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Efficient and reliable verification of quantum states is central to quantum information processing applications.
If using well-characterized measurement devices, effective methods have been developed for quantum state
verification (QSV). In reality, however, measurement devices are generally imperfect or untrusted, which limits
significantly the application of standard QSV protocols. Here, we propose the measurement-device-independent
QSV (MDI-QSV) scheme for practice. With the help of trusted quantum inputs, we have developed a systemati-
cal approach to design MDI-QSV strategies for an arbitrary pure target state. We find that the number of required
measurements has an optimal scaling with required accuracy and confidence level, similar to the standard QSV
where trusted measurement devices are available. Our results offer a sample-efficient and realistic method for
quantum state verification with virtues of a measurement-device-independent manner, and are within reach of
current technology.

DOI: 10.1103/PhysRevA.109.052607

I. INTRODUCTION

Quantum states serve as an essential resource [1] for
quantum information processing, including quantum commu-
nication [2–4], quantum sensing [5], quantum simulation [6],
and quantum computation [7,8]. Certification and character-
ization of quantum states is thus a crucial prerequisite for
realizing tailored quantum information processing applica-
tions. In a quantum certification task, different techniques
have multifaceted complexity, depending on the information
gained as well as the assumption made [9]. For example,
tomographic reconstruction of a quantum state [10] is gen-
erally a time-consuming and computationally difficult task,
while entanglement detection [11,12] sometimes consumes
less resources [13], even with few copies required in some
cases [14,15]. A comprehensive and good review on various
quantum certification and benchmarking techniques is pro-
vided in detail in Ref. [16].

In many practical cases, one aims at gaining confidence
that the device outputs a particular state within a certain ac-
curacy, using as few experimental rounds as possible. This is,
in fact, a quantum state verification (QSV) problem [17–19].
In recent years, QSV has received much interest, with various
methods proposed by using advanced statistical methods and
the framework of hypothesis testing [20,21]. To be feasible
for a real-world verifier, a QSV strategy usually involves
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only local measurements [19], and classical communication
can also be adopted [22–24]. Efficient protocols have been
designed for many typical states, such as the Greenberger-
Horne-Zeilinger (GHZ) states, stabilizer states, and Dicke
states [25–27]. Moreover, when it comes to an adversarial
scenario where the states are not independently distributed, a
general framework has been established to construct efficient
verification protocols [28,29].

Nevertheless, most QSV protocols require that all measure-
ment devices are perfectly characterized. In reality, however,
the measurement devices can be imperfect due to noise, or
even untrusted due to attacks from a potential adversary. The
adoption of such malicious devices may mislead the veri-
fier in QSV. This necessitates our idea of extension of QSV
by enjoying benefits of measurement-device-independent
(MDI) approaches [30]. In Ref. [31], a systematic device-
independent QSV approach based on self-testing [32,33] is
introduced. There are also investigations of QSV in an un-
trusted quantum network [34,35]. Meanwhile, in the MDI
scenario, trusted quantum inputs have been shown to enhance
the entanglement detection [36,37] or assist novel self-testing
protocols [38]. These naturally raise the question of how to
design the QSV strategy to verify a target state efficiently
in the MDI scenario. However, in general, the formulation
of QSV in the MDI scenario, despite its significance, is still
missing.

In this article, we propose an MDI-QSV scheme for verify-
ing an arbitrary pure target state using trusted quantum inputs,
with the help of a semiquantum nonlocal game [39]. More-
over, we provide a general construction of MDI-QSV strategy.
By investigating the sample efficiency of the strategies, it is
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observed that the number of required measurements scales
optimally with the required confidence level and accuracy. As
examples, we apply the case of maximally entangled states
with prime local dimension as well as the multiqubit stabilizer
states, demonstrating the versatile feasibility and scalability of
the scheme.

II. EXTENDING QSV TO THE MDI SCENARIO

In the MDI scenario, due to the untrusted measurements,
the verifier is not able to verify whether a source generates
exactly a target state; nevertheless, they can test whether
the generated state σ is equivalent to a target state ρψ =
|ψ〉〈ψ | up to some local isometry � [40], i.e., ρψ = �(σ ).
Before providing the main result, we introduce the notion of
extractability [41,42], which quantifies the closeness between
two arbitrary quantum states up to a local-isometric transfor-
mation. The extractability of a target state ρψ from a produced
state σ is defined as

Fe(σ → ρψ ) = max
�

Tr[ρψ�(σ )], (1)

where the maximum is taken over all local isometries �.
Consider that a source generate quantum states

{σ1, σ2, . . . , σN }, which are supposed to all be ρψ . The
verifiers first make two hypothesis, including the null
hypothesis H0 : Fe(σ j → ρψ ) � 1 − ε for all j, and the
alternative hypothesis H1 : there exists local isometry � such
that �(σ j ) = ρψ for all j. Then, they need to decide which is
the case with worst-case failure probability δ.

III. MDI-QSV PROTOCOLS AND STRATEGIES

For all single-qudit pure states, the MDI-QSV is a triv-
ial task, because they are local-isometrically equivalent to
each other. The MDI-QSV becomes really nontrivial when
the target state is bipartite or multipartite while the verifiers
remain local. Here, we consider firstly the bipartite case. We
demonstrate that MDI-QSV of any pure bipartite state is not
only feasible, but also can be done efficiently. These results
are naturally generalized to the multipartite case, which will
be discussed later in Appendix B.

An MDI-QSV protocol in the bipartite case is processed as
follows. Suppose that two remote verifiers, Alice and Bob,
aim to verify whether a source distributes a bipartite state
local-isometrically equivalent to the target state ρψ . Before
the test begins, Alice and Bob specify an input set I =
{ (pi, τ

A′
i , ωB′

i ) }i, where pi is a probability satisfying
∑

i pi =
1 and τA′

i , ωB′
i are Alice’s and Bob’s local trusted quantum

states, respectively. At the jth round of the test (see Fig. 1),
after receiving the distributed state σ AB

j , Alice randomly picks
i according to probability pi and communicates i with Bob.
They adopt local trusted sources to prepare τA′

i and ωB′
i and

consequently measure their local states jointly with untrusted
measurement devices, which yield outcomes a and b, re-
spectively. For each event associated with the tuple of input
and output (a, b, i), Alice and Bob further assign a binary-
outcome payoff function f (a, b, i) ∈ { 0, 1 }, where 0 stands
for “pass” and 1 stands for “fail.” Finally, after all N rounds,
Alice and Bob conclude whether the distributed state is local-

′

′ ′

Alice Bob

Source

Input choice

′

FIG. 1. An experimental round of the MDI-QSV. Alice and Bob
perform untrusted joint measurements MAA′

, MBB′
on the distributed

state σ AB and trusted quantum inputs τA′
i , ωB′

i .

isometrically equivalent to the target state according to the
statistics of pass and fail events.

We denote S = { I, f } as the MDI-QSV strategy. Let
P(a, b|i) be the probability of obtaining outcomes a, b given
input i. Here, we further assume that the source gen-
erates quantum states identically and independently, i.e.,
σ AB

j = σ AB for all j. Consequently, the probability that
the strategy S yields a fail outcome at an experimental
round is

QS(σ ) =
∑
a,b,i

pi f (a, b, i)P(a, b|i). (2)

Suppose that a state is at least ε far away from ρψ up to
local isometry. Then, the probability that this state leads to
a pass outcome is upper bounded by 1 − Qε

S, where Qε
S is

determined by the optimization problem

Qε
S = min

σ,M
QS(σ ), s.t. Fe(σ → ρψ ) � 1 − ε. (3)

Meanwhile, any state that is local-isometrically equivalent to
the target state has the highest probability 1 − Qmin

S to pass the
test if proper joint measurements are performed, with Qmin

S =
minM QS(ρψ ), where the minimum is taken over arbitrary
local measurements M.

By executing the strategy S, the verifiers can perform MDI-
QSV according to the following decision: After N rounds
of the test, if the number of fail events does not exceed
a certain threshold N0 (N0 < NQε

S), Alice and Bob con-
clude that the source distributes quantum states satisfying
Fe(σ → ρψ ) > 1 − ε, that is, reject H0. To achieve a con-
fidence level 1 − δ in this decision, the required number of
measurements is

N � NS(ε, δ) = 1

D
[N0

N

∥∥Qε
S
] ln δ−1, (4)

with D[x‖y] = x ln (x/y) + (1 − x) ln [(1 − x)/(1 − y)].
Equation (A11) gives the sample efficiency of S. The proof
follows directly from the Chernoff bound [43,44] (see
Appendix A 2 for details).
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FIG. 2. The circuit representation of an MDI-QSV strategy
(a) and an equivalent prepare-and-measure scenario (b). In the
equivalent process, the uncharacterized state and measurement
are grouped into an effective source sending conditional states
{ (a, b), ρ̃ab }, while the trusted quantum input serves as an effective
measurement for verifying these conditional states.

