol
ab ⊗ |	+〉ph

ab

phase error: 0
|	+〉pol

ab ⊗ |	−〉ph
ab

phase error: 2
Even |	−〉pol

ab ⊗ |	−〉ph
ab

phase error: 1
|	+〉pol

ab ⊗ |	+〉ph
ab

phase error: 1

2. X2 and X3 events

For symmetry reasons, X2 and X3 events are discussed
together, and we will take the (DH1 , DV1 ) click event as an
example. However, in this case, instead of one Bell state from
the users’ phase bits, the users actually distill Bell states from
both the phase bit and polarization bit using the same method
as in Eq. (A5). Thus, when the X2 or X3 event happens in the
protocol, two independent Bell-state measurements are imple-
mented. The details of the Bell states and corresponding phase
errors under different circumstances are shown in Table IV.

The phase-error rate when a (DH1 , DV1 ) click event happens
can be calculated as

Eph,H1V1
μ = 1

2QH1V1
μ

[
Pr

(
phase error, DH1 DV1

∣∣ + +) + Pr
(

phase error, DH1 DV1

∣∣ + −)]
. (A9)

Based on Table IV, one can get the expression for Pr( phase error, DH1 DV1 | + +),

Pr
(

phase error, DH1 DV1

∣∣ + +) = 2Pr
[
(o, e), DH1 DV1

∣∣ + +] + Pr
[
(e, o), DH1 DV1

∣∣ + +] + Pr
[
(e, e), DH1 DV1

∣∣ + +]
= (1 − Pd )2 exp

( − I++
H1

− I++
V1

− I++
H2

− I++
V2

){
2 sinh

(
I++
H1

)[
cosh(I++

V1
) − 1 + Pd

]
+ [

cosh
(
I++
H1

) − 1 + Pd
]

sinh
(
I++
V1

) + [
cosh

(
I++
H1

) − 1 + Pd
][

cosh(I++
V1

) − 1 + Pd
]}

.

(A10)

where (o, e) is short for (m, n) ∈ (odd, even), with similar meanings for (e, o) and (e, e). The formula for
Pr( phase error, DH1 DV1 | + −) can be derived using the same method.

APPENDIX B: BEAM-SPLITTING ATTACK: MUTUAL INFORMATION

In the security analysis in Appendix A, channel loss is neglected. However, the situation where eavesdropper Eve obtains key
information using the states coupled to the environment should be considered. Here, we refer to the beam-splitting attack.

In the beam-splitting attack, Eve puts BSs with transmittance ηt , the same as that of the channel, on both users’ sides and
replace the lossy lines with an ideal loss-free one to simulate the channels. The output reflected light from the BSs is then stored
in Eve’s quantum memory. When the basis announcement is over, Eve picks the stored states from the rounds that form the
final key bits and performs unambiguous state discrimination on them. Eve’s devices are all perfect. We can first calculate Eve’s
largest probability of unambiguously discriminating the prepared states, with which the uncertainty of Eve using a beam-splitting
attack can be quantified, i.e., the mutual information.

We first consider Eve’s attack on Alice. Alice’s stored state in the X basis is equally likely to be one of the following four
states:

|ψ0〉 = |
√

(1 − ηt )μ〉+ = |
√

(1 − ηt )μ/2〉H |
√

(1 − ηt )μ/2〉V ,

|ψ1〉 = | −
√

(1 − ηt )μ〉+ = | −
√

(1 − ηt )μ/2〉H | −
√

(1 − ηt )μ/2〉V ,

|ψ2〉 = |
√

(1 − ηt )μ〉− = |
√

(1 − ηt )μ/2〉H | −
√

(1 − ηt )μ/2〉V ,

|ψ3〉 = | −
√

(1 − ηt )μ〉− = | −
√

(1 − ηt )μ/2〉H |
√

(1 − ηt )μ/2〉V . (B1)

The upper bound of Eve’s successful unambiguous identification probability Psuccess can be given according to the formula in
Ref. [37],

Psuccess � 1 − 1

N − 1

∑
i �= j

√
pi p j | 〈ψi|ψ j〉 |, (B2)

where in this case N = 4 and pi = p j = 1/4 are prepared probabilities of the states. The result turns out to be a function of ηt

and the intensity μ,

PU
success = 1 − 1

12 [4e−2(1−ηt )μ + 8e−(1−ηt )μ] = 1 − 1
3 [e−2(1−ηt )μ + 2e−(1−ηt )μ]. (B3)
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A similar result can be applied to Bob’s side. With the largest probability of the states from both sides being unambiguously
identified, the upper bound of the mutual information from the beam-splitting attack is

