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Enhancing teleportation via noisy channels: Effects of the induced multipartite entanglement
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Quantum teleportation in the presence of noisy channels acting on a bipartite resource state is considered.
We consider a family of generalized noisy channels that continuously connect the amplitude damping and
the dephasing channels, encompassing a wide family of in-between scenarios, to delve into the relation between
the teleportation success and the amount of three- and four-partite entanglement (distributed among the qubits
of the resource state and those representing local environments) generated during the evolution. Our analysis
reveals that for a fixed entanglement of the resource state, the channels that better protect the teleportation
fidelity against the detrimental effects of noise are those that generate higher amounts of (Greenberger-Horne-
Zeilinger–type) multipartite entanglement. This suggests that the dynamically induced multipartite correlations
may serve as an additional resource for teleportation and provides insight into the characterization of processes
and of the type of induced entanglement according to their ability to assist the protocol.
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I. INTRODUCTION

Quantum teleportation stands out as one of the most fas-
cinating applications of quantum entanglement. It allows the
transmission of quantum information between two spatially
separated agents, Alice and Bob, by means of local operations,
classical communication, and a key element: a shared corre-
lated state known as a resource state.1 The original standard
teleportation protocol [1] uses a (pure, maximally entangled,
two-qubit) Bell state as the resource state. Subsequent inves-
tigations extended the scheme upon noticing that there exist
resource states that are useful for teleportation yet are neither
maximally entangled [2] nor pure, and their relation with vi-
olations of Bell inequalities [3,4] and discordlike correlations
[5] has been discussed.

A mixed rather than a pure resource state is more realistic,
particularly when taking into consideration the interaction of
the (Alice and Bob) entangled pair with its surroundings,
resulting in mixing of the resource state. There has been ex-
tensive research on such noisy quantum teleportation schemes
[6–15], e.g., resorting to the Lindblad formalism to explore
the fidelity of teleportation in terms of decoherence rates [6]
or to determine the optimal Bell resource state under dif-
ferent local Pauli noises [7]. Recent methods for protecting
teleportation against some decoherence channels have also
been advanced [8,9]. The effect on the teleportation fidelity of
different noisy channels acting on the resource state, typically
representing the interaction of Alices’s and Bob’s particles
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1Some authors refer to the resource state also as a quantum channel.

Here we will keep the term quantum channel to denote a completely
positive and trace-preserving map, which in the present context gives
the reduced dynamics of an open system.

with additional subsystems (which in the present case are
regarded as local environments), has been studied considering
the Kraus operators corresponding to dissipative interactions
via an amplitude damping channel [10,11], together with other
paradigmatic noise or decoherence channels on qubits such
as bit flip, phase flip, depolarizing [12], and phase damping
[13]. Also, the teleportation protocol under noisy channels in
higher-dimensional systems has been explored [14]. A general
theoretical and experimental [15] conclusion that ensues from
these investigations is that there exist appropriate channels
(acting on suitable initially pure resource states) for which the
detrimental effects of noise on the teleportation fidelity are
minimal compared to other noisy channels.

Further extensions of the original teleportation protocol
have also been advanced that consider multiparty resource
states exhibiting some type of multipartite entanglement. This
has led to the development of strategies that exploit multi-
partite entanglement to teleport multiple qubit states as in,
e.g., [16–20]. Multidirectional teleportation, allowing quan-
tum information transmission between several agents, has also
been explored [21–24], including the effect of noisy channels
[25–28].

Despite the advances achieved regarding the teleportation
success under noisy channels, whether acting on bipartite or
multipartite resource states, the relation between the telepor-
tation fidelity and the multipartite entanglement generated
among the resource qubits and the environment has been
much less explored. Such an analysis would allow us to
identify the type of processes (characterized by the type of
entanglement they induce) that favor a more successful tele-
portation and to possibly explain the fidelity improvement as
an effect assisted by the created multipartite entanglement. In
[29,30] some progress was made by relating the teleportation
fidelity to the three-partite entanglement resulting from the
local interaction of one qubit of the resource state with a
two-level environment. Here we contribute along these lines,
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FIG. 1. Scheme of the standard teleportation protocol. Vertical
dashed lines divide the different stages that correspond, from left to
right, to (i) preparation of the initial resource state of the system A +
B, (ii) application of a Bell measurement in Alice’s qubits (a and A),
and (iii) postprocessing according to Alice’s results.

by focusing on the standard teleportation protocol in the pres-
ence of noisy channels acting on the bipartite resource state.
We consider a generalized noisy quantum channel that can
be continuously transformed from the amplitude damping to
the dephasing channel [31] and explore the correlation be-
tween the maximal average fidelity and the amount of three-
and four-partite entanglement, distributed among the pair of
qubits that comprise the resource state and the qubits that
represent the corresponding local environments.

We first revisit the standard teleportation protocol and the
notion of maximal average fidelity Fmax as a quantifier of
the teleportation success (Sec. II) and express the latter in
terms of the Kraus operators of an arbitrary quantum channel
acting on the (arbitrary yet initially pure) resource state, com-
prised of two qubits A and B (Sec. III). After these preliminary
sections, we relate the maximal average fidelity above the
classical threshold value, Fmax, to the bipartite entanglement
between A and B, considering A + B as an ideal closed sys-
tem (Sec. IV). Assuming then that B interacts with a local
two-level environment EB via the generalized channel, we
investigate the relation between Fmax and the three-partite
entanglement distributed among A, B, and EB (Sec. V). The
analysis is extended to the four-partite case by considering
that both A and B locally interact with their respective envi-
ronments EA and EB under independent generalized channels,
and a nontrivial correlation between Fmax and the four-partite
entanglement is disclosed (Sec. VI). Finally, a summary and
some concluding remarks are presented (Sec. VII).

II. STANDARD TELEPORTATION PROTOCOL
AND MAXIMAL AVERAGE FIDELITY

The main idea behind the standard teleportation protocol
is that Alice wants to send to Bob an arbitrary input state ρin

encoded in a qubit a in her possession. For this task, they share
a pair of qubits A and B (in Alice’s and Bob’s possession,
respectively) in an entangled state ρAB, called resource state.
Alice then performs a Bell measurement [32–34] on her pair
of qubits a and A and communicates the outcome to Bob
via a classical channel. Upon receiving this information, and
knowing ρAB [35], Bob performs a unitary operation σ (i) ∈
{I2, σ x, σ y, σ z} on his qubit B, thus putting it into the output
state ρout (σ x,y,z stand for the Pauli matrices and In denotes
the n × n identity operator). Figure 1 shows a schematic gen-
eralization of the standard teleportation protocol. The qubits
A and B are initially in the state |0〉, whereas a is already in

ρin, the state to be teleported. Vertical dashed lines separate
the different stages of the protocol corresponding, from left to
right, to the following.

