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We use a random search technique to find quantum gate sequences that implement perfect quantum state
preparation or unitary operator synthesis with arbitrary targets. This approach is based on the recent discovery
that there is a large multiplicity of quantum circuits that achieve unit fidelity in performing a given target
operation, even at the minimum number of single-qubit and two-qubit gates needed to achieve unit fidelity. We
show that the fraction of perfect-fidelity quantum circuits increases rapidly as soon as the circuit size exceeds
the minimum circuit size required for achieving unit fidelity. This result implies that near-optimal quantum
circuits for a variety of quantum information processing tasks can be identified relatively easily by trying only
a few randomly chosen quantum circuits and optimizing their parameters. In addition to analyzing the case
where the CNOT gate is the elementary two-qubit gate, we consider the possibility of using alternative two-qubit
gates. In particular, we analyze the case where the two-qubit gate is the B gate, which is known to reduce the
minimum quantum circuit size for two-qubit operations. We apply the random search method to the problem of
decomposing the four-qubit Toffoli gate and find a 15-CNOT-gate decomposition.
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I. INTRODUCTION

One of the important steps in implementing a quantum
algorithm or performing a multiqubit operation on a quan-
tum computing device is designing a sequence of elementary
quantum gates to perform the desired multiqubit transforma-
tion [1–7] or prepare the desired multiqubit state [8–12]. This
step can be thought of as compiling the quantum code from a
high-level language to the low level of single- and two-qubit
gates. The elementary quantum gate sequence is often called
the quantum circuit.

Different technologies are currently being investigated for
future quantum computing devices [13,14]. The specific tech-
nology used in an experimental setup often dictates how the
qubits are addressed. For example, the most natural way to
manipulate trapped ions [15–17] is different from the most
natural way to manipulate superconducting qubits [18–20],
and each technology has its own set of constraints on the
allowed qubit control tools. Physical constraints on control
signals can lead to technology-specific preferences in the ele-
mentary gate set used in the compilation step, i.e., in quantum
circuit design [21]. While these experimental considerations
must be considered in practical settings, past theoretical stud-
ies on quantum circuit synthesis have generally focused on
elementary gate sets based on the controlled-NOT (CNOT) gate
as the two-qubit entangling gate, combined with the set of
all possible single-qubit unitary operators. We follow this
convention and focus on the CNOT gate. It should be noted that
the CNOT gate is a natural gate for numerous superconducting
device architectures in use today [19,20].

An important question in the study of quantum circuit
synthesis is quantum circuit size or complexity, which is
quantified by the number of entangling gates N . In particular,
it is highly desirable to find quantum circuits that have the
minimum number of entangling gates needed for a perfect
implementation of arbitrary multiqubit operations, including
both state preparation and unitary operator synthesis. For this
purpose, it is of great value to know in advance the minimum
required circuit size. This question has been studied in numer-
ous previous studies, typically by either devising recipes for
quantum circuit synthesis [22–28] or by using mathematical
arguments to derive lower and upper bounds for the required
circuit size [3,11]. In Ref. [6], we investigated this question by
numerically analyzing all the possible gate sequences up to a
certain size for few-qubit tasks. Our results provided definite
values for the minimum number of gates needed for various
tasks, hence serving as tests and benchmarks to assess previ-
ously calculated lower bounds and recipe-based circuit sizes.
There have been a few other recent studies on computer-based
quantum circuit synthesis [29–38].

One of the remarkable results that we found in Ref. [6]
is the large multiplicity of quantum circuits that can be used
to perform the same task. In particular, even at the minimum
number of CNOT gates needed for perfect state preparation of
an arbitrary four-qubit state or unitary operator synthesis of
an arbitrary three-qubit operator, we found that 20% of all
possible CNOT gate configurations allow performing the de-
sired task perfectly, i.e., with unit fidelity. This result naturally
points to a possibly very efficient method to find optimal or
near-optimal quantum circuits for various tasks. Although the
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enormous number of different gate configurations limited our
previous study to small numbers of qubits, if a finite fraction
of all possible configurations give unit fidelity, it suffices to
analyze a few randomly chosen quantum circuits. One will
then, with a high probability, find at least one quantum circuit
that performs the desired task perfectly.

In this work, we demonstrate this probabilistic approach to
quantum circuit synthesis and treat cases that are intractable
using the exhaustive search method. Our results indicate that
the large multiplicity of unit-fidelity quantum circuits contin-
ues to hold for larger numbers of qubits than those investigated
previously. Furthermore, we show that finding a unit-fidelity
quantum circuit via a random search becomes increasingly
easy if we increase the number of gates only slightly above
the minimum required circuit size.