IU
E = 1 − (

1 − PU
success

)2 = 1 − 1
9 [e−2(1−ηt )μ + 2e−(1−ηt )μ]2. (B4)

It should be noted that this bound is identical for all three effective events. Even though the users extract phase information
only when the X1 event happens, Eve still does not know both sides’ polarizations. Thus, she still needs to identify the states out of
four total states. Hence, the mutual information still remains. Meanwhile, we take PM-QKD, which is a phase-encoding variant
of TF-QKD, as an example for comparison. Its largest probability of the prepared states being unambiguously discriminated in
the protocol in Eq. (B2) can be calculated as

PPM,U
success = 1 − |〈

√
(1 − ηt )μ| −

√
(1 − ηt )μ〉| = 1 − e−2(1−ηt )μ. (B5)

With the probability, the upper bound of the mutual information that Eve is able to get using the beam-splitter attack can be
obtained:

IPM,U
E = 1 − (

1 − PPM,U
success

)2 = 1 − e−4(1−ηt )μ. (B6)

Clearly, it can be seen that IU
E < IPM,U

E , which indicates that compared with the phase-encoding TF-QKD variants, INI-QKD
leaks less information due to high-dimensional encoding.

APPENDIX C: OVERALL GAINS AND QBERS

In this Appendix, we present the calculation of detection probabilities in this protocol in different situations. The overall gains
and QBERs can be further evaluated. Without loss of generality, we consider only the cases where (κpol

a , κ
pol
b ) = (0, 0) and (0, 1)

and κ
ph
a = κ

ph
b = 0.

Practically, we take polarization misalignment and phase mismatch into consideration. For simplicity, we assume that
polarization misalignment is mainly caused by the states’ polarization rotation during their transmission, which can be modeled
with a unitary operator,

UA(B) =
(

cos θA(B) − sin θA(B)

sin θA(B) cos θA(B)

)
. (C1)

As for phase mismatch, we shift the phases of Alice’s and Bob’s by angles φA and φB, with the difference φδ = φB − φA.

1. Case 1: (|√μ〉A+, |√μ〉B+ )

In this case, the states evolve as

|√μeiφA〉A+|√μeiφB〉B+
channel−−−→

∣∣∣∣∣(cos θA − sin θA)

√
μη

2
eiφA

〉
AH

∣∣∣∣∣(sin θA + cos θA)

√
μη

2
eiφA

〉
AV

⊗
∣∣∣∣∣(cos θB − sin θB)

√
μη

2
eiφB

〉
BH

∣∣∣∣∣(sin θB + sin θB)

√
μη

2
eiφB

〉
BV

BS,PBSs−−−−→
∣∣∣∣
√

μη

2
eiφA [(cos θA − sin θA) + eiφδ (cos θB − sin θB)]

〉
H1

⊗
∣∣∣∣
√

μη

2
eiφA [(cos θA + sin θA) + eiφδ (cos θB + sin θB)]

〉
V1

⊗
∣∣∣∣
√

μη

2
eiφA [(cos θA − sin θA) − eiφδ (cos θB − sin θB)]

〉
H2

⊗
∣∣∣∣
√

μη

2
eiφA [(cos θA + sin θA) − eiφδ (cos θB + sin θB)]

〉
V2

. (C2)

Using the above formulas, we can obtain the intensities of the light arriving at the detectors, I++
H1

, I++
V1

, I++
H2

, and I++
V2

. Then, the
detection-click probabilities can be calculated:

Pr(H1|+,+) = (1 − Pd )e−I++
H1 , Pr(V1|+,+) = (1 − Pd )e−I++

V1 ,

Pr(H2|+,+) = (1 − Pd )e−I++
H2 , Pr(V2|+,+) = (1 − Pd )e−I++

V2 ,
(C3)

Pr(H1|+,+) = 1 − Pr(H1|+,+), Pr(V1|+,+) = 1 − Pr(V1|+,+),

Pr(H2|+,+) = 1 − Pr(H2|+,+), Pr(V2|+,+) = 1 − Pr(V2|+,+),
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where Pr(H1|+,+), Pr(V1|+,+), Pr(H2|+,+), and Pr(V2|+,+) are the probabilities of no corresponding detector
click, while Pr(H1|+,+), Pr(V1|+,+), Pr(H2|+,+), and Pr(V2|+,+) denote the click probabilities. With these, we
can evaluate the probabilities of the effective events, say, the probability of only DH1 responding, Pr(DH1 |+,+) =
Pr(H1|+,+)Pr(V1|+,+)Pr(H2|+,+)Pr(V2|+,+).