(i) A unitary transformation U (φ, ϕ) rotates the qubit A
and a controlled-NOT (CNOT) gate is employed to prepare the
initial resource state

|φ0〉AB = cos φ|00〉 + eiϕ sin φ|11〉, (1)

with φ ∈ [0, π/2] and ϕ ∈ [−π/2, 3π/2]. [This generalizes
the application of the Hadamard gate, resulting in the Bell
state 1√

2
(|00〉 + |11〉).]

(ii) Alice applies a CNOT and a Hadamard gate to the qubits
in her possession and then performs a measurement in the
Bell basis and communicates the outcome to Bob via classical
channels.

(iii) Depending on Alice’s measurement outcome, Bob
applies appropriate unitary operations on his qubit B, so the
output state of B coincides with the input state of a. The whole
strategy leads to perfect teleportation if the resource state (1)
is the Bell state 1√

2
(|00〉 + |11〉) (if |φ0〉 is another Bell state,

then the operations in Bob’s strategy must be changed).
For pure input states ρin = |χ〉〈χ |, the success of the tele-

portation can be quantified by means of the maximal average
fidelity Fmax, which measures the probability that ρout coin-
cides with the (unknown) ρin, averaged over all input states,
provided the appropriate σ (i) is chosen. The maximal average
fidelity for an arbitrary two-qubit resource state ρAB can be
written as [36]

Fmax = 1
3 [2Fmax(ρAB) + 1], (2)

where Fmax is the maximal singlet fraction [37]

Fmax = max
i

{〈�i|ρAB|�i〉} (3)

corresponding to the maximum fidelity between the resource
state and any of the Bell states2

|�i〉 = (I2 ⊗ σ (i) )|�+〉, |�+〉 = 1√
2

(|00〉 + |11〉). (4)

Setting σ (0) = I2 and σ (1),(2),(3) = σ x,y,z, we get

|�0/3〉 = |�±〉 = 1√
2

(|00〉 ± |11〉),

|�1/2〉 = |	±〉 = 1√
2

(|01〉 ± |10〉). (5)

Therefore, Fmax picks out the optimal Bell state, i.e., the Bell
state that is closest to ρAB. The above expressions show that
if ρAB is a Bell state, the protocol guarantees the complete
reconstruction of the input state.

For the quantum teleportation to be considered successful
Fmax must be greater than 2

3 , which is the value of the maximal

2In Ref. [37] the maximal singlet fraction was defined considering
the maximum over all the maximally entangled states. Here we
maximize only over those states that can be obtained from Bell states
by means of unitary transformations of the form I2 ⊗ σ (i). With this
restriction we adhere to the standard teleportation protocol (in which
Bob’s operations are implemented via Pauli operators).
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FIG. 2. The pair of qubits A and B, once in the entangled state
|φ0〉, passes through an arbitrary quantum channel represented by the
set of Kraus operators 
μ, resulting in a mixed resource state ρAB.

average fidelity corresponding to the best possible reconstruc-
tion through a purely classical channel [38]. Throughout this
paper we will be interested in the success of nonclassical
teleportation; hence we will focus on those regimes in which
Fmax � 2

3 and accordingly pay attention to the quantity

Fmax = max
{

2
3 , Fmax

}
. (6)

III. MAXIMAL AVERAGE FIDELITY UNDER
QUANTUM CHANNELS

Let us assume that A and B are initially prepared in the
state |φ0〉AB, given by Eq. (1), which then passes through a
quantum channel �AB represented by a set of Kraus operators
{
μ}, acting on HA ⊗ HB [39]. A scheme of this process is
shown in Fig. 2. The channel thus transforms |φ0〉〈φ0| into an
effective (typically mixed) resource state ρAB given by

ρAB = �AB(|φ0〉〈φ0|) =
∑

μ


μ|φ0〉〈φ0|
†
μ. (7)

Direct substitution into Eq. (3) gives, with the aid of (2),

Fmax = 1

3
+ 2

3
max

i

{ ∑
μ

|〈�i|
μ|φ0〉|2
}

. (8)

This simple but central expression for Fmax in terms of the
Kraus operators allows for studying the teleportation success
when the initially pure resource state is subject to an arbitrary
quantum channel.

Since Alice and Bob are typically spatially separated, we
will focus on cases in which A and B undergo independent
local channels, so �AB = �A ⊗ �B and


μ → 
αβ = Qα ⊗ Kβ, (9)

where {Qα} and {Kβ} stand for the sets of Kraus operators
associated with �A and �B, respectively, each set having at
most (dim HA (B) )2 = 4 elements. Equation (8) becomes then

Fmax = 1

3
+ 2

3
max

i

{∑
αβ

|〈�i|Qα ⊗ Kβ |φ0〉|2
}

. (10)

The channel �A ⊗ �B acts as if A and B interact locally
with a corresponding party EA and EB. Assuming that the
systems A + B, EA, and EB are initially uncorrelated and that
EA and EB are qubits in the initial state |0〉, we may write

|ψ0〉ABEAEB = |φ0〉AB ⊗ |0〉EA ⊗ |0〉EB (11)

for the initial four-partite state. Further, if the interaction be-
tween A and EA is represented by the unitary operator UAEA

(and similarly for B and EB), then

Qα = EA〈α|UAEA |0〉EA , Kβ = EB〈β|UBEB |0〉EB , (12)

with {|α〉} and {|β〉} bases of HEA and HEB , respectively. In
addition, the (unitary) evolution of the complete system can
be obtained from these Kraus operators as

|ψ〉ABEAEB = UAEAUBEB |ψ0〉ABEAEB

=
∑
αβ

QαKβ |φ0〉AB|α〉EA |β〉EB . (13)

A particular family of local channels, which involves a
three-party system instead of a four-partite one, is that in
which one of the resource qubits, say, A, remains unaffected
so �A = I2, while B goes through an arbitrary channel �B. In
this case Qα = I2δα0, and from Eq. (10) we are led to

Fmax = 1

3
+ 2

3
max

i

{∑
β

|〈�i|(I2 ⊗ Kβ )|φ0〉|2
}

. (14)

Clearly for �AB = I2 ⊗ �B the subsystem EA is superfluous,
and Eq. (11) reduces to the three-qubit initial state

|ψ0〉ABEB = |φ0〉AB ⊗ |0〉EB . (15)

IV. FIDELITY AND BIPARTITE ENTANGLEMENT
IN THE STANDARD TELEPORTATION PROTOCOL

The standard protocol, depicted in the circuit of Fig. 1,
corresponds to �AB = I4. Equation (8) thus becomes

Fmax = 1
3 + 2

3 max
i

{|〈�i|φ0〉|2}. (16)

With |φ0〉 given by (1), the optimal strategy corresponds to
the state |�+〉 for ϕ ∈ [−π

2 , π
2 ] and |�−〉 for ϕ ∈ [π

2 , 3π
2 ], so

(16) reduces to Fmax = 2
3 + 1

3E0|cos ϕ| and consequently, in
the noninteracting case, Eq. (6) gives

Fnonint
max = 2

3 + 1
3E0|cos ϕ|, (17)

where E0 stands for the entanglement of the initial resource
state

E0 ≡ C(|φ0〉) = 2 cos φ sin φ = sin 2φ. (18)

Here C is the concurrence, quantifying the amount of qubit-
qubit entanglement [40]. For an arbitrary (in general mixed)
two-qubit state ρAB it is defined as

CAB ≡ C(ρAB) = max{0,
√

λ0 −
√

λ1 −
√

λ2 −
√

λ3}, (19)

where {λn} are the eigenvalues of the matrix ρAB(σ y ⊗
σ y)ρ∗

AB(σ y ⊗ σ y) ordered in decreasing order and ρ∗
AB stands

for the complex conjugate of ρAB expressed in the compu-
tational basis. When the state is pure (ρAB = |χ〉〈χ |), the
expression for the concurrence simplifies and reads

CAB = C(|χ〉) =
√

2
(
1 − Trρ2

A

) =
√

2
(
1 − Trρ2

B

)
, (20)

with ρA (B) = TrB (A)ρAB the reduced density matrix of either
one of the qubits.