IV. MDI-QSV STRATEGIES
AND THE SAMPLE EFFICIENCY

Particularly, if the target state can pass the test with cer-
tainty in an MDI-QSV strategy S, i.e., Qmin

S = 0, then the
threshold N0 can be taken as zero, such that Alice and Bob
can terminate the verification as long as a single fail event
is observed, and conclude that the distributed state is not the
target state. We call S an no-false-negative (NFN) MDI-QSV
strategy, because the distributed state can never pass the test
with certainty if it is not equivalent to the target state up to
local isometry. From Eq. (A11), it can be seen that the sam-
ple efficiency of the NFN MDI-QSV strategy NS(ε, δ) scales
optimally with ε as NS(ε, δ) ≈ (Qε

S)−1 ln δ−1. Therefore, the
NFN strategy is actually favorable to the verifiers.

An intuitive construction of MDI-QSV strategies exists
by considering an equivalent virtual prepare-and-measure
process. Without loss of generality, the target state is imposed
to be a pure state |ψAB〉 with d × d dimension. As shown
in Fig. 2, in the effective process, all the uncharacterized
devices are grouped into an effective source, which outputs

the conditional states { ρ̃ab = EA→A′
a ⊗ EB→B′

b (σ AB) }d2−1

a,b=0,

with EA→A′
a (ρA) = TrA[(ρA ⊗ 1A′

)MAA′
a ] and EB→B′

b (ρB) =
TrB[(ρB ⊗ 1B′

)MBB′
b ]. Meanwhile, the trusted quantum inputs

can serve as effective measurements controlled by the
function f (a, b, i). Then, the failure probability in Eq. (2) is
reformulated as QS = ∑

ab Tr(ρ̃ab
̃ab), where


̃ab =
∑

i

pi f (a, b, i)τA′
i ⊗ ωB′

i . (5)

This leads to a natural idea in designing MDI-QSV strategies,
that is, transferring the MDI-QSV of the state σ into the
standard QSV of states ρ̃ab with a set of effective strategies

̃ab, in which the quantum input serves as trusted local
measurements.

With this idea, we propose a general construction of
NFN MDI-QSV strategies. Denote {Ua(b)}d2−1

a(b)=0 as the
set of Heisenberg-Weyl operators [45], and ρab = (Ua ⊗
Ub)(ρAB

ψ )T (Ua ⊗ Ub)†.
Proposition 1. For any target state |ψAB〉 with d × d di-

mension, one can construct an NFN MDI-QSV strategy SD
ψ =

{ Iψ, fIψ
}, where

Iψ =
{( c j

d4
,Uaφ

A′
j U †

a ⊗ Ubφ
B′
j U †

b

)}
a,b, j

:= {(
pi, τ

A′
i ⊗ ωB′

i

)}
, (6)

and

fIψ
(a, b, i) =

{
1, if Tr[(τi ⊗ ωi )ρab] = 0,

0, otherwise.
(7)

Here, the {(c j, φ
A′
j , φB′

j )} satisfies
∑

j c jφ
A′
j ⊗ φB′

j = [1d2 −
(ρAB

ψ )T ]/(d2 − 1).
For the proof of this proposition and a detailed discussion

on the construction of MDI-QSV strategies, please refer to
Appendix A.

Proposition 1 shows clearly that every pure bipartite state
can be verified in an MDI manner. Nevertheless, one may note
that the NFN strategy from Proposition 1 is not unique with
respect to a fixed target state, due to the fact that the decompo-
sition of [1d2 − (ρAB

ψ )T ]/(d2 − 1) into separable states is not
unique. Different decompositions lead to different MDI-QSV
strategies. Although the sample efficiency of these strategies
always scales as O(ε−1 ln δ−1), the prefactors can be quite
different from each other with different sample efficiency.
This is characterized explicitly in the following proposition:

Proposition 2. To achieve a confidence level 1 − δ in de-
ciding whether Fe(σ → ρψ ) � 1 − ε using the strategy SD

ψ ,
the required number of measurements is

N � NSD
ψ

(ε, δ) = ln δ−1

ln (1 − d2q̄ε)−1
≈ 1

d2q̄ε
ln δ−1. (8)

Here, the q̄ is the minimum nonzero eigenvalue of 
̃00 defined
in Eq. (5), bounded by

c

d4(d2 − 1)
� q̄ � 1

d4(d2 − 1)

∑
a,b,i

pi fIψ
(a, b, i)

� 1

d (d + 1)
, (9)

with c = d2 if |ψAB〉 is maximally entangled, and c = d
otherwise.
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A detailed proof is provided in Appendix A 5. In
Appendix A 5, we have shown that Qε

SD
ψ

= d2q̄ε for the NFN

strategy SD
ψ , and have derived the lower and upper bounds of

the strategy-dependent parameter q̄.
Here, three remarks are in order. Firstly, in practice, one

can hardly expect to receive a pass at every round in ex-
perimental verification of quantum states [46–48], due to the
imperfections in practical experiments. This prevents the ver-
ifiers from verifying exactly the target state. In this practical
situation, one can instead verify whether the extractability of
the distributed-to-target state exceeds some thresholds 1 −
ε1. The verifiers can use the same strategy SD

ψ , but set the
threshold N0 as N0 = d2q̄ε1, rather than N0 = 0 [31], where
ε1 depends on the magnitude of noise. Given the required
confidence level 1 − δ, around N � (d2q̄D[ε1‖ε])−1 ln δ−1 ≈
(1 + ε1/ε)(d2q̄ε)−1 ln δ−1 measurements are required in the
noisy case. Additionally, in Appendix A 8 b, we also discuss
the modification of MDI-QSV when only partial Bell state
measurements (BSMs) are available.

Secondly, for any fixed target state, by maximizing
the factor q̄ over all possible decompositions of [1d2 −
(ρAB

ψ )T ]/(d2 − 1), one obtains an MDI-QSV strategy as ef-
ficiently as possible. Even with the worst choice among the
possible MDI-QSV strategies constructed from Proposition
1, the required number of measurements is no more than
d2(d2 − 1)c−1ε−1 ln δ−1, which achieves the same optimal
scaling O(ε−1 ln δ−1) as the standard QSV, and is affordable
in experiments.

Finally, it can be observed from Proposition 2 that at least
(d + 1)/dε−1 ln δ−1 experimental round is required in the
MDI-QSV of any state. This lower bound is tight, and can be
achieved by some strategy designed from Proposition 1. An
example is the MDI-QSV of maximally entangle states with
prime local dimension.

V. APPLICATION 1: OPTIMAL MDI-QSV OF MAXIMALLY
ENTANGLE STATES WITH PRIME LOCAL DIMENSION

For the maximally entangle states with prime local dimen-
sion, Proposition 1 can be employed to design an optimal
MDI-QSV strategy, whose sample efficiency is N (ε, δ) ≈
(d + 1)/dε−1 ln δ−1. Here, the optimality is proved by show-
ing that this strategy has the same sample efficiency as the
optimal two-way adaptive QSV strategy [22] of the target
state. The detailed construction and some further discussion
on the optimality of the MDI-QSV strategy is provided in
Appendix A. Taking the qubit case as an instance for il-
lustration, the optimal MDI-QSV strategy of |φ+〉 = (|00〉 +
|11〉)/

√
2 is as follows: Alice and Bob first randomly choose

a common Pauli basis X , Y , or Z . Then, they randomly choose
one eigenstate under this basis as their input, respectively. The
resulting input set is shown in Table I. After performing the
joint measurements on the input states and shared state, they
calculate the payoff with the function specified by Eq. (7) to
verify the shared state.

VI. APPLICATION 2: MDI-QSV IN MULTIPARTITE CASE

So far we have formulated the MDI-QSV in the bipartite
case. In Appendix B, a further extension of the above results

TABLE I. Input set to achieve optimal MDI-QSV strategy for
Bell state |φ+〉. There are 12 possible input states which are selected
randomly by the verifiers. Here, |±〉 = (|0〉 ± |1〉)/

√
2 and |±i〉 =

(|0〉 ± i|1〉)/
√

2. By applying BSMs to the input states and their
share of the state σ AB, respectively, Alice and Bob can accomplish
the MDI-QSV of |φ+〉 efficiently solely based on the output statistics.

Input state Input probability

Alice Bob

|0〉/|1〉 |0〉/|1〉 1/12
|+〉/|−〉 |+〉/|−〉 1/12
|+i〉/|−i〉 |+i〉/|−i〉 1/12

into the multipartite case is provided. Particularly, the MDI-
QSV for one of the most typical class of states, the n-qubit
stabilizer states [49] |Gn〉, is introduced as an example. It
is observed that the constructed MDI-QSV strategy only re-
quires NSGn

(ε, δ) ≈ 2n−1
2n−1 ε−1 ln δ−1 measurements in verifying

the target state. For growing qubit number n, the number of
required measurements is bounded from above by 2ε−1 ln δ−1

independently on the system size. This implies that the stabi-
lizer state can be verified efficiently in an MDI manner with
the help of local quantum inputs, and requires at most twice
as many measurements as the optimal strategy using trusted
measurement devices.

An explicit example is the MDI-QSV of the three-
qubit GHZ state |GHZ3〉 = (|000〉 + |111〉)/

√
2. The in-

put set is selected according to Table II. At some
round of the test, denote the input state as τ 1

i ⊗ τ 2
i ⊗

τ 3
i and the measurement output as (a, b, c). The payoff

function f (a, b, c, i) is 1 if Tr[(τ 1
i ⊗ τ 2

i ⊗ τ 3
i )(σa ⊗ σb ⊗

σc)|GHZ3〉〈GHZ3|(σa ⊗ σb ⊗ σc)] = 0, and f (a, b, c, i) = 0
otherwise. Here, {σ0, σ1, σ2, σ3} are the Pauli matrices. This
achieves an efficient MDI-QSV strategy of the three-qubit
GHZ state.