2. Case 2: (|√μ〉A+, |√μ〉B− )

After an evolution similar to that in Eq. (C2), the result of this case turns out to be∣∣∣∣
√

μη

2
eiφA [(cos θA − sin θA) + eiφδ (cos θB + sin θB)]

〉
H1

∣∣∣∣
√

μη

2
eiφA [(cos θA + sin θA) − eiφδ (cos θB − sin θB)]

〉
V1

⊗
∣∣∣∣
√

μη

2
eiφA [(cos θA − sin θA) − eiφδ (cos θB + sin θB)]

〉
H2

∣∣∣∣
√

μη

2
eiφA [(cos θA + sin θA) + eiφδ (cos θB − sin θB)]

〉
V2

. (C4)

Just as in the above case, we can calculate the detectors’ intensities, then the detection probabilities, and, finally, the probabilities
of the effective events.

After all the calculations above are done, we can finally obtain the overall gains and QBERs under different effective events.
We first consider these parameters for the X1 event:

QX1
μ = Pr

(
DH1

) + Pr
(
DH2

) = 1
4

[
Pr(DH1

∣∣ + +) + Pr
(
DH1

∣∣ + −) + Pr
(
DH1

∣∣ − +) + Pr
(
DH1

∣∣ − −)
+ Pr

(
DH2

∣∣ + +) + Pr
(
DH2

∣∣ + −) + Pr
(
DH2 | − +) + Pr

(
DH2 | − −)]

= 1
2

[
Pr

(
DH1

∣∣ + +) + Pr
(
DH1

∣∣ + −) + Pr
(
DH2

∣∣ + +) + Pr
(
DH2

∣∣ + −)]
. (C5)

As listed in Table II, under the two polarization combinations discussed here, a bit error occurs in the phase bit when the DH2

click event happens. Thus, the QBER can be calculated as

Ebit,X1
μ = 1

2QX1
μ

[
Pr

(
DH2

∣∣ + +) + Pr
(
DH2

∣∣ + −)]
. (C6)

Using the same method, we can get the overall gains and QBERs of the X2 and X3 events,

QX2
μ = Pr

(
DH1 DV1

∣∣ + +) + Pr
(
DH1 DV1

∣∣ + −) + Pr
(
DH2 DV2

∣∣ + +) + Pr
(
DH2 DV2

∣∣ + −)
,

Ebit,X2
μ = 1

2QX2
μ

[
Pr

(
DH1 DV1

∣∣ + −) + Pr
(
DH2 DV2

∣∣ + +) + 2Pr
(
DH2 DV2

∣∣ + −)]
,

QX3
μ = Pr

(
DH1 DV2

∣∣ + +) + Pr
(
DH1 DV2

∣∣ + −) + Pr
(
DV1 DH2

∣∣ + +) + Pr
(
DV1 DH2

∣∣ + −)
,

Ebit,X3
μ = 1

2QX3
μ

[
Pr

(
DH1 DV2

∣∣ + +) + 2Pr
(
DV1 DH2

∣∣ + +) + Pr
(
DV1 DH2

∣∣ + −)]
. (C7)

[1] H.-K. Lo and H. F. Chau, Unconditional security of quantum
key distribution over arbitrarily long distances, Science 283,
2050 (1999).

[2] P. W. Shor and J. Preskill, Simple proof of security of the BB84
quantum key distribution protocol, Phys. Rev. Lett. 85, 441
(2000).

[3] M. Koashi, Simple security proof of quantum key distribution
based on complementarity, New J. Phys. 11, 045018 (2009).

[4] K. Inoue, E. Waks, and Y. Yamamoto, Differential phase shift
quantum key distribution, Phys. Rev. Lett. 89, 037902 (2002).

[5] H.-K. Lo, X. Ma, and K. Chen, Decoy state quantum key distri-
bution, Phys. Rev. Lett. 94, 230504 (2005).

[6] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fun-
damental limits of repeaterless quantum communications, Nat.
Commun. 8, 15043 (2017).

[7] Y.-M. Xie, Y.-S. Lu, C.-X. Weng, X.-Y. Cao, Z.-Y. Jia, Y.
Bao, Y. Wang, Y. Fu, H.-L. Yin, and Z.-B. Chen, Breaking the

rate-loss bound of quantum key distribution with asynchronous
two-photon interference, PRX Quantum 3, 020315 (2022).

[8] P. Zeng, H. Zhou, W. Wu, and X. Ma, Mode-pairing quantum
key distribution, Nat. Commun. 13, 3903 (2022).