Equation (17) makes explicit that the teleportation success
is enhanced as the resource state’s entanglement E0 increases.
It also shows that as ϕ tends to ±π/2, the fidelity decreases
up to its minimal (classically attainable) value 2

3 , irrespective
of the initial entanglement, as can be seen in Fig. 3. In
other words, there are maximally entangled resource states
for which the maximal average fidelity does not exceed its
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FIG. 3. Maximal average fidelity in the absence of interaction
[Eq. (17)] as a function of ϕ and φ, in color scale ranging from 2

3 to
1. At ϕ = ±π/2, F nonint

max shows no improvement with respect to the
classically attainable value ( 2

3 ), irrespective of φ, which determines
the initial entanglement E0 = sin 2φ.

classical limit, and the relative phase ϕ determines the fraction
of E0 that ultimately improves the fidelity.

V. FIDELITY AND THREE-PARTITE ENTANGLEMENT
GENERATED VIA A NOISY CHANNEL

We now focus on the case in which only B goes through
a quantum channel, effectively representing an interaction
with an additional qubit EB. Figure 4 illustrates this situation,
leading to a mixed resource state ρAB before the measurement
stage of the protocol.

The scenario under consideration corresponds to that in
which |φ0〉〈φ0| is subject to a channel �AB = I2 ⊗ �B, where
�B encodes the interaction between B and EB, giving rise to
the possible creation of tripartite entanglement in the system
A + B + EB. The channel thus transforms the initial state (15)

|ψ0〉ABEB = cos φ|000〉 + eiϕ sin φ|110〉 (21)

into the three-qubit state [see Eq. (13) with Qα = I2δα0]

|ψ〉ABEB =
∑

β

Kβ |φ0〉AB|β〉EB . (22)

In [41] necessary and sufficient conditions on the Kraus
operators Kβ = 〈β|UBEB |0〉 were established that ensure the
emergence of bipartite and tripartite entanglement among
the parties A, B, and EB. For the present analysis we con-
centrate on the dynamics of the resource state’s (bipartite)
entanglement CAB = C(ρAB) and the tripartite entanglement,
as measured by the so-called 3-tangle. The latter stands as

FIG. 4. Qubits A, B, and EB are prepared in the initial state (15).
Then B and EB interact via a unitary operation UBEB , and the effect
on B is that of a quantum channel described by the Kraus operators
{Kβ}.

a legitimate measure of residual entanglement in a three-
qubit pure state |ψ〉i jk and quantifies the amount of three-way
Greenberger-Horne-Zeilinger (GHZ)–type entanglement in
the state [42]. The 3-tangle is defined as [43]

τi jk = τ (|ψ〉i jk ) = C2
i| jk − C2

i j − C2
ik, (23)

where Ci j is given by Eq. (19) and Ci| jk by

Ci| jk =
√

2
(
1 − Trρ2

i

)
. (24)

This expression generalizes (20) for a three-party pure state
and quantifies the entanglement across the bipartition i|( j +
k) [44].

In [41] it was found that for �AB = I2 ⊗ �B, CAB and τABEB

evolve according to

C2
AB = E2

0 (|det K0| + |det K1|)2

− 1
2E

2
0 (|u| − |v| + |v − u|) (25)

and

τABEB = E2
0 |u − v|, (26)

where u = 4 det K0K1 and v = g2(K0, K1), with g(M, N ) =
TrM TrN − Tr(MN ). The evolution parameter is encoded in
the Kraus operators and is not explicitly written in the above
expressions.

A. Generalized noisy channel

In order to study the role of the 3-tangle in the teleportation
fidelity, we focus on channels �B whose Kraus operators have
the structure [31] [in the basis {|0〉 = (1, 0)
, |1〉 = (0, 1)
}
of HB]

K0 =
(

1 0
0

√
1 − p

)
, K1 = √

p

(
0 cos ζ

0 sin ζ

)
, (27)

where ζ ∈ [0, π/2] and 0 � p � 1. From the second of
Eqs. (12) and the explicit form of K0 in (27), we get
〈1|K0|1〉 = 〈10|UBEB |10〉 = √

1 − p. This means that under
UBEB , the state |10〉 transforms into a state that is written as

UBEB |10〉 =
√

1 − p|10〉 + √
peiθ |10⊥〉, (28)

with |10⊥〉 a normalized state that is orthogonal to |10〉.
Consequently, p can be interpreted as the probability that
the state |10〉BEB evolves into an orthogonal state under the
transformation UBEB . Clearly p is a function of the evolution
parameter of UBEB , typically the time for Hamiltonian evolu-
tions UBEB (t ) = e−iHt/h̄. For UBEB (0) = I4, p initially vanishes
and then increases up to p = 1 when the state |10⊥〉 (com-
pletely distinguishable from |10〉) is reached. This allows us to
identify p as a useful parameter to track the evolution induced
by UBEB , without making specific assumptions regarding such
a unitary transformation.

Each value of the parameter ζ in (27) determines a specific
channel, so a comparison of the dynamics under different
channels can be achieved by varying the values of ζ . When
ζ = 0, Eqs. (27) reduce to the Kraus operators of the ampli-
tude damping channel (AC), whereas for ζ = π/2 the Kraus
operators of the dephasing channel (DC) are recovered. The
AC and the DC are paradigmatic decoherence channels [45]
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that generate W -type and GHZ-type genuine entanglement,
respectively, in the three-qubit system [41,46,47]. By means
of Eqs. (27), corresponding to what we will call the gen-
eralized (noisy) channel (GC), we can analyze intermediate
situations lying between the AC and the DC and particularly
extend some of the results reported in, e.g., [15,29,30], to a
wider range of channels.