Since one of our main goals is reducing the gate count,
we also consider the so-called B gate [39]. The reason be-
hind this choice is that arbitrary two-qubit operations require
shorter gate sequences if one uses the B gate instead of the
CNOT gate [39]. We show that the B gate allows constructing
shorter gate sequences than the CNOT gate for larger numbers
of qubits. This result can be understood intuitively based on
commutation relations and simple parameter-counting argu-
ments. We emphasize, however, that experimental difficulties
in implementing the B gate could outweigh any benefits that
it provides, as we shall discuss below.

The remainder of this paper is organized as follows: in
Sec. II, we provide some background information about quan-
tum circuit synthesis and our computational approach. In
Sec. III, we present the results of our numerical calculations
and discuss their implications for practical quantum circuit
synthesis. In Sec. IV, we give some concluding remarks.

II. BACKGROUND

A. Theoretical background

As mentioned in Sec. I, implementing a multiqubit opera-
tion on a quantum computer is typically achieved by finding a
decomposition of the desired operation into a sequence of one-
and two-qubit gates and then implementing that sequence.
The CNOT gate, which is readily implementable on several
quantum computing platforms, is the standard two-qubit gate
used in most theoretical studies on the subject of quantum
circuit synthesis.

Synthesizing a quantum circuit that implements an arbi-
trary n-qubit operation is analogous to reaching an arbitrary
target point in the space of quantum operations [6]. Each
added quantum gate adds adjustable control parameters that
allow us to access more regions in the space of quantum oper-
ations. Lower bounds for the number of CNOT gates needed
to perform an arbitrary n-qubit operation perfectly can be
obtained by counting the free parameters in an arbitrary tar-
get and the number of adjustable parameters in the quantum
circuit. The quantum circuit parameters must be at least equal
to the number of free target parameters to be able to cover the
space of all targets. This parameter-counting calculation gives
the lower bounds (LB)

NLB,SP,CNOT =
⌈

2n − 1 − n

2

⌉
(1)

for state preparation (SP) and

NLB,U,CNOT =
⌈

4n − 1 − 3n

4

⌉
(2)

for unitary operator (U ) synthesis. Here, the function �x� is
the ceiling function, i.e., the smallest integer larger than or
equal to x.

Another important quantity in the present context is the
number of different configurations for a single CNOT gate, i.e.
the number of distinct ways that we can select a pair out of n
qubits. Since reversing the control and target qubits in a CNOT

gate gives the same CNOT gate, up to single-qubit rotations,
the number of distinct CNOT gate configurations for a single
gate is n(n − 1)/2. As a result, the total number of CNOT gate
configurations for a quantum circuit of size N is

Nconfig =
(

n(n − 1)

2

)N

. (3)

In Ref. [6] we performed calculations in which we eval-
uated the maximum achievable fidelity for all possible CNOT

gate configurations for n qubits, with n � 4 for state prepa-
ration and n � 3 for unitary operator synthesis. In the latter
case, the computation time was on the order of a few years if
the computations were run on a single core of a present-day
computer. We now consider what would happen if we try to
perform the same calculations for a larger number of qubits.
Table I shows the number of CNOT gate configurations for
different system sizes. If we go from n = 3 to n = 4 in the
case of unitary operator synthesis, a number of factors change
and dramatically increase the computation time. The Hilbert
space size doubles, and the number of CNOT gates needed to
achieve unit fidelity roughly quadruples. More importantly,
the number of gate configurations Nconfig increases by a factor
of ∼1041, which is a result of the superexponential scaling
described by Eqs. (1)–(3). It is therefore impossible to extend
the calculations of Ref. [6] to larger systems.

B. Computational approach

Since it is practically impossible to analyze all the gate
configurations for the system sizes that we investigate in this
work, we use a probabilistic approach. We analyze a num-
ber (Nsamples) of randomly generated quantum circuits, each
defined by the CNOT gate configuration. The number Nsamples

is a small fraction of the total number of possible gate con-
figurations. Importantly, it does not scale with system size,
and hence we avoid the superexponential scaling mentioned
in the previous subsection. As a general rule, for each set of
parameters n and N , we set Nsamples = 100. The reason why
we choose this number is that it is sufficiently large to allow us
to perform statistical analysis for the purposes of the present
study.