VII. CONCLUSION

In summary, we have shown that any pure target state can
be efficiently verified in an MDI manner. More explicitly, we
have provided a systematic construction of no-false-negative
MDI-QSV strategies for an arbitrary target state. It is demon-
strated that the sample efficiency of MDI-QSV enjoys the
same optimal scaling as the standard QSV. Compared with
quantum state tomography, Bell test, or fidelity estimation

TABLE II. Input set of MDI-QSV strategy for three-qubit GHZ
state.

Input state Input probability

Alice Bob Charlie

|0〉/|1〉 |0〉/|1〉 |0〉/|1〉 3/56
|+〉/|−〉 |+〉/|−〉 |+〉/|−〉 1/56
|+i〉/|−i〉 |+i〉/|−i〉 |+〉/|−〉 1/56
|+i〉/|−i〉 |+〉/|−〉 |+i〉/|−i〉 1/56
|+〉/|−〉 |+i〉/|−i〉 |+i〉/|−i〉 1/56

052607-4



MEASUREMENT-DEVICE-INDEPENDENT VERIFICATION … PHYSICAL REVIEW A 109, 052607 (2024)

protocols, quadratically fewer total measurements are re-
quired in MDI-QSV to verify the target state within a given
accuracy. As for the maximally entangled states with prime
local dimension and the multiqubit stabilizer states, we show
that the construction leads to optimal or nearly optimal MDI-
QSV strategies. The sample-efficient character of MDI-QSV
highlights its potential as a powerful tool for practical verifi-
cation and validation of quantum devices. Additionally, for
a practical case that the generated states may not be inde-
pendent identically distributed, we remark that the MDI-QSV
for nonindependent sources can still work by employing the
techniques developed in Refs. [28,29].

With the development of quantum information technology
and entering the noisy intermediate-scale quantum (NISQ)
era, the reliable and efficient verification of quantum devices’
functioning properly is becoming increasingly important. We
anticipate that these results facilitate development of versatile
relevant researches, such as entanglement detection, fidelity
estimation [50,51], and quantum channel verification with low
sample complexity in an MDI fashion. Additionally, such a
pass or fail test is not sufficient to verify a mixed target state,
while the experimentalists may also be targeting to produce
a mixed state in certain tasks. It is interesting to consider
the modification of MDI-QSV by combining the methods
developed for quantum state discrimination when the target
state is mixed.
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APPENDIX A: MDI-QSV OF BIPARTITE STATE

In this section, we provide in detail the construction of
the MDI-QSV strategy and its sample efficiency. By starting
with an intuitive construction of MDI-QSV strategy, we show
how the construction can be improved to obtain better or even
optimal MDI-QSV strategies.

1. An equivalent process

To start with, we briefly recall the MDI-QSV scenario in
the bipartite case, where two remote parties, Alice and Bob,
aim to verify whether the distributed states are the target
state |ψAB〉 without imposing trust on their measurement de-
vices. Without loss of generality, the target state is imposed
to be a d × d dimensional pure state |ψAB〉 = ∑d−1

i=0

√
λi|ii〉

(0 < λi < 1). To this end, they employ an MDI-QSV strategy
denoted by S = {I, f }, with I = { pi, τi ⊗ ωi } being the input
set and f being a binary outcome payoff function. This pro-
cess can be described by quantum circuit as in Fig. 3. In each

′

′

Verifier

Measured distribution 

′′
′′

,,
,,

pass

fail

0

1

FIG. 3. The circuit representation of an MDI-QSV strategy.

round, the distributed state has an average failure probability
given by

QS(σ AB) =
∑
a,b,i

pi f (a, b, i)P(a, b|i), (A1)

with

P(a, b|i) = Tr
[(

MAA′
a ⊗ MBB′

b

)(
τA′

i ⊗ σ AB ⊗ ωB′
i

)]
, (A2)

where MAA′
, MBB′

are untrusted joint measurements. In the
following, we omit the superscript A(A′), B(B′) for simplicity
if there is no ambiguity.

As mentioned in the main text, the MDI-QSV can be
transformed into an equivalent virtual prepare-and-measure
process. In this process, the average failure probability in
Eq. (A1) is reformulated into the summation

QS(σ ) =
∑
a,b

Tr(
̃abρ̃ab), (A3)

with ρ̃ab being a set of unnormalized conditional states

ρ̃ab = TrAB
[(

MAA′
a ⊗ MBB′

b

)
(1A′ ⊗ σ AB ⊗ 1B′

)
]
, (A4)

and


̃ab =
∑

i

pi f (a, b, i)τi ⊗ ωi, (A5)

from Eq. (A1). Here, the 1A′(B′ ) is the identity operator on
subsystem A′(B′). Note that the operator 
̃ab only involves
trusted terms. Intuitively, we may obtain a valid MDI-QSV
strategy as long as 
̃ab is capable of verifying certain target
states for all a, b. In principle, the target state of 
̃ab should be
decided by ρψ = |ψ〉〈ψ | undergoing the same operation with
the distributed state σ , i.e., TrAB[(MAA′

a ⊗ MBB′
b )(1A′ ⊗ ρAB

ψ ⊗
1B′

)] denoting as ρ̃0
ab. We remark that Alice and Bob have no

information on the joint measurements. They just assume that
MAA′

, MBB′
are some prespecified measurements in designing

the MDI-QSV strategy.
Here, we focus on the particular case where the measure-

ments are supposed to be BSMs. First, the BSM is more
experimentally mature and favorable, and this choice helps to
simplify the derivation of sample efficiency of the resulting
strategy. More importantly, the Bell state measurements help
to distinguish better the target state and any other states. To
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FIG. 4. With the help of two maximally entangled states on Alice
and Bob’s side, respectively, the source σ AB and joint measurements
MAA′

, MBB′
can be employed to prepare the conditional states { ρ̃T

ab }
in reality, up to a normalization 1/d2.

illustrate this, note that in the MDI-QSV scenario, the ex-
tractability of the shared state to the target state can only be
decided via the set of conditional states { ρ̃ab } because the
measurement devices are untrusted. Therefore, the task is in
fact verifying that the ensemble { ρ̃ab } is equivalent to the
target ensemble { ρ̃0

ab }. Meanwhile, the virtual preparation of
ensemble { ρ̃ab } can be implemented physically with the help
of two locally maximally entangled states, up to a normaliza-
tion 1/d2 and a transposition as shown in Fig. 4, i.e.,

Eab(σ AB) = TrAA′BB′
[(
1A′′ ⊗ MAA′

a ⊗ MBB′
b ⊗ 1B′′)

· (|φ+
d 〉A′′A′ 〈φ+

d | ⊗ σ AB ⊗ |φ+
d 〉B′′B′ 〈φ+

d |)].
= ρ̃T

ab/d2. (A6)

By employing the relative entropy as a figure of merit, the
relation

1

d2

∑
a,b

D(ρ̃ab, ρ̃
0
ab) =

∑
a,b

D[Eab(σ AB),Eab(ρAB
ψ )]

� D(σ AB, ρAB
ψ ) (A7)

holds, where the inequality comes from the fact that the rel-
ative entropy does not increase under a completely positive
and trace-preserving (CPTP) map (Theorem 5 of Ref. [52]).
In Eq. (A7), the equality is achieved if and only if the
joint measurements are BSMs, indicating the advantage of
BSM in MDI-QSV over any other joint measurements in the
MDI-QSV task.

2. Sample efficiency of an MDI-QSV strategy

Given a state that is at least ε far away from the target state
up to local isometry, the maximal probability for this state to
give a “pass” outcome in a trial is 1 − Qε

S, where

Qε
S = min

σ,M
QS(σ ), s.t. Fe(σ → ρψ ) � 1 − ε. (A8)

To distinguish such state from the target state, the verifiers
need to set a threshold N0 < NQε

S. After N rounds of the

test, if the number of “fail” events exceeds N0, Alice and Bob
conclude that the distributed states are not local-isometrically
equivalent to the target state. Otherwise, they are convinced
that the source distributes quantum states satisfying Fe(σ →
ρψ ) > 1 − ε.