When B is subject to the GC, the evolved state (22) reads
explicitly

|ψ〉 = cos φ|000〉 + eiϕ sin φ(
√

1 − p|110〉
+ √

p cos ζ |101〉 + √
p sin ζ |111〉). (29)

The entanglement of the corresponding resource state and the
generated amount of 3-tangle become, using Eqs. (25) and
(26),

CAB = E0

√
1 − p, τABEB = E2

0 p sin2 ζ , (30)

so only the 3-tangle depends on the specific channel. Further,
p sin2 ζ determines the fraction of the initial entanglement
E0 that can be converted into three-partite entanglement. For
fixed E0 and p, as ζ increases from 0 to π/2 the 3-tangle
goes from its minimum (0) to its maximum (E2

0 p) value. The
minimum corresponds to the AC case (ζ = 0) and the maxi-
mum to the DC case (ζ = π/2), which is the only channel for
which all the initial entanglement can be transformed into the
3-tangle (at p = 1).

From Eq. (14) it follows that for B subject to the GC, the
maximal average fidelity can be written as Fmax = maxi{F�i},
with

F�i = 1

3
+ 2

3

∑
β

|〈�i|(I2 ⊗ Kβ )|φ0〉|2. (31)

Direct calculation gives

F�± = 2
3 + 1

3 (±E0

√
1 − p cos ϕ − P1 p cos2 ζ ), (32a)

F	+ = F	− = 2
3 − 1

3 (1 − P1 p cos2 ζ ), (32b)

where

P1 = sin2 φ (33)

stands for the initial population of the state |11〉AB. On one
hand, P1 p cos2 ζ � 1 implies that F	± � 2

3 . On the other
hand,

max{F�+ , F�−} =
{

F�+ , ϕ ∈ [−π/2, π/2]
F�− , ϕ ∈ [π/2, 3π/2]

= 2

3
+ 1

3
(E0

√
1 − p|cos ϕ| − P1 p cos2 ζ ).

(34)

Consequently, under the generalized channel, the quantity of
interest (6) is given by

FGC
max = 2

3 + 1
3 max{0, [CAB(p)|cos ϕ| − P1 p cos2 ζ ]}, (35)

where we have used Eq. (30) for CAB. It follows from Eq. (35)
that, as in the noiseless scenario [see Eq. (17)], when the
maximal average fidelity exceeds the classical threshold it has
a non-negative contribution proportional to the entanglement
of the resource state, attenuated by |cos ϕ|. This indicates that,

TABLE I. Values of CAB, FGC
max, and τABEB taken from Fig. 5

(corresponding to φ = π/4 and ϕ = 0) for p = 0.8 and different
values of the channel parameter ζ .

ζ CAB FGC
max τABEB

0 0.447214 0.682405 0
π/6 0.447214 0.715738 0.2
π/4 0.447214 0.749071 0.4
π/3 0.447214 0.782405 0.6
π/2 0.447214 0.815738 0.8

as in the noiseless case, the optimal ϕ is 0, π . In the GC
case, however, an additional negative contribution (a loss in
the fidelity) appears that depends on the channel (via cos2 ζ ),
the evolution p, and the initial excited population P1. For fixed
P1 and p, such loss decreases as τABEB ∼ sin2 ζ increases. This
means that given an initial state, at each stage of the evolution
(determined by a fixed p), the channels that produce higher
amounts of 3-tangle lead to higher values of the maximum
average fidelity.

The above conclusion can also be extracted from Fig. 5,
which shows CAB, FGC

max, and τABEB for different values of ζ

and varying p, considering a maximally entangled initial state
(φ = π/4) and setting ϕ to its optimal value ϕ = 0. At p = 0,
FGC

max reduces to Fnonint
max , no 3-tangle exists, and the success of

the teleportation is ascribable to the (bipartite) entanglement
E0 = CAB(0) only, in line with the discussion in Sec. IV. As
p increases, the action of �B degrades the entanglement of
the resource state (whose dynamics is independent of ζ ) and
a concomitant gradual loss in the maximal average fidelity is
observed for all ζ . This is an expected behavior under generic
local channels �A ⊗ �B (meaning nonincreasing entangle-
ment operations).

In its turn, as p increases the 3-tangle increases as well, as
a result of the redistribution of the entanglement. Therefore,
for any given generalized noisy channel, the decay of the
maximal average fidelity along the evolution is accompanied
by an increase of the 3-tangle. The question then arises as to
under which channels FGC

max is more robust against the noise,
that is, under which channels the loss in the teleportation
success is reduced at any stage of the evolution. To answer
it, we compare the values of FGC

max for all possible GCs while
keeping p fixed. A comparison of Figs. 5(b) and 5(c) shows
that the decaying path of FGC

max varies with ζ in such a way
that for each and every p, the channels that generate higher
amounts of 3-tangle yield higher fidelities. Table I exemplifies
this by explicitly showing the values of FGC

max and τABEB ex-
tracted from Fig. 5 for p = 0.8. While the entanglement of the
resource state is constant as ζ varies [see the first of Eqs. (30)],
the maximal average fidelity and the 3-tangle change in a
correlated fashion: An increase in τABEB is accompanied by
an increase in FGC

max. This behavior is replicated for any other
value of p ∈ (0, 1).

Therefore, despite the adverse influence of noise on the
fidelity, the detrimental effects are lessened under channels
that give rise to higher amounts of tripartite entanglement. It
is in this sense that the 3-tangle improves the teleportation
success and may help to maintain FGC

max above the classical
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FIG. 5. Evolution of (a) the entanglement of the resource state, (b) the maximal average fidelity above the classical threshold value, and
(c) the 3-tangle when the qubit B is subject to a GC, for different values of the channel parameter ζ ∈ [0, π/2], φ = π/4, and ϕ = 0. The
channel induces a loss in the resource entanglement CAB, and the teleportation fidelity decreases accordingly. However, when different channels
(values of ζ ) are considered, it is observed that those that generate more 3-tangle favor higher fidelities at each p. Therefore, as ζ increases from
0 (amplitude damping channel) to π/2 (dephasing channel), the generated 3-tangle helps to enhance the maximal average fidelity (provided
CAB 
= 0).

threshold value longer, i.e., for larger values of p, as seen in
Fig. 5(b).

It is also clear from Fig. 5 that the channel that gives better
fidelities throughout the evolution is the DC, corresponding to
ζ = π/2. Only for this channel, FGC

max exceeds the classically
attainable value for all 0 < p < 1. This holds not only for a
maximally entangled initial state, but also for E0 
= 0. In fact,
it follows from Eq. (35) that the condition FGC

max > 2
3 amounts

to

P1 p cos2 ζ < CAB(p)|cos ϕ| = E0

√
1 − p|cos ϕ|, (36)

which is trivially satisfied for p ∈ (0, 1) and E0 
= 0 taking
ζ = π/2. Further, by writing E0 = 2

√
P1(1 − P1), the con-

dition (36) is rewritten as

1

2

cos2 ζ

|cos ϕ|
p√

1 − p
<

√
1 − P1

P1
, (37)

which exhibits the role of the initial population P1 in the
dynamics of FGC

max (assuming fixed ϕ and ζ ): The left-hand side
of the inequality is an increasing function of p, whereas the
upper bound decreases with P1; consequently, as P1 increases
the inequality becomes more restrictive and a point in the
evolution is reached sooner (for lower values of p) at which
(37) no longer holds and the fidelity drops below the threshold
value 2

3 .
Finally, as p → 1 we have CAB → 0, and from Eq. (35)

FGC
max cannot exceed 2

3 despite τABEB attaining its maximum
value. This evinces that even though the presence of tripartite
entanglement improves the teleportation success (in the sense
described above), a nonzero entanglement of the resource
state is key to triggering the potential of the 3-tangle to assist
the teleportation.