The target operation is generated randomly, as described in
Ref. [6]. This target can be thought of as a random point in the
space of operations or a random sample from a Haar-measure
uniform distribution of quantum states or unitary operators.

Once we have specified the target, we generate gate se-
quences with the aim of reaching the target from a fixed
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TABLE I. Estimates for the quantum circuit size NCNOT, the total number of possible gate configurations Nconfig, and computation time per
configuration as functions of system size, i.e., the number of qubits n. The number NCNOT for each case is calculated from the appropriate
lower bound formula, i.e., Eq. (1) or (2). The number Nconfig is calculated from Eq. (3), with N given by the appropriate value of NCNOT. The
computation times are specific to our computational environment: each calculation was run on a single core up to n = 4 and on about ten cores
for n � 5. The calculations for n � 7 were performed on workstations, while those for n = 8 were performed on the Fugaku supercomputer.
By far, the quantity that grows the fastest with increasing n is Nconfig.

State preparation Unitary operator synthesis

No. of qubits NCNOT Nconfig Comp. time per config. NCNOT Nconfig Comp. time per config.

2 1 1 ∼0.1 s 3 1 ∼1 s
3 2 9 ∼2 s 14 4.8 × 106 ∼10 min
4 6 4.7 × 104 ∼1 min 61 ∼1047 ∼1 h
5 13 ∼1013 ∼5 min 252 ∼10252 ∼10 h
6 29 ∼1034 ∼1 h
7 60 ∼1079 ∼10 h
8 124 ∼10179 ∼20 h

starting point. Each gate sequence is defined by a CNOT gate
configuration along with the appropriate single-qubit rotations
surrounding the CNOT gates. For each such configuration, the
single-qubit rotation parameters serve as adjustable parame-
ters that are chosen based on the target. They are optimized
using a modified version of the gradient ascent pulse engineer-
ing (GRAPE) algorithm [6,40]. In the numerical optimization
calculations, the fidelity F is used as the quantity to be maxi-
mized. For state preparation,

F = Tr{ρFU (T )ρ0U
†(T )}, (4)

where ρ0 is the initial density matrix (with all the qubits in
the state |0〉), ρF is the target density matrix, and U (T ) is the
evolution operator generated by the quantum circuit, whose
parameters are being updated by the optimization algorithm.
For unitary operator synthesis,

F =
∣∣∣∣∣Tr{U †

FU (T )}
2n

∣∣∣∣∣
2

, (5)

where UF is the target unitary matrix.
In each iteration of the GRAPE algorithm, the derivatives

of the fidelity with respect to all possible variations in all
single-qubit rotations are calculated, which results in a gra-
dient of the fidelity with respect to the rotation parameters.
The rotations are then updated such that the fidelity increases
steadily as the algorithm progresses. The optimization pro-
cedure is repeated for up to 105 iterations. The algorithm is
terminated early if the fidelity exceeds 1 − 10−12 or grows by
less than 10−12 in 103 iterations.

If the optimization gives 1 − F < 10−8 for a given quan-
tum circuit, we identify the quantum circuit as corresponding
to F = 1, i.e., a quantum circuit that implements the target
perfectly. The error threshold, i.e., the number 10−8, is chosen
because it is sufficiently small that any deviation from F = 1
below this threshold can be attributed to numerical errors.
Besides, from the perspective of practical implementations, an
error of 10−8 is almost certain to be much smaller than other
realistic errors in the experimental setup.

Since we would like to establish a probabilistic approach
to quantum circuit synthesis, we use a probability-based
interpretation of our results. The probability (p) that a ran-
dom quantum circuit will give F = 1 in a given setting is
straightforwardly inferred from the fraction (pnum) of the cir-
cuits that give F = 1 in our simulations, i.e., p = pnum. To
determine the uncertainty in the calculated value of p, we need
to evaluate the statistical variations in the results of the nu-
merical calculations. We can do so by calculating the standard
deviation σ in the data. Since each randomly generated circuit
is classified as either having F = 1 or not, we need to use
the formula for a binomial distribution. A quick and simple
estimate for σ can be obtained by treating the value of pnum

obtained from the simulations as the actual probability p in
the binomial distribution. We then substitute this value in the
formula for the binomial distribution standard deviation,

σ =
√

p(1 − p)

Nsamples
. (6)