Lemma 1. The probability that a state satisfying Fe(σ →
ρψ ) � 1 − ε is 1 − δ mistakenly pass the test is upper
bounded by

δ � exp

{
−ND

[
N0

N

∥∥∥∥Qε
S

]}
. (A9)

Here, D[x‖y] is defined as D[x‖y] = x ln (x/y) + (1 −
x) ln [(1 − x)/(1 − y)]. In other words, the confidence in con-
cluding that the distributed states satisfying Fe(σ → ρψ ) >

1 − ε is 1 − δ.
Proof. The proof follows directly from the Chernoff bound

[43,44]. For any distributed state σ satisfying Fe(σ → ρψ ) �
1 − ε, the probability that the number of fail events is less than
N0 after N rounds is

δ = Prob{Nfail � N0|N, σ } � e−ND[ N0
N ||QS(σ )]

� e−ND
[

N0
N

∣∣∣∣Qε
S

]
, (A10)

where the second inequality is from the property of D[x‖y]
and the fact that N0/N � Qε

S � QS(σ ).
This lemma shows that the MDI-QSV strategy S can

exclude all states satisfying Fe(σ → ρψ ) � 1 − ε for any
ε > 0 with a confidence 1 − δ, as long as the protocol is
executed over a sufficient number of rounds. Here, the ε

reflects the accuracy in the verification, and a smaller ε

means that a state is closer to the target state (up to local
isometry), such that more measurements are required to distin-
guish it from ρψ . More explicitly, given some fixed accuracy
1 − ε and confidence level 1 − δ, the required number of
measurements is

N � NS(ε, δ) = 1

D
[N0

N

∥∥Qε
S
] ln δ−1, (A11)

which gives the sample efficiency of S.

3. An intuitive construction of MDI-QSV strategy

With the above discussion, there exists an intuitive con-
struction of MDI-QSV. For each state ρ̃0

ab in the target
ensemble, one can design a standard QSV strategy 
ab that
contains only rank-1 projectors to verify ρ̃0

ab. More explicitly,
this can be achieved as follows.

(1) For any a, b, design an observable 
ab such that ρ̃0
ab

is its eigenstate with minimum eigenvalue, and thus can be
used as a strategy in verifying ρ̃0

ab. Note that the operator Oab

needs to admit a decomposition into a linear combination of
pure product states, or equivalently, Oab can be regarded as a
separable state, according to Eq. (A5).

(2) Specify d4 input sets Iab = { pi
ab, τ

i
ab ⊗ ωi

ab }i, where∑
i pi

abτ
i
ab ⊗ ωi

ab = Oab and
∑

i pi
ab = 1.

(3) In each round, Alice and Bob randomly choose one
from the d4 input set, namely, Ia0b0 , and prepare input states
according to Ia0b0 . After performing joint measurements on
their prepared states and the distributed state, Alice and Bob
obtain their outcome (a, b). The payoff function is 1 if and

052607-6



MEASUREMENT-DEVICE-INDEPENDENT VERIFICATION … PHYSICAL REVIEW A 109, 052607 (2024)

only if a = a0 and b = b0, i.e., the effective strategy must
match the conditional state.

When the joint measurements are supposed to be BSMs,
the target ensemble is

{|ψab〉〈ψab| = (Ua ⊗ Ub)(ρAB
ψ )T (Ua ⊗ Ub)†}a,b. (A12)

Here, {Uj} are the set of Heisenberg-Weyl operators

Uj = X k
d Zl

d , (A13)

with k = � j/d�, l = j mod d and the Xd = ∑d−1
m=0 |m〉〈m +

1|, Zd = ∑d−1
m=0 ei2mπ/d |m〉〈m| being the generalized Pauli op-

erators. In the following, we denote |ψab〉〈ψab| as ρab in short
for brevity.

Therefore, the remaining problem in this construction is to
design standard QSV strategies Oab for |ψab〉, which involves
only rank-1 local projectors. For this task, we have the follow-
ing result:

Lemma 2. (Optimal QSV strategy using rank-1 local pro-
jectors) Consider a d × d-dimensional target state |ψ〉. The
optimal standard QSV protocol implementable with rank-
1 projectors is 
ψ = 1

d2−1 (1d2 − ρψ ), whose spectral gap
is 1

d2−1 .
Proof. An optimal QSV involving only rank-1 local pro-

jectors should be as follows: In each round, the verifier
randomly draws a rank-1 local projector PA

j ⊗ PB
j from some

set M with probability pj . By performing the binary outcome
measurement {PA

j ⊗ PB
j , 1d2 − PA

j ⊗ PB
j }, the verifier labels

the outcomes as fail and pass, respectively. Remarkably, one
always has 〈ψ |PA

j ⊗ PB
j |ψ〉 < 1 if considering the nontrivial

case where the target state is entangled, since PA
j ⊗ PB

j is
nothing but a pure product state. Therefore, to guarantee that
the target state |ψ〉 = ∑d−1

i=0 λi|ii〉 always passes the test, the
verifier has to label “fail” to the events detected by PA

j ⊗ PB
j

and imposes the constraint PA
j ⊗ PB

j |ψ〉 = 0. Then, the QSV
strategy can be expressed as 
 = ∑

j p jPA
j ⊗ PB

j with p j � 0
and 
|ψ〉 = 0.

Denote all the d2 eigenvalues of 
 in increasing order as
{0, e1, e2, . . . , ed2−1}. An optimal strategy should have the
largest possible spectral gap [19], which is just the second
smallest eigenvalue e1 of 
. By observing that

∑d2−1
k=1 ek =

Tr(
) = 1, it is known that e1 has an upper bound 1/(d2 − 1),
which is achieved if e1 = e2 = · · · = ed2−1. Therefore, the
strategy 
ψ = (1d2 − ρψ )/(d2 − 1) is optimal for ψ as long
as it exists.

Now we proceed to prove that 
ψ is always implementable
with rank-1 local projectors. That is, 
|ϕ〉 is separable, and
admits a decomposition of the form

∑
j p jPA

j ⊗ PB
j . To show

this, one can perform a partial transpose on 
|ϕ〉,



TA
|ϕ〉 = 1

d2 − 1

∑
i< j

(
λ2

j |ii〉〈ii| + λ2
i | j j〉〈 j j| + |i j〉〈i j|

+ | ji〉〈 ji| − λiλ j |i j〉〈 ji| − λ jλi| ji〉〈i j|). (A14)

It is observed that the 

TA
|ϕ〉 is a summation of some 4 × 4 sub-

matrices Bi j (i < j), i.e., 

TA
|ϕ〉 = ∑

i< j Bi j , with Bi j supported

on the subspace { | ii〉, | i j〉, | ji〉, | j j〉 } as

Bi j = 1

d2 − 1

⎛
⎜⎜⎜⎜⎝

λ2
j 0 0 0

0 1 −λiλ j 0

0 −λiλ j 1 0

0 0 0 λ2
i

⎞
⎟⎟⎟⎟⎠. (A15)

From the positive partial transpose criterion [53] which is nec-
essary and sufficient for solving the separability problem in
this four-dimensional subspace [54], one knows that all the Bi j

can be seen as unnormalized separable states. Therefore, 

TA
|ϕ〉

is separable and the initial observable 
|ϕ〉 is also separable.
This finishes the proof.

Additionally, we remark that the decomposition of
1

d2−1 (1d2 − ρψ ) is not unique, and contains at least d2 terms.
In general cases, an alternative decomposition is of the form

1d2 − ρψ =
∑
k<l

[(
1 − λ2

k

)|kl〉〈kl| + (
1 − λ2

l

)|lk〉〈lk|

+ 1

2

4∑
j=1

ρ
j
kl ⊗ ρ

j′
kl

]
, (A16)

with the components ρ
j
kl ⊗ ρ

j′
kl defined by

ρ1
kl ⊗ ρ1′

kl = |+〉kl〈+|kl ⊗ (λl |k〉 − λk|l〉)(λl〈k| − λk〈l|)
ρ2

kl ⊗ ρ2′
kl = |−〉kl〈−|kl ⊗ (λl |k〉 + λk|l〉)(λl〈k| + λk〈l|)

ρ3
kl ⊗ ρ3′

kl = |+i〉kl〈+i|kl ⊗ (λl |k〉 + iλk|l〉)(λl〈k| + iλk〈l|)
ρ4

kl ⊗ ρ4′
kl = |−i〉kl〈−i|kl ⊗ (λl |k〉 − iλk|l〉)(λl〈k| − iλk〈l|),

(A17)

where |±〉kl = (|k〉 ± |l〉)/
√

2, and |±i〉kl = (|k〉 ±
i|l〉)/

√
2. �

Up to now, we have finished the construction of the MDI-
QSV strategy, denoted as S0

ψ . A satisfying nature of S0
ψ is that

the target state can always pass the test as long as proper joint
measurements (i.e., BSMs in this situation) are performed.
This makes its sample efficiency scale optimally with the
verification accuracy as O(ε−1). Such strategies are called
no-false-negative (NFN) in the main text.

However, a prefactor 1/d4 will appear in the sample ef-
ficiency due to the above construction of 
̃ab, which limits
the performance of S0

ψ . This limitation in fact comes from
the mismatching between (a0, b0) and (a, b). To be specific,
(a0, b0) labels the choice of effective strategy, and (a, b) la-
bels the state to be verified in the equivalent process. Due to
the casual order between the input and output in the actual
MDI-QSV protocol, the strategy has to be decided before the
target state is known, which leads to this mismatch. Hence,
the natural questions are, can we optimize the strategy S0

ψ

to overcome this drawback, and how well does an optimal
MDI-QSV strategy perform? To answer these questions, it is
sufficient to consider the NFN MDI-QSV strategies, whose
properties are investigated in the next section.
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4. No-false-negative MDI-QSV strategies

Because of the observation in Sec. A 1, we still consider
the case where the target ensemble is obtained from BSMs.
For this kind of NFN MDI-QSV strategy, there are two obser-
vations.