[9] H.-T. Zhu, Y. Huang, H. Liu, P. Zeng, M. Zou, Y. Dai, S.
Tang, H. Li, L. You, Z. Wang, Y.-A. Chen, X. Ma, T.-Y.
Chen, and J.-W. Pan, Experimental mode-pairing measurement-
device-independent quantum key distribution without global
phase locking, Phys. Rev. Lett. 130, 030801 (2023).

[10] H.-K. Lo, M. Curty, and B. Qi, Measurement-device-
independent quantum key distribution, Phys. Rev. Lett. 108,
130503 (2012).

[11] S. L. Braunstein and S. Pirandola, Side-channel-free quantum
key distribution, Phys. Rev. Lett. 108, 130502 (2012).

[12] M. Lucamarini, Z. L. Yuan, J. F. Dynes, and A. J. Shields,
Overcoming the rate–distance limit of quantum key distribution
without quantum repeaters, Nature (London) 557, 400 (2018).

052609-9

https://doi.org/10.1126/science.283.5410.2050
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1088/1367-2630/11/4/045018
https://doi.org/10.1103/PhysRevLett.89.037902
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1038/ncomms15043
https://doi.org/10.1103/PRXQuantum.3.020315
https://doi.org/10.1038/s41467-022-31534-7
https://doi.org/10.1103/PhysRevLett.130.030801
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130502
https://doi.org/10.1038/s41586-018-0066-6


YU, LI, WANG, AND ZHAO PHYSICAL REVIEW A 109, 052609 (2024)

[13] X. Ma, P. Zeng, and H. Zhou, Phase-matching quantum key
distribution, Phys. Rev. X 8, 031043 (2018).

[14] P. Zeng, W. Wu, and X. Ma, Symmetry-protected privacy: Beat-
ing the rate-distance linear bound over a noisy channel, Phys.
Rev. Appl. 13, 064013 (2020).

[15] Y. Yu, L. Wang, S. Zhao, and Q. Mao, Decoy-state phase-
matching quantum key distribution with source errors, Opt.
Express 29, 2227 (2021).

[16] C. Cui, Z.-Q. Yin, R. Wang, W. Chen, S. Wang, G.-C. Guo, and
Z.-F. Han, Twin-field quantum key distribution without phase
postselection, Phys. Rev. Appl. 11, 034053 (2019).

[17] F.-Y. Lu, Z.-Q. Yin, R. Wang, G.-J. Fan-Yuan, S. Wang, D.-Y.
He, W. Chen, W. Huang, B.-J. Xu, G.-C. Guo, and Z.-F. Han,
Practical issues of twin-field quantum key distribution, New J.
Phys. 21, 123030 (2019).

[18] X.-B. Wang, Z.-W. Yu, and X.-L. Hu, Twin-field quantum key
distribution with large misalignment error, Phys. Rev. A 98,
062323 (2018).

[19] H. Xu, Z.-W. Yu, C. Jiang, X.-L. Hu, and X.-B. Wang, Sending-
or-not-sending twin-field quantum key distribution: Breaking
the direct transmission key rate, Phys. Rev. A 101, 042330
(2020).

[20] H.-L. Yin, T.-Y. Chen, Z.-W. Yu, H. Liu, L.-X. You, Y.-H.
Zhou, S.-J. Chen, Y. Mao, M.-Q. Huang, W.-J. Zhang, H. Chen,
M. J. Li, D. Nolan, F. Zhou, X. Jiang, Z. Wang, Q. Zhang,
X.-B. Wang, and J.-W. Pan, Measurement-device-independent
quantum key distribution over a 404 km optical fiber, Phys. Rev.
Lett. 117, 190501 (2016).

[21] S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z.
Zhou, G.-C. Guo, and Z.-F. Han, Beating the fundamental rate-
distance limit in a proof-of-principle quantum key distribution
system, Phys. Rev. X 9, 021046 (2019).

[22] X.-T. Fang et al., Implementation of quantum key distribution
surpassing the linear rate-transmittance bound, Nat. Photonics
14, 422 (2020).

[23] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.-L. Hu,
J.-Y. Guan, Z.-W. Yu, H. Xu, J. Lin, M.-J. Li, H. Chen, H.
Li, L. You, Z. Wang, X.-B. Wang, Q. Zhang, and J.-W. Pan,
Sending-or-not-sending with independent lasers: Secure twin-
field quantum key distribution over 509 km, Phys. Rev. Lett.
124, 070501 (2020).

[24] S. Wang et al., Twin-field quantum key distribution over 830-
km fibre, Nat. Photonics 16, 154 (2022).