This simple formula gives accurate results for large values
of Nsamples and p not too close to the end points p = 0 or
p = 1. Since some of our data sets give pnum = 0, we avoid
the simple calculation above and instead perform a Bayesian
probability calculation to determine the size of the error bars
and evaluate the uncertainty in p. We divide the range of p
values, i.e., the range [0, 1], into a large number of bins,
which results in a statistical ensemble that we call “bins,” with
each bin characterized by a p value. For each data set, with a
given fraction pnum of perfect-fidelity quantum circuits, we
calculate the probability of obtaining pnum for each value of
p in the ensemble. We refer to this conditional probability as
P(pnum|p). Using Bayes’ rule, the probability distribution for
p values for a numerically obtained value of pnum is given by

P(p|pnum ) = P(pnum|p)∑
p∈Bins P(pnum|p)

. (7)

To extract the extent of the error bars below and above pnum

we determine the p values at which the distribution P(p|pnum )
crosses the value 1/

√
e. The error bars determined by this
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FIG. 1. Probability p that a random quantum circuit gives F = 1 as a function of circuit size N for the case of state preparation of an
n-qubit system using the CNOT gate as the entangling gate. The F = 1 probability rises rapidly from zero to almost 1 even when N corresponds
to just a few gates more than the theoretical lower bound NLB,SP,CNOT. The error bars account for the uncertainty in inferring the probability p
from the fraction pnum obtained in the random sampling calculation.

approach coincide with the standard deviation σ calculated
from Eq. (6) in that equation’s range of validity.

III. RESULTS

We now present the results of our numerical calculations.
We analyze the statistical properties of randomly sampled
quantum gate sequences, and we demonstrate how these

results can be used to establish a probabilistic approach to
quantum circuit synthesis.

A. Establishing multiplicity of equivalent quantum
circuits for small systems

As a starting point for the present study, we consider the
small system sizes treated in Ref. [6]. In most of the figures in
this manuscript, we plot the probability (p) of unit-fidelity
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quantum circuits as a function of N . In each plot, the x axis
starts from the relevant lower bound, i.e., Eq. (1), (2), (9),
or (10).

The results for the case of state preparation are shown in
Fig. 1. For four qubits (n = 4), the minimum number of CNOT

gates needed to achieve F = 1 is N = 6. Even at the minimum
required value of N , i.e., N = 6, 8% of the quantum circuits
have F = 1. If we increase N , p increases rapidly, such that
at N = 10, we find that 94% of the quantum circuits have
F = 1. In other words, if we randomly generate a quantum
circuit with n = 4 and N = 10 and optimize the single-qubit
rotation parameters, the quantum circuit will almost certainly
give F = 1. In the unlikely case that the first attempt does not
succeed, a second random quantum circuit can be generated.
The probability of finding at least one F = 1 quantum circuit
approaches unity very rapidly with increasing number of trial
quantum circuits. Specifically, the success probability after
Ntrial is given by

Psuccess = 1 − (1 − p)Ntrial , (8)

such that the failure probability decreases exponentially with
Ntrial.

We obtain similar results for the case of unitary operator
synthesis, as shown in Fig. 2. For n = 3, the minimum number
of CNOT gates needed to achieve F = 1 is N = 14. The F = 1
probability in Fig. 2 (n = 3) rises from 26% at N = 14 to 90%
at N = 17. As in the case of state preparation, the fraction of

quantum circuits that give F = 1 increases rapidly as soon
as the number of CNOT gates exceeds the minimum required
number.

B. Larger systems with the CNOT gate as the entangling gate

For state preparation with n = 5, the parameter-counting
lower bound in Eq. (1) is NLB,SP,CNOT = 13. However, none
of the 100 random trial quantum circuits that we tried gave
F = 1. For N = 14, 13% of the quantum circuits gave F = 1,
and the fraction increased rapidly to 86% at N = 17. This re-
sult suggests that the minimum number of CNOT gates needed
for perfect state preparation is N = 14, slightly higher than
the value NLB,SP,CNOT = 13 given by Eq. (1). Similarly, for
n = 6, our numerical calculations suggest that the minimum
number of CNOT gates is higher than that of Eq. (1) by one
CNOT gate. For n = 7, we find a minimum number of CNOT

gates that is higher than that of Eq. (1) by two CNOT gates. We
note here that, because of the significant computational cost
(as described in Table I), we used only 20 random quantum
circuits for each parameter set in the case of n = 7. For n = 8,
we also obtain a minimum number (N = 126) that is higher
than that of Eq. (1) by two CNOT gates. In all cases shown
in Fig. 1, the fraction of F = 1 quantum circuits increases
rapidly from zero to near one. This result gives us confi-
dence that the premise of this work, i.e., that there is large
multiplicity in the unit-fidelity quantum circuits even at or

FIG. 2. Same as in Fig. 1, but for the case of unitary operator synthesis.
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close to the minimum required circuit size, is valid. Although
Eq. (1) is consistently not tight for n � 5, it provides a very
good estimate even when N ∼ 100. The deviation between
the formula and our numerically obtained values of N grows
much more slowly than N .