Figure 6 shows, at different stages of the evolution, curves
in the space (τABEB ,F

GC
max) sweeping as the channel parameter

goes from ζ = 0 (AC, black circles) to ζ = π/2 (DC, red
stars). Each trajectory corresponds to an initial state deter-
mined by φ = π/6 (red dashed line), φ = π/4 (black solid
line), and φ = π/3 (blue dash-dotted line), all with ϕ = 0. In
all curves the relation between the 3-tangle and the maximal
average fidelity discussed above is manifest: Throughout the
evolution, better fidelities are attained under channels that
produce higher amounts of 3-tangle.

Interestingly, Fig. 6 shows that whereas an initial resource
state with maximal entanglement (φ = π/4) leads to the high-
est value of FGC

max (for sufficiently large values of τABEB ), a
maximally entangled state is not always the optimal one for
achieving a better fidelity. This is clearly seen, for example,
in Fig. 6(c), where the fidelity for φ = π/6 (E0 ∼ 0.866) is
greater than that corresponding to φ = π/4 (E0 = 1) for some
channels. Moreover, noticing that φ = π/3 gives the same E0

as φ = π/6, the difference between the red dashed and blue
dash-dotted curves reveals the effect of the initial population
P1 on the behavior of FGC

max. In particular, for φ = π/3 we have
P1 = 0.75, while for φ = π/6 we have P1 = 0.25. As seen
from Eq. (35), the greater the P1, the greater the loss in the
fidelity (which goes as −P1 p cos2 ζ ), which explains why the
blue dash-dotted line runs below the red dashed one, despite
both curves corresponding to the same initial entanglement.

In summary, from all the generalized channels acting on
B, those that improve the quantum teleportation success (at
each instant) are the ones that produce higher amounts of 3-
tangle among the qubits A, B, and EB. The optimal channel
corresponds to ζ = π/2 (DC) and the worst to ζ = 0 (AC).
This can be seen graphically and is corroborated by Eq. (35),
which gives

FAC
max � FGC

max � FDC
max, (38)

with
FDC

max = 2
3 + 1

3CAB(p)|cos ϕ| (39)

and
FAC

max = 2
3 + 1

3 max{0,CAB(p)|cos ϕ| − P1 p}
= max

{
2
3 ,FDC

max − 1
3P1 p

}
. (40)

Below we explore in more detail the states produced by the
limiting cases of the DC and AC.

B. Amplitude damping channel vs dephasing channel

The DC produces GHZ-type states, whose form follows
from Eq. (29) with ζ = π/2:

|ψGHZ〉 ≡ |ψ (ζ = π/2)〉
= cos φ|000〉 + eiϕ sin φ(

√
1 − p|110〉

+√
p|111〉). (41)
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FIG. 6. Trajectories in the space (τABEB ,FGC
max) as the channel parameter ζ runs from 0 (black circles) to π/2 (red stars), for three initial

states with φ = π/6 (red dashed line), φ = π/4 (black solid line), and φ = π/3 (blue dash-dotted line), at three stages of the evolution:
(a) p = 0.25, (b) p = 0.5, and (c) p = 0.75. In all cases the relative phase was fixed to its optimal value ϕ = 0. For each initial state and at
fixed p, the channels that produce higher 3-tangle lead to higher maximal average fidelities. The nontrivial role of the initial entanglement E0

and the initial excited population P1 is observed (see the text for details).

If φ = π/4 and ϕ = 0 then, at p = 1, the usual GHZ state
|GHZ〉 = 1√

2
(|000〉 + |111〉) is reached, having null qubit-

qubit entanglement and τABEB = 1.

For ζ = 0 the GC reduces to the AC and states that are
equivalent (up to local unitary transformations) to W -type
states arise. This can be seen by setting ζ = 0 in Eq. (29),
obtaining

|ψW 〉 ≡ |ψ (ζ = 0)〉
= cos φ|000〉 + eiϕ sin φ(

√
1 − p|110〉

+√
p|101〉). (42)

For φ = arccos(1/
√

3) and ϕ = 0 this state becomes, at p =
1
2 , equivalent (up to a local unitary transformation) to the usual
W state |W 〉 = 1√

3
(|000〉 + |110〉 + |101〉), characterized by

having all qubit-qubit entanglements equal to Ci j = 2
3 and a

null 3-tangle.
Figure 7 depicts the evolution of Fmax for the initial states

|ψGHZ〉|φ=π/4,ϕ=0 (red solid line) and |ψW 〉|φ=arccos 1/
√

3,ϕ=0
(blue dashed line). It shows that the maximal average fidelity
improves when the resource state involves two qubits from a
three-qubit system that evolves towards the state |GHZ〉 rather
than to |W 〉.

FIG. 7. Evolution of the maximal average fidelity (above the
threshold value 2

3 ), employing initial states that evolve towards the
states |GHZ〉 (red solid line) and |W 〉 (blue dashed line), under the
DC and the AC, respectively.

VI. FIDELITY AND FOUR-PARTITE ENTANGLEMENT
GENERATED VIA NOISY CHANNELS

We now consider that both qubits A and B undergo local
channels �A and �B, as a result of their separate interaction
with initially uncorrelated qubits EA and EB. The initial re-
source state is thus [see Eqs. (1) and (11)]

|ψ0〉 = cos φ|0000〉 + eiϕ sin φ|1100〉, (43)

and the Kraus operators of the local channels are generically
given by Eq. (12). Figure 8 shows the first two stages of the
corresponding teleportation protocol.

Different forms of multipartite entanglement may arise in
this four-qubit system [48]. Here we will focus on the multi-
partite entanglement as measured by the 4-tangle τ4, defined
for a four-qubit pure state |ψ〉 as [49]

τ4 = |〈ψ |σ⊗4
y |ψ∗〉|2. (44)

This quantity becomes maximal (τ4 = 1) for the four-partite
GHZ state 1√

2
(|0000〉 + |1111〉) and vanishes for the four-

partite W state 1√
4
(|1000〉 + |0100〉 + |0010〉 + |0001〉).

A. Two local generalized noisy channels

Assuming that �A and �B are generalized noisy channels,
the corresponding Kraus operators read, following (27),

Q0 =
(

1 0
0

√
1 − pA

)
, Q1 = √

pA

(
0 cos ζA

0 sin ζA

)
(45a)

FIG. 8. Qubits A, B, EA, and EB are prepared in the state (43).
The pairs A, EA and B, EB interact via unitary operations; thus A and
B undergo local channels whose corresponding Kraus operators are
{Qα} and {Kβ}.