Firstly, only the events with nonzero payoff, i.e.,
f (a, b, i) = 1, contribute in an NFN MDI-QSV strategy
(namely, the valid events). An intuition is that, with a fixed
input set, more valid events will lead to a more powerful
strategy.

Lemma 3. For an NFN MDI-QSV strategy SD of |ψ〉
whose input set is I, the optimal payoff function fI,ψ is given
by

fI,ψ (a, b, i) =
{

1, if Tr[(τi ⊗ ωi )ρab] = 0

0, other cases
. (A18)

Proof. Firstly, if the shared state is just the target state and
the joint measurement is perfect BSM, Alice and Bob will
obtain pass in every round during the verification. Hence, the
strategy SD = {I, fI,ψ } is a valid NFN MDI-QSV strategy.

Meanwhile, the equality Tr[(τi ⊗ ωi )ρab] = 0 is a nec-
essary condition for any NFN MDI-QSV strategy. This
constraint guarantees that the target state can always pass
the test. For any other strategy S′D = {I, f ′}, QSD (σ AB) �
QS′D (σ AB) holds for any distributed state σ AB. Therefore, SD

requires fewer measurements to verify the shared state com-
pared with S′D. �

Besides the optimization on the input function, a sym-
metrization on the input set also helps to further improve the
performance of an MDI-QSV strategy.

Lemma 4. For an MDI-QSV strategy SD = {I, fI,ψ } of
|ψ〉 where the input set is denoted as I = { pi, τi ⊗ ωi }, one
can obtain a symmetrized input set by the local unitaries
{Ua ⊗ Ub }d2−1

a,b=0, that is,

Isym = ∪a,b
1

d4
Iab, (A19)

where

Iab/d4 = { pi/d4, (Ua ⊗ Ub)†τi ⊗ ωi(Ua ⊗ Ub) }. (A20)

Then, the strategy specified by S′′D = {Isym, fIsym,ψ } is at least
as efficient as the original strategy SD.

This result is a direct consequence of the observation that
the target ensemble {ρab}d2−1

a,b=0 is invariant under the local

unitaries {Ua ⊗ Ub }d2−1
a,b=0.

These two lemmas tell us how one can improve the perfor-
mance of an NFN MDI-QSV strategy by modifying its input
set and payoff function.

5. Proof of the propositions in the main text

The construction of MDI-QSV strategy in Propositions 1 in
the main text follows directly from the above results. Indeed,
when the optimizations in Lemmas 3 and 4 are applied to
the above constructed strategy S0

ψ in Sec. A 3, one ends up
with the strategy SD

ψ = {Iψ, fIψ
} proposed in Propositions 1

in three steps:
(1) Decompose the [1d2 − (ρAB

ψ )T ]/(d2 − 1) into separa-

ble states, i.e.,
∑

j c jφ
A′
j ⊗ φB′

j = [1d2 − (ρAB
ψ )T ]/(d2 − 1).

FIG. 5. If σ AB always pass the test, one can extract the target
state by replacing the verification setups (the parts in dashed boxes)
with locally maximally entangled states and unitary operations on
the ancilla qudits.

(2) Symmetrize the set {(c j, φ
A′
j , φB′

j )} with all
Heisenberg-Weyl operators, which gives the input set

Iψ =
{( c j

d4
,Uaφ

A′
j U †

a ⊗ Ubφ
B′
j U †

b

)}
a,b, j

:= {(
pi, τ

A′
i ⊗ ωB′

i

)}
,

(A21)

(3) The optimized payoff function for this input set is
given according to Eq. (A18).

Now we proceed to prove the Propositions 2, i.e., quanti-
tatively investigate the number of required measurements by
SD

ψ . In the main text, it is shown that its sample efficiency is
decided by the following optimization problem:

Qε

SD
ψ

= min
σ,M

QSD
ψ

(σ )

s.t. Fe(σ → ρψ ) � 1 − ε, (A22)

where Fe(σ → ρψ ) is the extractability [41,42] from σ to
target state |ψ〉. Here, the extractability is defined as

Fe(σ → ρψ ) = max
�

Tr[ρψ�(σ )], (A23)

with the maximum taken over all local isometries �.
Since the Qε

SD
ψ

is nonincreasing with ε, the functional rela-

tionship between Qε

SD
ψ

and ε can also be decided by

1 − εQ0 = min
σ

{max
�

Tr[ρψ�(σ )]}
s.t. QSD

ψ
(σ ) = Q0, (A24)

That is, when the distributed state σ passes the test at every
round with probability 1 − Q0, the solution 1 − εQ is the
minimal possible extractability of σ .

We first derive a lower bound of the minimal extractability
1 − εQ0 by using a fixed local isometry. In an ideal case where
the σ always passes the test, the circuit in Fig. 4 just out-
puts the conditional states {ρT

ab = (Ua ⊗ Ub)∗ρψ (Ua ⊗ Ub)T },
which can be transformed into the target state after applying
(Ua ⊗ Ub)T . Here, (·)∗ is the complex conjugate of an oper-
ator. By definition, this provides a satisfying choice of local
isometry �0 as in Fig. 5, which has been frequently used in
the self-testing of the quantum state [32,33,38]. Formally, the
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local isometry �0 is defined as

�0(σ AB) =
∑
a,b

(
U A′′

a ⊗ U B′′
b

)T
TrAA′BB′

[(
1A′′ ⊗ MAA′

a ⊗ MBB′
b ⊗ 1B′′) · (|φ+

d 〉A′′A′ 〈φ+
d | ⊗ σ AB ⊗ |φ+

d 〉B′′B′ 〈φ+
d |)](U A′′

a ⊗ U B′′
b

)∗
,

(A25)

which can be written in short as

�0(σ AB) = 1

d2

∑
a,b

(Ua ⊗ Ub)T ρ̃T
ab(Ua ⊗ Ub)∗, (A26)

according to Eq. (A6). The fidelity between the target state
and the extracted state �0(σ AB) is

1 − εQ0 � F l
e = 1

d2

∑
ab

Tr(ρabρ̃ab) := 1

d2

∑
ab

f̃ab. (A27)

Denote 
̃ab,ψ as the effective QSV strategy induced by SD
ψ ac-

cording to Eq. (A5), and qab its minimum nonzero eigenvalue,
then the construction leads to


̃ab,ψ � qab(1d2 − ρab) � 1

d4(d2 − 1)
(1d2 − ρab) (A28)

for all a, b. The second inequality comes from the fact that
the SD

ψ always outperform the original strategy S0 proposed in
Sec. A 3. Meanwhile, the conditional states ρ̃ab are unnormal-
ized, and satisfy

Tr(ρ̃ab) := cab,
∑

ab

cab = d2 (A29)

due to the completeness of the measurements MAA′
and MBB′

.
Then, the average failure probability QSD

ψ
satisfies

Q0 = QSD
ψ

(σ AB)

�
∑

ab

qabTr[(1d2 − ρab)ρ̃ab]

=
∑

ab

qab(cab − f̃ab). (A30)

Additionally, as the input set has been symmetrized, these
effective strategies 
̃ab,ψ are equivalent up to local unitary,
such that qab = q̄ for all a, b. Then, the optimization problem
becomes

F l
e = min

∑
ab

f̃ab/d2

s.t. q̄
∑

ab

(cab − f̃ab) � Q0,

∑
ab

cab = d2,

∀a, b, 0 � f̃ab � cab � 1,

q̄ � 1

d4(d2 − 1)
, (A31)

whose solution can be obtained directly as F l
e = 1 −

Q0/(d2q̄), that is, εQ0 � Q0/(d2q̄).
Meanwhile, we provide an upper bound of this worst-case

extractability 1 − εQ0 , by specifying the shared states and joint
measurements. Let R(ρ) be the robustness of entanglement
[55], and ρ(ε) be the state that minimizes R(ρ) among all the

states with infidelity ε to |ψAB〉, i.e.,

r(ε) = min
ρ

R(ρ)

ρ(ε) = arg min
ρ

R(ρ)

s.t. F (ρ, ρAB
ψ ) = 1 − ε. (A32)

Because one can always mix ρ(ε) with some separable states
to increase the infidelity ε and decrease the robustness of en-
tanglement, r(ε) decreases monotonically with the infidelity
ε, until r(ε) = 0 [ρ(ε) is separable]. Given the state ρ(ε) and
perfect BSM, it is straightforward to check that QSD

ψ
[ρ(ε)] =

d2q̄ε. Then, it remains to calculate the extractability from
ρ(ε) to the target state. If r(ε) > 0, there exist optimal local
operations to transform ρ(ε) into some other state ρ ′(ε) to
maximize the fidelity to the target state. However, as the local
operations cannot increase the robustness of entanglement,
the relation r(ε) � R[ρ ′(ε)] always holds. From the mono-
tonicity of r(ε) and the definition in Eq. (A32), it can be
observed that F [ρ ′(ε), ρAB

ψ ] � 1 − ε. In other words, when
r(ε) > 0, there always exists a state with infidelity 1 − ε such
that its infidelity to the target state can never be increased
under local strategies, while if r(ε) = 0 [ρ(ε) is separable],
the extractability is just λ2

0, with λ0 being the largest Schmidt
coefficient of |ψAB〉. This can be achieved by replacing ρ(ε)
with the separable state having the largest overlap with the
target state. Therefore, once QSD

ψ
(σ AB) = Q0 is given, the

worst-case extractability Fe(σ AB → ρAB
ψ ) is upper bounded by

F u
e (σ AB→ρAB

ψ ) �

⎧⎨
⎩

1 − Q0/(d2q̄), if Q0 < d2q̄
(
1 − λ2

0

)
λ2

0, if Q0 � d2q̄
(
1 − λ2

0

) .