As alluded to in the previous subsection, in addition to
the question of identifying the smallest value of N at which
we obtain at least one quantum circuit with F = 1, another
important question is the value of N at which the probability
p becomes on the order of 1. In this context, we define the
threshold number Nth as the smallest value of N at which
p > 50%. The value of Nth can be inferred from a plot of p
as a function of N . The results for the cases of Figs. 1 and 2
are shown in Fig. 3. Equation (8) indicates that above Nth it
should be easy to find a unit-fidelity quantum circuit with just
a few attempts, since the success probability in each attempt
is above 50%.

For the case of unitary operator synthesis (Fig. 2), for n =
4, the F = 1 fraction is zero at the lower bound NLB,U,CNOT =
61. However, it is 4% at N = 62 and rises rapidly to reach
76% at N = 65. For n = 5, the lower bound NLB,U,CNOT = 252.
However, we obtain the first F = 1 quantum circuit at N =
259, i.e., seven more CNOT gates than NLB,U,CNOT. Considering
that NLB,U,CNOT = 252, seven gates is under 3% of NLB,U,CNOT.

This result strongly suggests that the lower bound is not tight
in this case. It is also remarkable that the probability p rises to
80% at N = 266, such that Nth is only a few steps above the
smallest value of N that gives F = 1, even though N ≈ 260.

It should be noted that there is a possibility that larger
values of n lead to slower convergence, which could in turn
lead to lowering the F = 1 fraction and an overestimation of
the minimum number of gates needed to achieve F = 1. Our
past experience with these optimization calculations does not
indicate that such a slow convergence effect occurs. In fact,
the increased number of control parameters can speed up the
convergence. Nevertheless, as is the case with many search
algorithms, we cannot completely rule out this possibility. It
should also be noted that the optimization algorithm occa-
sionally gives somewhat lower values, e.g., F = 0.999, for
quantum circuits that correspond to F = 1. This property was
observed in Ref. [6]; it manifests itself when the algorithm
is run multiple times for the same CNOT gate configuration.
However, this effect should only reduce the F = 1 fraction by
a finite factor and should therefore not affect our conclusions
about the minimum value of N that allows achieving F = 1.

One might also wonder if it is possible that for large
quantum circuit sizes, e.g., in the case of unitary operator syn-
thesis with n = 5 and N ≈ 260, it might be possible to obtain

FIG. 3. Threshold at which the success probability exceeds 50%. The different panels are identified by their legends: SP corresponds to
state preparation, while U corresponds to unitary operator synthesis. Similarly, CNOT corresponds to using the CNOT gate, while B corresponds
to using the B gate, which is discussed in Sec. III C. The red circles show Nth − NLB (y axis on the left-hand side), while the blue triangles show
(Nth − NLB)/NLB (y axis on the right-hand side). In almost all cases, (Nth − NLB)/NLB decreases with increasing n, which means that the ratio
Nth/NLB gradually approaches 1, which means that in relative terms Nth approaches NLB with increasing system size.
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fidelities higher than our threshold of 1 − 10−8 even if the gate
configuration in question does not allow achieving F = 1. In
other words, 260 CNOT gates along with the single-qubit gates
in the circuit allow so much freedom that one can get a very
good approximation for the target. We do not expect that this
possibility is affecting our calculations, because in our results
the threshold is exceeded only for N values higher than the
theoretical lower bounds in Eqs. (1) and (2). In other words,
if false positives occur for N ≈ 260, we would expect them
to occur for N ≈ 250 as well, considering the small relative
difference between N = 250 and N = 260. We have not seen
any such false positives below the lower bounds for N .