052606-7



BRAUER AND VALDÉS-HERNÁNDEZ PHYSICAL REVIEW A 109, 052606 (2024)

and

K0 =
(

1 0
0

√
1 − pB

)
, K1 = √

pB

(
0 cos ζB

0 sin ζB

)
, (45b)

with ζA (B) ∈ [0, π/2] the parameters that determine the
specific channels and 0 � pA (B) � 1, again with pA (B) ap-
propriate parametrizations of the evolution parameter of the
transformation UAEA (BEB ). Resorting to Eq. (13), the initial
state (43) evolves into

|ψ〉ABEAEB = (cos φ|00〉 + eiϕ sin φ
√

qAqB|11〉)|00〉 + eiϕ sin φ[
√

qA pB(cos ζB|10〉 + sin ζB|11〉)|01〉
+ √

pAqB(cos ζA|01〉 + sin ζA|11〉)|10〉 + √
pA pB(cos ζA|0〉 + sin ζA|1〉)(cos ζB|0〉 + sin ζB|1〉)|11〉], (46)

where qA (B) = 1 − pA (B). From this state direct calculation
gives

τ4 = pA pB|E0 sin ζA sin ζB

+ 4eiϕP1
√

qAqB cos ζA cos ζB|2. (47)

Unlike the previous case in which only B passes through
the generalized channel, where CAB was independent of the
channel parameter ζ [see Eq. (30)], in the present scenario the
entanglement of the resource state depends on both ζA and ζB.
However, the general and explicit dependence of CAB on ζA

and ζB is far from trivial and will be omitted here. It suffices
to recall that CAB can be obtained from Eq. (19) using the
resource state ρAB = TrEAEB |ψ〉〈ψ |, with |ψ〉 given by (46).

From Eq. (10) the maximal average fidelity for two GCs is
Fmax = maxi{F�i}, with

F�i = 1

3
+ 2

3

{ ∑
αβ

|〈�i|Qα ⊗ Kβ |φ0〉|2
}

. (48)

Substitution of the Kraus operators (45) gives

F�± = 2
3 + 1

3 (±E0
√

qAqB cos ϕ − P1�∓), (49a)

F	± = 2
3 − 1

3 (1 − P1�±), (49b)

where �± ∈ [0, 1] and is given by

�± = qB pA cos2 ζA + qA pB cos2 ζB

+ pA pB sin2(ζA ± ζB). (50)

Consequently, F	± � 2
3 ; further, since ζA, ζB ∈ [0, π/2], it

holds that sin2(ζA + ζB) � sin2(ζA − ζB), whence �+ � �−.
This in turn leads us to

cos ϕ � 0 ⇒ F�+ � F�− , (51)

so in the present case Fmax, given by Eq. (6), is written as

FGC-GC
max ± = 2

3 + 1
3 max{0, [E0

√
qAqB|cos ϕ| − P1�∓]}, (52)

where the upper (lower) sign must be chosen accordingly with

cos ϕ ≷ −1

4

√
P1√

1 − P1

1√
qAqB

(�+ − �−). (53)

As follows from (52), the optimal phase ϕ is the same as in the
previous cases, namely, ϕ = 0, π . Also, a loss in the fidelity
emerges, encoded in the negative term proportional to P1.

B. Fidelity and multipartite entanglement for four qubits under
parallel generalized noisy channels

In our forthcoming analysis, we will simplify the equa-
tions taking pA = pB = p.3 Equation (47) thus reads

τ4 = p2[E0 sin ζA sin ζB + 4P1(1 − p) cos ζA cos ζB]2

− 2E0P1 p2(1 − p) sin 2ζA sin 2ζB(1 − cos ϕ). (54)

Recalling that ζA,B ∈ [0, π/2], the second line in Eq. (54) is
a nonpositive term that reduces the amount of four-partite
entanglement. Notice, however, that for ϕ = 0 such a term
vanishes, and consequently the relative phase that maximizes
τ4 maximizes also FGC-GC

max ± . By choosing this optimal phase,
Eq. (53) holds with the upper inequality sign and accordingly
Eq. (52) reduces to

FGC-GC
max = 2

3 + 1
3 max{0, [E0(1 − p) − P1 p[p sin2(ζA − ζB)

+ (1 − p)(cos2 ζA + cos2 ζB)]]}, (55)

whereas τ4 becomes

τ4 = [E0 p sin ζA sin ζB + 4P1 p(1 − p) cos ζA cos ζB]2. (56)

If E0 p � 4P1 p(1 − p) then

E0 p cos ζA cos ζB � 4P1 p(1 − p) cos ζA cos ζB, (57)

whence, by adding E0 p sin ζA sin ζB on both sides of the in-
equality, we get

E0 p cos(ζA − ζB) � √
τ4. (58)

An analogous reasoning applies for E0 p � 4P1 p(1 − p), so
we finally get

τ4 � T 2 cos2(ζA − ζB), (59)

where T = max{E0 p, 4P1 p(1 − p)}. This means that the
maximum value of τ4 over all possible channels is located
along the line ζA = ζB = ζ and explicitly reads

τmax
4 =

{
E2

0 p2 = τ4|ζ=π/2 if E0 � 4P1(1 − p)
16P2

1 p2(1 − p)2 = τ4|ζ=0 if E0 � 4P1(1 − p).
(60)

The maximum four-partite entanglement is thus reached
whenever both channels are either DC or AC. In the former

3This means that the evolution parameters of UAEA and UBEB are the
same (for example, they are both the time t) and the parametrizations
are identical, so p(t ) is the same for both pairs of Kraus operators
(45).
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case also FGC-GC
max reaches its maximum value, over all GC-GC

combinations. This can be seen by noticing that the loss in
the fidelity, encoded in the (nonpositive) term proportional to
P1 p in Eq. (55), vanishes irrespective of the initial state and
the evolution parameter only for ζA = ζB = π/2, resulting in

FGC-GC
max � FDC-DC

max = 2
3 + 1

3E0(1 − p)

= 2
3 + 1

3CDC-DC
AB (p), (61)

where CDC-DC
AB = E0(1 − p) stands for the entanglement of

the resource state when two parallel DCs are implemented.
Consequently, whenever the condition in the first line of (60)
holds, i.e., whenever

1 − 1

2

√
1 − P1

P1
� p, (62)

the channel that maximizes τ4 maximizes also FGC-GC
max . Note

that (62) is satisfied for all p provided P1 � 1
5 , that is, for

sufficiently low populations P1, the maximal value of τ4 and
of FGC-GC

max are jointly reached.
If the condition (62) is not met, τmax

4 is given by the second
line in Eq. (60) and corresponds to ζA = ζB = 0, i.e., to the
AC-AC combination. In this case (55) reduces to

FAC-AC
max = 2

3 + 1
3CAC-AC

AB (p)

= max
{

2
3 ,FDC-DC

max − 2
3P1 p(1 − p)

}
, (63)

where in the first line we used that, under parallel ACs,
CAC-AC

AB = max{0, (1 − p)(E0 − 2P1 p)}.
Now, from Eq. (55) we obtain the expression for FGC-GC

max
along the line ζA = ζB = ζ ,

FGC-GC
max (ζ ) = 2

3 + 1
3 max{0, [E0(1 − p)

− 2P1 p(1 − p) cos2 ζ ]}, (64)

whose minimum above the threshold value 2
3 corresponds to

the AC-AC combination. This observation, together with the
fact that τmax

4 is attained at ζA = ζB = ζ = 0, π/2, indicates
that the channels that maximize the four-partite entanglement
are not always those that maximize FGC-GC

max . Rather, FGC-GC
max is

either maximal or minimal (within the family of twin channels
with ζA = ζB = ζ ) on points where the 4-tangle is maximal.