(A33)

Consequently, when considering the nontrivial case Q0 <

d2q̄(1 − λ2
0), the upper bound and lower bound coincide, in-

dicating that the exact value of the worst-case extractability in
Eq. (A24) is exactly εQ0 = Q0/(d2q̄). The solution of the ini-
tial problem in Eq. (A22) is thus Qε

SD
ψ

= d2q̄ε. By employing

Lemma 1, the sample efficiency of SD
ψ is

Nε,δ (SD
ψ ) � ln δ−1

ln (1 − d2q̄ε)−1
≈ 1

d2q̄ε
ln δ−1. (A34)

This is just the first result of Proposition 2 in the main text.
Next, we proceed to figure out the behavior of this strategy-

dependent parameter q̄. By taking trace on the effective QSV
strategy 
̃ab,ψ , one has

Tr(
̃ab,ψ ) � q̄(d2 − 1) (A35)

from Eq. (A28), and

Tr(
̃ab,ψ ) =
∑

i

pi fIψ
(a, b, i) (A36)
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by the definition of 
̃ab,ψ . After substituting this into
Eq. (A35) and summing over all a, b, one arrives at

q̄ � 1

d4(d2 − 1)

∑
a,b,i

pi f (a, b, i). (A37)

Here and after, we denote the payoff function fIψ
as f in short

for simplicity if there is no ambiguity.
Notably, even for the same target state, different decom-

position of 1
d2−1 (1d2 − ρAB

ψ ) leads to different input sets and
finally different efficiency of the resulting strategy. As shown
in Eq. (A37), the sample efficiency is directly related to the
number of valid events. To design a more efficient MDI-QSV
strategy, one is expected to find an input set whose weighted
average of valid events

∑
a,b,i pi f (a, b, i) is as large as possi-

ble. The weighted average of valid events is upper bounded as
follows:

Lemma 5. In any NFN MDI-QSV strategy, there exist at
most d3(d − 1) pairs (a, b) such that the payoff f (a, b, i) is 1
for each possible quantum input τi ⊗ ωi.

Proof. Given that the label b has been fixed as b = 0, that
is, Ub = 1d , we have

d2−1∑
a=0

(Ua ⊗ 1d )†τi ⊗ ωi(Ua ⊗ 1d ) = d1d ⊗ ωi. (A38)

Meanwhile, consider the following summation on the subset
{a| f (a, 0, i) = 1}:∑

{ a| f (a,0,i)=1 }
(Ua ⊗ 1d )†τi ⊗ ωi(Ua ⊗ 1d ) := OA ⊗ ωi.

(A39)

Due to the NFN character of the MDI-QSV strategy consid-
ered here, we have the constraint

Tr
[
(OA ⊗ ωi )(ρ

AB
ψ )T

] = 0. (A40)

Define ρA = TrB[ωB
i (ρAB

ψ )T ]

Tr[ωB
i (ρAB

ψ )T ] , then the above constraint indicates

that

OA � λmax(OA)(1d − ρA), (A41)

with λmax(OA) being the maximal eigenvalue of OA. By com-
paring Eqs. (A38) and (A41), it is observed that OA � d (1d −
ρA). Therefore, the size of the set { a | f (a, 0, i) = 1 } satisfies

|{ a | f (a, 0, τi ⊗ ωi ) = 1 }| = Tr(OA) � d (d − 1). (A42)

Similarly, the same result holds for all d2 choices of label b,
and there exist no more than d3(d − 1) pairs (a, b) satisfying
f (a, b, i) = 1. This finishes the proof. �

With this lemma, one arrives at q̄ � 1/[d (d + 1)] from
Eq. (A37). As for the lower bound of q̄, we remark that
the target state |ψ〉 is invariant under (Zd ⊗ Z†

d )k for k =
0, 1, . . . , d . If some input τi ⊗ ωi satisfying f (0, 0, i) = 1,
then the construction guarantees that f (a, b, i) = 1 as long
as Ua ⊗ Ub = (Zd ⊗ Z†

d )k for some k. Therefore, the relation∑
a,b f (a, b, i) � d holds for this input, and similarly for all

the other inputs. This imposes a lower bound on q̄ as q̄ �
1/[d3(d2 − 1)]. Particularly, the maximally entangled state
has d2 stabilizers in all, and it will lead to a lower bound
q̄ � 1/[d2(d2 − 1)] for such state.

Consequently, the upper and lower bound on q̄ is given as
in Proposition 2 of the main text, namely,

c

d4(d2 − 1)
� q̄ � 1

d4(d2 − 1)

∑
a,b,i

pi f (a, b, i) � 1

d (d + 1)
,

(A43)

with c = d2 if ρAB
ψ is maximally entangled, and c = d other-

wise. This finishes the proof of Proposition 2.

6. MDI-QSV and two-way adaptive QSV strategy

In this section, we discuss the problem of how well an
MDI-QSV strategy can perform. Here, an intuition is that
the untrusted measurement devices will never lead to a better
performance than QSV with trusted measurements, even with
the help of trusted local quantum inputs. This is expressed
more rigorously and proved as follows:

Lemma 6. For a given target state, the sample efficiency
of any MDI-QSV strategy cannot be better than the optimal
two-way adaptive QSV strategy [22], in which trusted local
measurements and one-round two-way classical communica-
tion is required.

Proof. For the proof, we first make a reformulation on the
failure probability in one round QS as

QS(σ AB) = Tr(
effσ
AB), (A44)

where


eff =
∑

i

pi

∑
a,b

f (a, b, i)

TrAB
[(

MAA′
a ⊗ MBB′

b

)(
τA′

i ⊗ 1AB ⊗ ωB′
i

)]
:=
∑

i

pi

∑
a,b

f (a, b, i)Ea|i ⊗ E ′
b|i, (A45)

with Ea|i = TrA[MAA′
(τA′

i ⊗ 1A)] and similar for E ′
b|i. More-

over, {Ea|i}, E ′
b|i satisfy

∑
a Ea|i = 1d and E ′

b|i = 1d due

to the completeness of the measurements { MAA′
a }, { MBB′

b }.
Therefore, one can regard {Ea|i}, {E ′

b|i} as untrusted positive
operator valued measurements (POVMs) on Alice’s and Bob’s
side, respectively. Meanwhile, the payoff function f (a, b, i) is
regarded as a function requiring two-way classical commu-
nication to be decided. In this way, an MDI-QSV strategy S
is regarded effectively as a two-way adaptive QSV strategy
introduced in Ref. [22], while the difference is that here the
effective POVMs are untrusted.

Consequently, for any MDI-QSV strategy, there exists a
two-way adaptive QSV strategy having the same efficiency for
the same target state. That is, the performance of MDI-QSV is
upper bounded by an optimal two-way adaptive QSV strategy.
This finishes the proof. �

Besides imposing an upper bound on the sample efficiency
of the MDI-QSV strategy, Lemma 6, can also be used as a
criterion for an MDI-QSV strategy to be optimal. That is,
for a given target state, an MDI-QSV strategy is optimal if
it performs as good as the optimal two-way adaptive QSV
strategy. In the next section, we show by example that such
strategies do exist, by applying our construction of SD

ψ to
maximally entangled states with prime local dimension.
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7. Optimal MDI-QSV of maximally entangled states
with prime local dimension

For prime local dimension d , it is known that the eigen-
bases of { Zd , Xd , Xd Zd , Xd Z2

d , . . . , Xd Zd−1
d } form a complete

set of mutually unbiased bases (MUBs). Given that |φ+
d 〉 are

maximally entangled states with prime local dimension d , the
following equation holds:

1d2 + d|φ+
d 〉〈φ+

d | =
∑
|e〉

|e〉〈e| ⊗ |e∗〉〈e∗|, (A46)

where the summation is taken over all eigenstates of the set of
operators { Zd , Xd , Xd Zd , Xd Z2

d , . . . , Xd Zd−1
d }, and |e∗〉 is the

conjugate of |e〉. Then, a decomposition of 1d2 − |φ+
d 〉〈φ+

d | in
constructing the MDI-QSV strategy for |φ+

d 〉 can be taken as

1d2 − |φ+
d 〉〈φ+

d | = d + 1

d
1d2 − 1

d

⎛
⎝∑

|e〉
|e〉〈e| ⊗ |e∗〉〈e∗|

⎞
⎠

= 1

d

⎡
⎣(d + 1)1d2 −

∑
|e〉

|e〉〈e| ⊗ |e∗〉〈e∗|
⎤
⎦.

(A47)

Moreover, if a vector |e〉 belongs to the basis X xZy (x, y ∈
{0, 1, . . . , d − 1}), i.e., X x

d Zy
d |e〉 ∝ |e〉, then the state Ua|e〉

remains a vector belonging to the basis X x
d Zy

d , which can be
observed by X x

d Zy
dUa|e〉 ∝ UaX x

d Zy
d |e〉 ∝ Ua|e〉.