C. Using the B gate as the entangling gate

Although the CNOT gate is the standard entangling gate
used in quantum algorithm design, the so-called B gate [39]

has one important advantage over the CNOT gate for the
purpose of our study. Using the B gate can lead to smaller
quantum circuit sizes to achieve the same result as using the
CNOT gate. This point can be understood by considering the
parameter-counting calculation used to determine the lower
bounds for N . The CPHASE gate, which is equivalent to the
CNOT gate up to single-qubit rotations, commutes with single-
qubit rotations about the z axis. This property means that
all z-axis rotations acting on the same qubit can be merged
into one rotation. As a result, the number of independent
quantum circuit parameters is reduced. If we use an entangling
gate that does not commute with any single-qubit rotations,
we maximize the number of free adjustable parameters in a
quantum circuit of size N , thus increasing the number of free
parameters per single-qubit rotation from 2 to 3 (excluding the
first layer of single-qubit rotations). The B gate does not com-
mute with any single-qubit rotations. The parameter-counting
calculation then gives the lower bounds

NLB,SP,B =
⌈

2n − 1 − n

3

⌉
(9)

for state preparation and

NLB,U,B =
⌈

4n − 1 − 3n

6

⌉
(10)

for unitary operator synthesis. It is indeed well known that
the B gate allows the synthesis of arbitrary two-qubit gates
more efficiently than the CNOT gate: two B gates compared to
three CNOT gates. With this point in mind, we perform similar
calculations to those presented above but using the B gate
as the entangling gate, along with the set of all single-qubit
rotations.

As in the case of the CNOT gate, we can use the brute-force
approach in which we analyze all possible gate configurations
for state preparation up to n = 4 and for unitary operator
synthesis up to n = 3. The results are shown in Figs. 4 and
5. These figures show that the B gate is more efficient than

FIG. 4. Maximum achievable fidelity F as a function of the
number of B gates for state preparation with n = 2 (red diamond),
3 (green circles), and 4 (blue squares). By comparing these results
with those of Ref. [6], we can see that the B gate allows achieving
the same results as the CNOT gate with smaller values of N . In the
case of the CNOT gate, F = 1 is achieved for N = 1, 3, and 6 instead
of 1, 2, and 5, respectively.

the CNOT gate in the sense that it allows quantum circuits with
smaller values of N to perform the same operations. In the
case of state preparation, the minimum numbers of CNOT gates
needed for n = 2, 3, and 4 are 1, 3, and 6, respectively. Using
the B gate, we obtain the values 1, 2, and 5, respectively. The
theoretical lower bounds are NLB,SP,B = 1, 2, and 4, respec-
tively. In other words, NLB,SP,B in Eq. (9) is achieved for n = 2
and 3 but not for n = 4. In the case of unitary operator syn-
thesis, the minimum numbers of CNOT gates needed for n = 2
and 3 are 3 and 14, respectively. Using the B gate, the numbers

FIG. 5. Maximum achievable fidelity F as a function of the
number of B gates for unitary operator synthesis with n = 2 (red di-
amonds) and 3 (green circles). In the case of the CNOT gate analyzed
in Ref. [6], F = 1 is achieved for N = 3 and 14 instead of 2 and 9,
respectively.
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FIG. 6. Same as in Fig. 1, but for the case where the B gate is used as the entangling gate. The B gate allows achieving the same results as
the CNOT gate with smaller values of N .

are 2 and 9, respectively, both matching the theoretical lower
bounds given by Eq. (10).

The results of the probabilistic search calculations using
the B gate are shown in Figs. 6 and 7. In all cases, the x axis
starts at the lower bound given by Eq. (9) or (10). The results
are generally similar to those obtained using the CNOT gate.
The probability p rises above zero either at the lower bound
value or slightly above it, and p reaches close to one after
just a few additional steps, i.e., for a slightly higher value
of N . Here, it is worth taking a closer look at the cases n =
4, N = 42, 43 and n = 5, N = 180. Considering that only one
quantum circuit gave F = 1 in each one of the cases, one
might wonder if these were cases in which the fidelity was
slightly higher than 1 − 10−8, giving false positive counts of
perfect quantum circuits. However, in two out of these three
cases 1 − F was below 10−12. In the case n = 4, N = 42,
the quantum circuit identified as having F = 1 in fact had
1 − F ∼ 10−9. However, we reran the optimization algorithm
for this quantum circuit five times, and two of these reruns
gave 1 − F < 10−12, which strongly suggests that these cases
were not false positives. These results suggest that the frac-
tion of quantum circuits that give F = 1 at the minimum
required number of entangling gates decreases with increasing
system size. This behavior differs from our observation for
small systems, where a significant fraction of quantum circuits
gave F = 1 even at the theoretical lower bound for circuit
size. Nevertheless, our probabilistic approach remains a good

method to find quantum circuits with small numbers of gates
and high fidelities.