As for the vanishing value of τ4, we see from Eq. (56) that
it corresponds to the combination of a DC on either one of
the qubits and an AC on the other one. This null 4-tangle is
accompanied by the maximal average fidelity

FAC-DC
max = FDC-AC

max = 2
3 + 1

3 max{0, E0(1 − p) − P1 p}
= max

{
2
3 ,FDC-DC

max − 1
3P1 p

}
, (65)

an expression that is analogous to Eq. (40) for the case with a
vanishing 3-tangle (AC).

In order to make a complete analysis of the relation be-
tween τ4 and FGC-GC

max , a key element should be considered,
namely, the entanglement of the resource state. The evolution
of CAB and FGC-GC

max for a given initial state and fixed channel
parameters is qualitatively similar to that shown in Fig. 5,
i.e., the quantum channel induces a loss in CAB, which is
verified by noticing that Eq. (55) is a decreasing function of
p. Yet, as occurred in the tripartite case, there exists a positive

correlation between FGC-GC
max and the multipartite entanglement

(here measured by τ4) that holds at each stage of the evolution
and for a fixed amount of CAB. In order to verify this, it
becomes crucial to recall first an important difference between
the three- and the four-partite scenarios: As mentioned below
Eq. (47), in the former case CAB is independent of ζ (hence is
the same for all channels), whereas in the four-qubit example
CAB typically varies with both channel parameters ζA and ζB.
This observation, together with the essential role played by
the entanglement of the resource state in the teleportation
success, calls for an analysis that incorporates the value of
CAB when examining the dynamic interplay between τ4 and
FGC-GC

max . To this end, we compare the effect of various channels
(scanned by varying ζA and ζB) on the quantities of inter-
est, namely τ4, FGC-GC

max , and CAB, at the same stage of the
evolution for different initial states. We do so by construct-
ing triads (τ4,FGC-GC

max ,CAB), which for a given p and fixed
initial parameters ϕ and φ depend only on ζA and ζB. We
then consider 16 384 different channels (pairs {ζA, ζB}) and
display the resulting triads as points in the plane (τ4,FGC-GC

max )
colored according to the corresponding range of values of
CAB. Figure 9 shows the ensuing triads for ϕ = 0 and different
values of φ (rows) and p (columns). In all cases, τ4 and FGC-GC

max
were directly computed from Eqs. (56) and (55), respectively,
whereas CAB was numerically calculated as explained below
Eq. (47).

All points in each panel of Fig. 9 lie within a region delim-
ited by three curves: the black solid line, encompassing the
family of twin channels with ζA = ζB = ζ ; the blue dashed
line, including those cases where one of the qubits (either A
or B) undergoes an AC, meaning ζA (B) = 0, while the other
one undergoes an arbitrary GC; and the red dash-dotted line,
comprising the channels where one of the qubits (either A
or B) undergoes a DC, so ζA (B) = π/2, while the other one
is subject to an arbitrary GC. Accordingly, the vertices of
the regions are identified as follows: Blue triangles represent
the AC-DC (or DC-AC) combination, with τ4 = 0 and the
maximal average fidelity given by (65); red stars correspond to
the DC-DC combination, where FGC-GC

max reaches its maximum
value, in line with Eq. (61); and black circles represent the
AC-AC combination and correspond to points with the lowest
FGC-GC

max along the line of twin channels, in agreement with the
statement below Eq. (64).

In all the graphs in Fig. 9, the colored bands, containing
points whose CAB lies within a specific range of values, reveal
a positive correlation between the 4-tangle and the maximal
average fidelity. Such correlation persists as the width of the
range is reduced, as exemplified in Table II showing values of
CAB, τ4, and FGC-GC

max taken from Fig. 9(e). The values of τ4 and
FGC-GC

max are displayed in increasing order and both increase
simultaneously as the value of CAB (numerically obtained)
remains constant (up to four digits). The results indicate that
despite the specificities present in each panel of Fig. 9, a
feature common to all of them is that for a fixed entanglement
of the resource state CAB, FGC-GC

max increases as τ4 increases.
In other words, for a given initial state (φ fixed), at each

stage of the evolution (p fixed), from among all the GC-GC
combinations that correspond to the same entanglement of
the resource state, those that generate higher amounts of four-
partite entanglement lead to higher fidelities. This conclusion
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FIG. 9. Plot of FGC-GC
max versus τ4 for (a)–(c) φ = π/6, (d)–(f) φ = π/4, and (g)–(i) φ = π/3 and (a), (d), and (g) p = 0.25; (b), (e), and (h)

p = 0.5; and (c), (f), and (i) p = 0.75. The regions are generated as all the channels are considered (by varying ζA and ζB), and the color scale
indicates the amount of entanglement of the corresponding resource state CAB. The confining curves comprise different families of channels:
twin channels with ζA = ζB = ζ along the black solid curve, an AC-GC (or a GC-AC) combination along the blue dashed curve, and a DC-GC
(or a GC-DC) combination along the red dash-dotted curve. Black circles correspond therefore to ζA = ζB = 0 (parallel ACs), red stars to
ζA = ζB = π/2 (parallel DCs), and blue triangles to a combination of ζA (B) = 0 and ζB (A) = π/2 (AC-DC and DC-AC hybrids).

is analogous to that reached in the three-partite case, indicat-
ing that the multipartite entanglement may act as a resource
that protects the teleportation fidelity against the noisy chan-
nel (provided the same amount of CAB is available).

For the values of φ and p considered in Figs. 9(a)–9(c),
9(f), and 9(i), the condition (62) is satisfied and accordingly
the maximum of FGC-GC

max is reached along with the maximum
of the 4-tangle, given in this case by τmax

4 = E2
0 p2. In contrast,

the cases depicted in Figs. 9(d), 9(g), and 9(h) do not com-
ply with the inequality (62) and thus correspond to τmax

4 =
16P2

1 p2(1 − p)2 and FGC-GC
max = FAC-AC

max , that is, to the minimal
fidelity along the black solid curve. Figure 9(e) corresponds
to the case in which E0 = 4P1(1 − p), so as follows from

TABLE II. Values of CAB, τ4, and FGC-GC
max extracted from Fig. 9(e)

(corresponding to φ = π/4, ϕ = 0, and p = 0.5), for different values
of the channels parameters ζA and ζB.