With the above decomposition, one can check that
the construction in Proposition 1 of the main text leads
to an input set that can be implemented in two steps.
Firstly, Alice randomly chooses one basis from the set
{ Zd , Xd , Xd Zd , Xd Z2

d , . . . , Xd Zd−1
d }, and Bob’s basis is chosen

to be conjugate to the basis of Alice. Secondly, Alice and Bob
randomly choose one state vector in their own basis as their
input state, respectively. After obtaining the outcomes of the
joint measurements on the input states and shared state, they
calculate the payoff with the function specified by Eq. (A18)
to verify the shared state.

As for the sample efficiency, it can be derived that q̄ =
1

d (d+1) for this strategy. Hence, the number of required mea-

surements is N (ε, δ) ≈ d+1
dε

ln δ−1, which coincides with the
best standard QSV strategy for this class of state.

8. MDI-QSV of two-qubit pure states

Consider a two-qubit pure state |ψ (θ )〉 = cos θ |00〉 +
sin θ |11〉 [θ ∈ (0, π/2)]. By employing the decomposition
proposed in Eq. (A16), an MDI-QSV strategy Sψ (θ ) can be de-
signed using Proposition 1. Define two sets of states {|φi〉}4

i=1
and {|ϕi〉4

i=1}, where

|φ〉1 = cos θ |0〉 − sin θ |1〉, |φ〉2 = cos θ |0〉 + sin θ |1〉,
|φ〉3 = sin θ |0〉 − cos θ |1〉, |φ〉4 = sin θ |0〉 + cos θ |1〉,
|ϕ〉1 = cos θ |0〉 − i sin θ |1〉, |ϕ〉2 = cos θ |0〉 + i sin θ |1〉,
|ϕ〉3 = sin θ |0〉 − i cos θ |1〉, |ϕ〉4 = sin θ |0〉 + i cos θ |1〉.

(A48)

TABLE III. Input set of the MDI-QSV strategy Sψ (θ ) for |ψ (θ )〉.

Input state Input probability

Alice Bob

|0〉/|1〉 |0〉/|1〉 1/12
|+〉/|−〉 {|φi〉}4

i=1 1/24
|+i〉/|−i〉 {|ϕi〉4

i=1} 1/24

The input set of this strategy is given in Table III. Then,
combined with the payoff function defined via Eq. (A18), it
is found that the parameter q̄ is

q̄ =
{

1/6, θ = π/4

1/12, θ �= π/4
. (A49)

Therefore, the sample efficiency of this class of strategies is
3/2ε−1 ln δ−1 for Bell states and 3ε−1 ln δ−1 for any other pure
entangled states.

a. Optimality of the proposed strategy

It has been pointed out that [14 − |ψ (θ )〉〈ψ (θ )|]/3 admits
many possible decompositions into the summation of product
states. As we will show, the one proposed in Eq. (A16) is the
optimal choice for constructing the MDI-QSV strategy in the
two-qubit case.

Suppose that a product state (α1|0〉 + β1|1〉) ⊗
(α2|0〉 + β2|1〉) appears in the decomposition of
[14 − |ψ (θ )〉〈ψ (θ )|]/3, such that the equation

〈ψ (θ )|(α1|0〉 + β1|1〉) ⊗ (α2|0〉 + β2|1〉) = 0 (A50)

holds. As discussed in Sec. A 5 before Lemma 5, the sample
efficiency is directly related to the number of valid events.
That is, the number of pairs (a, b) satisfying

〈ψ (θ )|Ua ⊗ Ub|(α1|0〉 + β1|1〉) ⊗ (α2|0〉 + β2|1〉) = 0

(A51)

should be as large as possible, and here the set {Ua} is just the
Pauli matrices {I, X, Y, Z} in the qubit case. When |ψ (θ )〉 is
not maximally entangled (θ �= π/4), it is direct to check that
Eq. (A51) holds if and only if Ua ⊗ Ub can be decomposed
into (Ua1 ⊗ Ub1 )(Ua2 ⊗ Ub2 ) such that

Ua1 ⊗ Ub1 |ψ (θ )〉 = eiξ |ψ (θ )〉 (A52)

and

Ua2 ⊗ Ub2 (α1|0〉 + β1|1〉) ⊗ (α2|0〉 + β2|1〉)

= eiξ ′
(α1|0〉 + β1|1〉) ⊗ (α2|0〉 + β2|1〉) (A53)

are satisfied for some ξ and ξ ′. The first constraint is satisfied
when Ua1 ⊗ Ub1 is I ⊗ I or Z ⊗ Z , independent of the ex-
plicit θ , while the second constraint becomes state dependent.
Ignoring the trivial case Ua2 ⊗ Ub2 = I ⊗ I , we can suppose
that Ua2 ∈ {X, Y, Z} without loss of generality. Then, the
constraint in Eq. (A53) holds only if α1|0〉 + β1|1〉 is the
eigenstate of Ua2 . Once the α1|0〉 + β1|1〉 is given, α2|0〉 +
β2|1〉 is uniquely determined by the orthogonality require-
ment in Eq. (A50), and it is observed that Ub2 has to be I
to meet the constraint (A53). Consequently, this leads to an
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optimal decomposition of [14 − |ψ (θ )〉〈ψ (θ )|]/3 to construct
an MDI-QSV strategy for a two-qubit pure entangled state
using Proposition 1, which is just the decomposition given in
Eq. (A16).

As our discussion here has a prerequisite that the target
ensemble {ρ0

ab} is generated from BSMs, the above analysis is
sufficient to show that Sψ (θ ) is optimal under this prerequisite,
while it remains open whether other joint measurements can
induce more efficient MDI-QSV strategies.

b. Modification of MDI-QSV with partial Bell state measurements

In practice, the parties may be only accessible to partial
Bell state measurements. A typical case is the linear optics
schemes, where only two out of the four Bell states can be
recognized. Note that the two recognized Bell states can be
modulated by changing the local basis of BSM. So, we can
take them as {(|00〉 + |11〉)/

√
2, (|01〉 + |10〉)/

√
2} without

loss of generality. The measurement outcome of such partial
Bell state measurements is denoted as {0, 1, �}, respectively,
where � means that the BSM fails at this round. To guarantee
the target state can always pass the test, one has to label the
entire event as “pass” if at least one BSM fails. Therefore,
the target ensemble that is nontrivial in the modified scenario
reduces to

{(Ua ⊗ Ub)|ψ (θ )〉〈ψ (θ )|(Ua ⊗ Ub)†}Ua,Ub=I,X . (A54)

However, the same ensemble can also be generated by the
maximally entangled state (|00〉 + |11〉)/

√
2, if the joint mea-

surements used by Alice and Bob are partial BSM and

{|ψ (θ )〉〈ψ (θ )|, |φ(θ )〉〈φ(θ )|, �}, (A55)

respectively, with |φ(θ )〉 = sin θ |01〉 + cos θ |10〉. This pre-
vents Alice and Bob from verifying the target state in an MDI
manner.

An intuitive way to get around this problem is postselec-
tion. That is, Alice and Bob just conclude that the shared
state can be prepared into |ψ (θ )〉 by the local isometry �0 in
Fig. 5 when the measurement outcomes (a, b) satisfy a, b �= �.
However, such a statement may not be satisfactory, because
such postselection can exclude may useful states. Let θ = π/4
and the verifiers can observe that all the n rounds of test give
the pass outcome. They can only verify that n/4 pairs of Bell
state can be extracted in this postselection process. This leads
to a waste of useful resources.

As another solution to tackle with the problem caused by
the partial BSM, one may introduce an extra assumption that
the underlying Hilbert space dimension of the shared state
is known, which is justified in many practical cases. Then,
the verifiers can apply trusted random rotations Ui ⊗ Uj be-
fore the partial joint measurement (Ui = I, X,Y, Z). Denote
the unknown partial joint measurement as {P1, P2, �}. Then,
the overall system implements the following POVMs:

{(Ui ⊗ Uj )P1(Ui ⊗ Uj )
†/16, (Ui ⊗ Uj )P2(Ui ⊗ Uj )

†/16, �}i, j,

(A56)

which is, however, complete up to normalization, as∑
i, j (Ui ⊗ Uj )P1(Ui ⊗ Uj ) ∝ 14 is satisfied for any projec-

tor P1. By employing this overall POVM in MDI-QSV, the
results in Propositions 1 and 2 become viable again for

constructing an MDI-QSV strategy and calculating the sam-
ple efficiency. Consequently, one can verify |ψ (θ )〉 using
around 12ε−1 ln δ−1 copies of shared states if θ �= π/4, and
6ε−1 ln δ−1 copies if θ = π/4, which is exactly four times
compared to the above strategy Sψ (θ ).

Notably, with the dimension of shared state given and
trusted local rotations available, the modified strategy is ap-
plicable as long as at least one Bell state can be recognized.
And, the inefficiency directly depends on the proportion of
success of all the joint measurements. This result also admits
a straightforward generalization to higher dimensions.

APPENDIX B: MDI-QSV IN MULTIPARTITE CASE

In a general case, where n remote parties aim at verifying
the shared state in an MDI manner with the help of trusted
local quantum inputs τ 1

i ⊗ τ 2
i · · · ⊗ τ n

i , our results in the bi-
partite case admit a natural generalization.