D. Practical considerations

One important question when comparing different entan-
gling gates, e.g., the CNOT and B gate, is the ability to perform
the entangling gate in a real setup. The CNOT gate between
two neighboring qubits can be implemented in realistic sys-
tems with a simple control pulse [18–20]. Even if we include
technical difficulties such as coupling to nearby qubits and
weak anharmonicity, one can still implement the CNOT gate
with relatively simple pulses, as explained in Refs. [41,42]. To
assess the ease of implementing the B gate, we first express it
in matrix form as

B =

⎛
⎜⎜⎝

1 0 0 0
0

√
2 i

√
2 0

0 0 0 1
0 i

√
2

√
2 0

⎞
⎟⎟⎠, (11)

where the rows and columns are ordered as in the com-
putational basis {|00〉, |01〉, |10〉, |11〉}. If we would like to
implement this operation in a single step using Hamiltonian
evolution of the form e−iHt , where H is the Hamiltonian and
t is the evolution time, the Hamiltonian will need to have
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FIG. 7. Same as in Fig. 2, but for the case where the B gate is used as the entangling gate. The B gate allows achieving the same results as
the CNOT gate with smaller values of N .

the form

H ∝ i log B =

⎛
⎜⎜⎝

0 0 0 0
0 −0.243 + 0.625i −0.508 + 0.715i −0.265 − 0.492i
0 −0.265 − 0.492i −1.449 + 0.381i 0.997 + 0.095i
0 −0.508 + 0.715i 2.106 − 0.24i −1.449 + 0.381i

⎞
⎟⎟⎠. (12)

This Hamiltonian describes couplings with very specific
strength ratios between all pairings of the states |01〉, |10〉, and
|11〉. There is no simple physical mechanism that corresponds
to this Hamiltonian and naturally implements the B gate. As
a result, the B gate would likely have to be implemented in a
two-step process as illustrated in the diagram at the beginning
of Sec. III C. If we perform the gate count with each B gate
counting as two controlled operations, and we compare the
resulting numbers to the corresponding numbers for the CNOT

gate, we find that using the CNOT gate is more efficient in
practice. Furthermore, in a real setup, the naturally occurring
interactions play a crucial role in determining the most natural
entangling gate. Any other entangling gate can then be con-
structed from that platform-specific natural entangling gate.

Another important point relates to finding quantum circuits
for different targets. As demonstrated in Ref. [6], if a CNOT-
gate-based quantum circuit allows perfect implementation of
one arbitrary target, i.e., a target that is not coincidentally easy
to prepare, the same CNOT gate configuration allows perfect

implementation of any other target. Only the single-qubit ro-
tation parameters need to be calculated for each new target.
In other words, once we identify one unit-fidelity quantum
circuit via the random combinatorial search technique, we do
not need to run the same random search again for the same
system size.

Another point relates to the high fidelity threshold in our
calculations. In a practical setting, especially in present-day
or near-future applications, there might not be any need to
design extremely high-fidelity operations. Indeed, realistic
decoherence considerations favor short quantum circuit. One
might therefore find it advantageous to use a quantum circuit
that has a theoretical fidelity below 1, if this quantum circuit
is substantially shorter than the F = 1 quantum circuit. Our
probabilistic approach can be used in this case as well. It is
also possible to include decoherence in the GRAPE algorithm
[40]. In this case, we can expect to obtain a maximum in F
as a function of N . When N becomes too large, decoherence
disrupts the dynamics and results in low fidelities.
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FIG. 8. Maximum achievable fidelity F as a function of the num-
ber of entangling (CNOT or B) gates used to synthesize a four-qubit
Toffoli gate. The green squares correspond to the results obtained in
Ref. [6], where all possible CNOT gate configurations were analyzed.
The purple × symbols are obtained by analyzing all possible B gate
configurations. The red circles and blue + symbols correspond to the
random search approach for the CNOT gate and B gate, respectively.
The four-qubit Toffoli gate can be perfectly synthesized using 15
CNOT gates. Unlike what we found for the case of arbitrary n-qubit
gate synthesis, the B gate seems to be less efficient than the CNOT

gate in this case. At N = 20, the B gate gives F = 0.997.