ζA/π ζB/π CAB τ4 FGC-GC
max

181/500 37/500 0.422003 0.0954376 0.760765
91/250 2/25 0.422002 0.0984991 0.761839
93/250 29/250 0.422003 0.120289 0.768959
187/500 143/1000 0.422001 0.139887 0.774978
187/500 19/125 0.422008 0.146878 0.777085
369/1000 99/500 0.422009 0.18453 0.788234
42/125 281/1000 0.422005 0.24261 0.805185
167/500 71/250 0.422008 0.243882 0.805556

Eq. (60) the maximum value of τ4 is attained simultaneously
at the red star (DC-DC) and the black circle (AC-AC).

In all panels of Fig. 9 it is observed that as the black
solid curve is traversed from the black circle to the red star,
CAB increases along with FGC-GC

max , so the highest fidelity is
reached along with the highest CAB. This shows that, within
the family of twin channels, the resource state’s entanglement
helps to improve the maximal average fidelity. However, this
does not hold for other channels. For example, as the blue
dashed line is traversed from the black circle to the blue
triangle, that is, along the family of AC-GC combinations,
there are cases in which an increase in CAB is accompanied by
a decrease in FAC-GC

max , like the one depicted in Fig. 9(c). In such
case it is only the 4-tangle that is seemingly enhancing the
maximal average fidelity. Further, for the family of DC-GC
combinations, as the red dash-dotted line is traversed, CAB is
kept constant (for fixed p) and maximal [in fact, in this case
we get CDC-GC

AB = E0(1 − p)] and the improvement of FDC-GC
max

is therefore ascribable to the increase of τ4.

VII. CONCLUSION

We investigated the role of multipartite entanglement in the
dynamics of the maximal average fidelity (above the classical
threshold value) when the teleportation protocol includes the
action of a local quantum channel �AB = �A ⊗ �B, acting
on the qubits A and B that comprise the resource state. To
facilitate our goal, we expressed the maximal average fi-
delity in terms of the Kraus operators corresponding to
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a general two-qubit channel [Eq. (8)] and introduced the
Kraus operators of a generalized noisy channel [Eq. (27)],
which encompasses the paradigmatic amplitude damping and
dephasing channels and connects them via a continuous
parameter that also determines the amount of multipartite
entanglement created along the evolution.

We first considered the case �A = I2, with �B representing
the generalized noisy channel, rooted at the interaction of
B with an additional qubit EB. Three-partite entanglement
thus typically emerges among the qubits A, B, and EB, here
quantified by the 3-tangle τABEB . In the second scenario, both
�A and �B correspond to generalized channels. Interpreting
them as the effective result of a local interaction of A and B
with additional qubits EA and EB, we focused on the ensuing
four-partite entanglement among the parties A, B, EA, and EB,
as measured by τ4.

In both cases, we found that the relative phase ϕ that
optimizes both Fmax and τ4 is ϕ = 0. More importantly,
the analytical and numerical analysis (considering identically
parametrized channels in the four-party case) revealed that
for a fixed nonzero amount of the resource state’s entangle-
ment (i.e., for fixed CAB 
= 0), at each stage of the evolution,
the teleportation success improves under channels that in-
duce higher amounts of multipartite entanglement. Here it
is important to stress that both the 3-tangle and the 4-tangle
quantify a specific type of multipartite entanglement, namely,
the three-way and the four-way entanglement, respectively,
characteristic of GHZ-type states, and thereby absent in W -
type states [42,49]. Consequently, our findings indicate that it
is specifically the amount of GHZ-type entanglement which
favors better teleportation fidelities. It should be stressed that
this conclusion does not go against the (expected) fact that,
given a specific noisy channel (a fixed ζ ), as the evolu-
tion takes place the teleportation fidelity decays while the 3-
and 4-tangles may increase; rather, the conclusion compares
the effect of different generalized noisy channels on Fmax

throughout the evolution and establishes that under channels
that produce more multipartite (GHZ-type) entanglement, the
detrimental effects on Fmax are lessened. Further, when CAB

vanishes, as occurs at p = 1, when the channel has suppressed
all the entanglement of the resource state, the maximal aver-
age fidelity drops below the classical threshold value, despite
that the multipartite entanglement may acquire relatively large
values. This highlights CAB as a necessary element that trig-
gers the power of the n-way entanglement to enhance the
teleportation success.

In the three-party case, CAB is the same for all the chan-
nels considered, and the relation between FGC

max and τABEB

was clearly revealed, along with the identification of the DC

as the channel that produces the higher values of FGC
max. In

the four-qubit case, in contrast, CAB depends on the specific
channel and the relation between FGC-GC

max and τ4 only (i.e.,
without considering the value of CAB) is more subtle than in
the three-party counterpart. In particular, we found that an
increment in τ4 induces an increment in FGC-GC

max , irrespective
of the initial state and stage of the evolution, only when the
composite channel is the DC-GC combination, that is, when
either one of the qubits is subject to a dephasing channel.
Notably, in this case, CAB does not depend on the specific GC
and the enhancement of the maximal average fidelity is due
solely to the increase in the four-partite entanglement.

For the families of twin GC-GC with ζA = ζB = ζ and
AC-GC, a higher value of τ4 is not always accompanied by a
higher value of FGC-GC

max , ultimately because CAB changes with
the channels’ parameters. Instead, for a fixed initial state and
at a given stage of the evolution, the composite channel for
which the 4-tangle is maximal is either DC-DC, in which
case FGC-GC

max attains its global maximal value, or AC-AC,
corresponding to an FGC-GC

max that is minimal within the family
of twin channels (ζA = ζB = ζ ).

Interestingly, guaranteeing that Fmax exceeds the clas-
sically attainable value depends not only on the initial
entanglement at disposal, but also on the initial population P1

of the state |11〉AB, which plays against the improvement of
the teleportation success. Further, for sufficiently low values
of P1 (P1 � 0.2), the maximal value of τ4 is attained together
with the maximal value of FGC-GC

max .
Our analysis led us to conclude that the previously reported

improvement of the teleportation fidelity under some types of
noisy channels [10–15] may be rooted in the emergence of
multipartite entanglement induced by the interaction of the
resource qubits with their surroundings. This offers valuable
insights into the power of multipartite correlations as well as
into the characterization of the processes that better protect
the teleportation fidelity in the more realistic scenario in which
A + B is an open system. In particular, processes that generate
GHZ-type states in the three- or four-qubit system have the
potential to assist the protocol by reducing the detrimental
effects of noise, as a result of the induced generation of three-
and four-way entanglement. This highlights the GHZ-type
entanglement as a useful auxiliary resource in noisy quantum
teleportation.
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