[25] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security
of quantum key distribution using d-level systems, Phys. Rev.
Lett. 88, 127902 (2002).

[26] F. Bouchard, R. Fickler, R. W. Boyd, and E. Karimi, High-
dimensional quantum cloning and applications to quantum
hacking, Sci. Adv. 3, e1601915 (2017).

[27] M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan,
B. Rodenburg, M. Malik, M. P. J. Lavery, M. J. Padgett,
D. J. Gauthier, and R. W. Boyd, High-dimensional quantum
cryptography with twisted light, New J. Phys. 17, 033033
(2015).

[28] A. Sit, F. Bouchard, R. Fickler, J. Gagnon-Bischoff, H.
Larocque, K. Heshami, D. Elser, C. Peuntinger, K. Günthner,
B. Heim, C. Marquardt, G. Leuchs, R. W. Boyd, and E. Karimi,
High-dimensional intracity quantum cryptography with struc-
tured photons, Optica 4, 1006 (2017).

[29] F.-X. Wang, W. Chen, Z.-Q. Yin, S. Wang, G.-C. Guo, and
Z.-F. Han, Characterizing high-quality high-dimensional quan-
tum key distribution by state mapping between different degrees
of freedom, Phys. Rev. Appl. 11, 024070 (2019).

[30] Z.-X. Cui, W. Zhong, L. Zhou, and Y.-B. Sheng, Measurement-
device-independent quantum key distribution with hyper-
encoding, Sci. China: Phys., Mech. Astron. 62, 110311
(2019).

[31] I. Nape, E. Otte, A. Vallés, C. Rosales-Guzmán, F. Cardano,
C. Denz, and A. Forbes, Self-healing high-dimensional quan-
tum key distribution using hybrid spin-orbit bessel states, Opt.
Express 26, 26946 (2018).

[32] D.-D. Li, M.-S. Zhao, Z. Li, Y.-L. Tang, Y.-Q. Dai, S.-B. Tang,
and Y. Zhao, High dimensional quantum key distribution with
temporal and polarization hybrid encoding, Opt. Fiber Technol.
68, 102828 (2022).

[33] X. Ma and M. Razavi, Alternative schemes for measurement-
device-independent quantum key distribution, Phys. Rev. A 86,
062319 (2012).

[34] M. Curty, K. Azuma, and H.-K. Lo, Simple security proof of
twin-field type quantum key distribution protocol, npj Quantum
Inf. 5, 64 (2019).

[35] J. Teng, Z.-Q. Yin, G.-J. Fan-Yuan, F.-Y. Lu, R. Wang, S.
Wang, W. Chen, W. Huang, B.-J. Xu, G.-C. Guo, and Z.-F.
Han, Sending-or-not-sending twin-field quantum key distri-
bution with multiphoton states, Phys. Rev. A 104, 062441
(2021).

[36] F. Xu, M. Curty, B. Qi, and H.-K. Lo, Practical aspects
of measurement-device-independent quantum key distribution,
New J. Phys. 15, 113007 (2013).

[37] S. Zhang, Y. Feng, X. Sun, and M. Ying, Upper bound for
the success probability of unambiguous discrimination among
quantum states, Phys. Rev. A 64, 062103 (2001).

052609-10

https://doi.org/10.1103/PhysRevX.8.031043
https://doi.org/10.1103/PhysRevApplied.13.064013
https://doi.org/10.1364/OE.404567
https://doi.org/10.1103/PhysRevApplied.11.034053
https://doi.org/10.1088/1367-2630/ab5a97
https://doi.org/10.1103/PhysRevA.98.062323
https://doi.org/10.1103/PhysRevA.101.042330
https://doi.org/10.1103/PhysRevLett.117.190501
https://doi.org/10.1103/PhysRevX.9.021046
https://doi.org/10.1038/s41566-020-0599-8
https://doi.org/10.1103/PhysRevLett.124.070501
https://doi.org/10.1038/s41566-021-00928-2
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1126/sciadv.1601915
https://doi.org/10.1088/1367-2630/17/3/033033
https://doi.org/10.1364/OPTICA.4.001006
https://doi.org/10.1103/PhysRevApplied.11.024070
https://doi.org/10.1007/s11433-019-1438-6
https://doi.org/10.1364/OE.26.026946
https://doi.org/10.1016/j.yofte.2022.102828
https://doi.org/10.1103/PhysRevA.86.062319
https://doi.org/10.1038/s41534-019-0175-6
https://doi.org/10.1103/PhysRevA.104.062441
https://doi.org/10.1088/1367-2630/15/11/113007
https://doi.org/10.1103/PhysRevA.64.062103