E. Constructing the n-qubit Toffoli gate

In the previous subsections we considered the case of arbi-
trary target operations. As such, the target states and unitary
operators were generated using random number generators.
In this subsection, we consider synthesizing multiqubit Tof-
foli gates. Specifically, we search for quantum circuits that
implement the four-qubit Toffoli gate using two-qubit entan-
gling gates. The lower bounds according to Eqs. (2) and (10)
are NLB,U,CNOT = 61 and NLB,U ,B = 41. However, considering
that the n-qubit Toffoli gate has a special and simple structure,
we can expect that it can be obtained using quantum circuits
of smaller sizes. The results of our numerical calculations
are shown in Fig. 8. The green squares show the results of
Ref. [6], which were limited to N � 10 because larger values
of N would have taken many years of single-core computation
time. Using the random search approach (with 104 random
quantum circuits for each set of parameters), we find that
the four-qubit Toffoli gate can be decomposed into 15 CNOT

gates. We note here that the F = 1 fraction was very low: for
N = 15, 16, . . . , 20, we found, respectively, 1, 2, 7, 31, 56,
and 133 perfect-fidelity circuits out of 104 random circuits in
each set. The low F = 1 fraction in this case contrasts with the
situation for the three-qubit Toffoli gate. In Ref. [6], we found
that about 7% of all gate configurations with N = 6 gave
F = 1. The CNOT gate configuration in the quantum circuit
that gave F = 1 for N = 15 is described by the diagram

FIG. 9. Histograms for the fidelity F values for N = 20 when
using the CNOT gate (red solid line) or the B gate (blue dotted line)
to synthesize a four-qubit Toffoli gate. The y-axis scale is not the
same for the two curves. For the CNOT gate there are special values
of F that dominate the distribution, while for the B gate there is a
continuous, broad distribution of F values.

where single-qubit rotations are not included in the diagram.
This circuit does not have any easily discernible pattern. The
circuit is slightly larger than the one in Ref. [43], which gave
a decomposition of the four-qubit Toffoli gate into 14 CNOT

gates, along with single-qubit gates. Hence, the random search
approach produced an almost optimal decomposition of the
gate. Besides, while the quantum circuit of Ref. [43] was
constructed partly using intuition, the random search approach
should work even for target gates that do not have a simple
structure. We also performed random search calculations us-
ing the B gate. In contrast to the case of an arbitrary target
unitary operator, the B gate does not outperform the CNOT

gate for any value of N . On the contrary, it almost consistently
gives lower fidelities for the same number of entangling gates.
Even at N = 15, where the CNOT gate gives F = 1 up to
numerical errors, the B gate gives F = 0.93. At N = 20, the
B gate gives F = 0.997.

Here, it is also interesting to inspect the distribution of
fidelity values obtained with the CNOT gate and the B gate. The
histograms plotted in Fig. 9 show that the CNOT gate gives a set
of sharp peaks. The peak locations, i.e., the F values at which
the peaks occur, seem to be independent of N , at least between
1 and 20. Only the heights of the different peaks change with
N . In contrast, the B gate gives continuous broad distributions
of F values. The entire distribution shifts to larger values of F
with increasing N .

IV. CONCLUSION

In conclusion, we have demonstrated the possibility
of efficient quantum circuit synthesis using a random
combinatorial search. This method allows us to analyze mul-
tiqubit systems of sizes that do not allow an analysis of all
possible gate configurations. We find that, as long as the
quantum circuit size is larger than the theoretical lower bound
for perfect implementation of an arbitrary quantum operation,
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a randomly generated quantum circuit has a high probability
of performing an arbitrary operation after the circuit param-
eters are optimized. It should be noted that the circuit sizes
needed to implement arbitrary n-qubit operations scale expo-
nentially with n. Specific quantum gates can be implemented
with smaller circuits. For the case of the n-qubit Toffoli gate,
the circuit size is expected to scale quadratically with n. We
applied the random search method to the four-qubit Toffoli
gate and found a perfect fidelity quantum circuit with 15 CNOT

gates. In addition to the CNOT gate, we applied our method to
the B gate. The B gate consistently showed better performance
for arbitrary targets but worse performance for the four-qubit
Toffoli gate. This contrast sheds light on the utility of the B
gate as an alternative to the CNOT gate in quantum circuit
synthesis. It should of course be kept in mind that the naturally
occurring physical interactions determine which gate to use
in a real device. Our results demonstrate that the random

search approach provides one more powerful tool that can be
used to optimize the implementation of quantum information
processing tasks.
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