As for MDI-QSV strategies construction, we can still de-
sign an NFN one for some n-partite d-level pure target state
ρψn,d = |ψn,d〉〈ψn,d | in three steps, following a similar line as
in the bipartite case:

(1) Construct a standard QSV strategy 
ψn,d with only
rank-1 projective local measurements for ρT

ψn,d
, which speci-

fies an input set Iψn,d . To guarantee the resulting MDI-QSV
strategy has no false negative, it is further required that
Tr(
ψn,d ρ

T
ψn,d

) = 0.
(2) Symmetrize the input set with the set of operators

{ ⊗n
k=1Uak }, which results in

I
sym
ψn,d

= ∪a1,...,an

(⊗n
k=1 Uak

)†
Iψn,d /dn

(⊗n
k=1 Uak

)
:= {

pi, τ
1
i ⊗ τ 2

i · · · ⊗ τ n
i

}
. (B1)

(3) For every input state τ 1
i ⊗ τ 2

i · · · ⊗ τ n
i in I

sym
ψn,d

, the pay-
off function is given by

fIsym
ψn,d

(�a, i) =
{

1, if Tr
[(

τ 1
i ⊗ τ 2

i · · · ⊗ τ n
i

)
ρ�a
] = 0

0, other cases
. (B2)

Here, �a = (a1, a2, . . . , an) ∈ {0, 1, . . . , d2 − 1}⊗n is the vec-
tor denoting the outcome of each verifier, and

ρ�a = |ψ�a〉〈ψ�a| = (⊗n
i=1 Uai

)
ρT

ψn,d

(⊗n
i=1 Uai

)†
. (B3)

Note that the QSV strategy in the first step is not specified
to be 1

dn−1 (1dn − ρT
ψn,d

) as in the bipartite case. In fact, it

remains open whether 1
dn−1 (1dn − ρT

ψn,d
) is fully separable

for all |ψn,d〉, so as to be implementable with local quantum
inputs.

As for the sample efficiency of this class of MDI-QSV
strategies, a similar discussion to the bipartite case gives
that the required number of measurements in the multipartite
case is

N � NSψn,d
(ε, δ) ≈ 1

dnq̄n,dε
ln δ−1, (B4)

with q̄n,d being the minimum nonzero eigenvalue of


̃�a,ψn,d =
∑

i

pi fIsym
ψn,d

(�a, i)τ 1
i ⊗ τ 2

i · · · ⊗ τ n
i . (B5)
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1. MDI-QSV of single-qudit pure state

A special case is n = 1, i.e., the MDI-QSV for a single
qudit, which is a trivial task to some extent as mentioned in
the main text. In fact, as all the single-qudit pure states are
equivalent to each other under local unitary operation, the
single-qudit MDI-QSV is in fact verifying whether the shared
state is pure. In this case, the above results are still valid, and it
suffices to consider the MDI-QSV of |0〉 in the d-dimensional
Hilbert space.

Following the above three steps, a simple MDI-QSV strat-
egy can be designed. First, the optimal QSV strategy for |0〉
is nothing but (1d − |0〉〈0|)/(d − 1), which specifies a set of
inputs as {1/(d − 1), |i〉〈i|}d−1

i=1 . After symmetrizing this set
with the Heisenberg-Weyl operators {Ua}d2−1

a=0 , the input set
finally becomes {1/d, |i〉〈i|}d−1

i=0 . That is, the verifier just needs
to randomly choose a state from the computational basis as the
input at each round. Finally, the payoff function is defined by
Eq. (B2) as

f (a, i) =
{

1, if Tr[Ua(|i〉〈i|)U †
a |0〉〈0|] = 0

0, other cases
. (B6)

According to Eqs. (B4) and (B5), one has q̄ = 1/d , and the
sample efficiency of the MDI-QSV of the single-qudit pure
state is ε−1 ln δ−1 for this strategy. This is the same as the
optimal standard QSV strategy for |0〉, by performing the
projective measurement {|0〉〈0|, 1d − |0〉〈0|}.

2. MDI-QSV of stabilizer states

As another example, we consider the MDI-QSV of sta-
bilizer states, which is a class of important multipartite
entangled states in quantum communication and computation
tasks. Let |G〉n be an n-qubit stabilizer state, and { Si }2n

i=1 be
the set of all 2n stabilizers of the target state |Gn〉, such that

|Gn〉〈Gn| = 1

2n

2n∑
i=1

Si. (B7)

Without loss of generality, it is assumed that all the Si are
tensor products of the Pauli operators X , Y , Z , and the identity
operator I . Then, one has

12n − (|Gn〉〈Gn|)T = 1

2n

2n∑
i=1

(
12n − ST

i

)
. (B8)

As (12n − ST
i ) is fully separable, 
Gn = 1

2n−1 [12n −
(|Gn〉〈Gn|)T ] admits a decomposition into fully separable
states. Following a similar line as the proof of Lemma 2, it
is known that 
Gn is the optimal standard QSV strategy of
(|Gn〉〈Gn|)T involving only fully separable projectors. Denote
Bi as the fully separable basis specified by ST

i and B−
i as the

subset spanning the negative eigenspace of ST
i . It is observed

that the ∪iB
−
i provide a decomposition of 
Gn . Moreover, let

TABLE IV. Input set of MDI-QSV strategy for three-qubit GHZ
state.

Input state Input probability

Alice Bob Charlie

|0〉/|1〉 |0〉/|1〉 |0〉/|1〉 3/56
|+〉/|−〉 |+〉/|−〉 |+〉/|−〉 1/56
|+i〉/|−i〉 |+i〉/|−i〉 |+〉/|−〉 1/56
|+i〉/|−i〉 |+〉/|−〉 |+i〉/|−i〉 1/56
|+〉/|−〉 |+i〉/|−i〉 |+i〉/|−i〉 1/56

|ei
j〉 be a state vector in the basis Bi; any local Pauli operators

will just transform it into another vector |ei
j′ 〉 in the same

basis Bi, but cannot change it into another basis Bi′ .
Based on these observations, one can apply the above

construction of the MDI-QSV strategy, starting from the QSV
strategy 
Gn . The final input set can be implemented in two
steps: (1) The verifiers randomly specify a stabilizer Si. The
operator ST

i defines a fully separable basis Bi. (2) The verifiers
communicate to randomly choose an eigenstate under this
basis Bi, and locally prepare this state as the input for this
round. With this input set, and the payoff function determined
again by Eq. (B2), one arrives at an MDI-QSV strategy the
stabilizer state |Gn〉.

Additionally, we remark that the fully separable basis Bi

specified by Si may not be unique, if Si contains identity
operator I at some qubits. In fact, the stabilizers Si and Si′ can
share a common fully separable basis if they locally commute
to each other. In this way, if the set of all stabilizers can be
grouped into m subsets such that the stabilizers in the same set
are locally commutative with each other, it will be sufficient
for the verifiers to take their input states from m different
basis. This helps to reduce the experimental complexity.

For this class of strategies, the factor q̄2,d can be cal-
culated by Eq. (B5) as q̄2,d = 2n−1

2n−1 . Therefore, the required
number of measurements will be NS|Gn〉 (ε, δ) ≈ 2n−1

2n−1ε
ln δ−1,

which is nearly optimal and is independent of system
size. As an explicit instance, we consider the MDI-QSV
of the three-qubit GHZ state |GHZ3〉 = (|000〉 + |111〉)/

√
2

to illustrate the construction. The set of all its stabilizers
{ZZI, ZIZ, IZZ, XXX,YY X,Y XY, XYY }, except for III , is
grouped into five subsets,

{ZZI, ZIZ, IZZ}, {XXX }, {YY X }, {Y XY }, {XYY }, (B9)

such that the operators inside every subset are locally
commutative with each other. Then, we obtain five fully sep-
arable bases define by {ZZZ, XXX,YY X,Y XY, XYY }. By
decomposing the operator (18 − |GHZ3〉〈GHZ3|) into fully
separable states under these five bases as a set of input states,
and applying local Pauli operators to symmetrize the obtained
set, it can be checked that the input set is constructed as shown
in Table IV. And, the payoff function is decided accordingly
once the input set is determined.
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B. Dakić, Experimental few-copy multipartite entanglement de-
tection, Nat. Phys. 15, 935 (2019).

[16] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R.
Parekh, U. Chabaud, and E. Kashefi, Quantum certification and
benchmarking, Nat. Rev. Phys. 2, 382 (2020).

[17] M. Hayashi, K. Matsumoto, and Y. Tsuda, A study of LOCC-
detection of a maximally entangled state using hypothesis
testing, J. Phys. A: Math. Gen. 39, 14427 (2006).

[18] M. Hayashi, Group theoretical study of LOCC-detection of
maximally entangled states using hypothesis testing, New J.
Phys. 11, 043028 (2009).

[19] S. Pallister, N. Linden, and A. Montanaro, Optimal verification
of entangled states with local measurements, Phys. Rev. Lett.
120, 170502 (2018).

[20] X.-D. Yu, J. Shang, and O. Gühne, Statistical methods for quan-
tum state verification and fidelity estimation, Adv. Quantum
Technol. 5, 2100126 (2022).
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