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Quantum metrology with a squeezed Kerr oscillator

Jiajie Guo,1 Qiongyi He ,1,2,3,4,* and Matteo Fadel 5,†

1State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-Optoelectronics,
Peking University, Beijing 100871, China

2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
3Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China

4Hefei National Laboratory, Hefei 230088, China
5Department of Physics, ETH Zürich, 8093 Zürich, Switzerland

(Received 15 November 2023; revised 20 February 2024; accepted 12 April 2024; published 6 May 2024)

We study the squeezing dynamics in a Kerr-nonlinear oscillator, and quantify the metrological usefulness
of the resulting states. Even if the nonlinearity limits the attainable squeezing by making the evolution non-
Gaussian, the states obtained still have a high quantum Fisher information for sensing displacements. However,
contrary to the Gaussian case, the amplitude of the displacement cannot be estimated by simple quadrature
measurements. Therefore, we propose the use of a measurement-after-interaction protocol where a linear
quadrature measurement is preceded by an additional nonlinear evolution, and show the significant sensitivity
enhancement that can be obtained. Our results are robust when considering realistic imperfections such as energy
relaxation, and can be implemented in state-of-the-art experimental setups.
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I. INTRODUCTION

Continuous variable (CV) quantum systems, such as op-
tical fields or mechanical oscillators, constitute a platform
of primary importance for quantum metrology applications.
Examples include gravitational wave detection [1–4], force
sensing [5,6], and the measurement of electric and magnetic
fields [7]. Largely explored in this context are squeezed states,
namely Gaussian states that show along some phase-space
quadrature an uncertainty that is below the quantum noise of
the vacuum. Besides being relatively easy to prepare experi-
mentally, for example through a parametric process [8,9], such
states are also easy to measure, as they can be fully character-
ized by linear quadrature (i.e., homodyne) measurements.

One of the experimental factors limiting squeezing are
the inevitable nonlinearities present in the system. In fact,
highly squeezed states have a large average number of exci-
tations (i.e., energy), as well as wave functions significantly
distributed in phase space, which is manifested by the anti-
squeezed quadrature. When these go beyond the linear regime
of the considered experimental platform, the state evolution
become non-Gaussian, and squeezing gets degraded by a
“wrapping around” of the state [10,11]. Similar results are
found in the context of “crescent states,” namely coherent
states undergoing Kerr evolution [12–15]. This hinders metro-
logical applications of the resulting state, despite the fact
that non-Gaussian states can still have high sensitivity to
perturbations [16–21].
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One of the main difficulties in doing quantum-enhanced
metrology with non-Gaussian states lies in the fact that the
parameter to be retrieved is encoded in high-order correlators
[22]. This requires us to access high moments of the mea-
surement’s probability distribution, or equivalently to perform
non-Gaussian (e.g., number-resolving) measurements, which
is of challenging experimental implementation [23–27]. In
addition, noise constraints for these observables become also
very stringent. Therefore, nonlinearities are typically seen as
limitations, and in experiments one tries to reduce them as
much as possible.

A paradigmatic model in which to study the interplay be-
tween squeezing and nonlinear interactions is given by the
Hamiltonian of a Kerr oscillator with a squeezing drive:

Ĥ = �â†â + ε(â†2 + â2) − Kâ†2â2. (1)

Here � is the detuning between oscillator and drive, ε is
the squeezing rate, and K is the Kerr nonlinearity. Besides

FIG. 1. Illustration of the proposed metrological protocol.
Squeezing the ground state of a nonlinear oscillator results in a
non-Gaussian state that might not have a quadrature with reduced
quantum noise. Despite this, the state can still have high sensitivity
to displacements, even if the information is hidden in high-order
moments of quadrature operators. The method we propose to access
the displacement amplitude consists instead in undergoing a second
nonlinear evolution, which allows us to keep the measurement linear.
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being interesting for the study of interesting processes such
as chaotic dynamics [28], tunneling [29], coherent superpo-
sitions [30,31], and phase transitions and blockade effects
[32,33], Hamiltonian (1) also attracted significant attention
in the context of quantum information processing, since its
ground state is a Schrödinger cat state that can be exploited for
error-protected qubit encoding [34–36]. This observation mo-
tivated the recent experimental implementation of Eq. (1) for
electromagnetic modes with superconductive devices [37,38],
and in mechanical modes with acoustic resonators [39].

Here we study the use of a squeezed Kerr oscillator for
quantum metrology, and show that when sufficient control
over the system’s parameters is available, the presence of a
nonlinearity can significantly improve the metrological per-
formances even for simple quadrature measurements. The
idea relies on preparing non-Gaussian states that, even when
not showing reduced uncertainty compared to vacuum, can
have high sensitivity to displacements. This can be then ac-
cessed by preceding the measurement step by an additional
nonlinear evolution of the state (see Fig. 1), which we show to
result in an effective measurement of higher-order moments
of the quadratures. To conclude, we show that our results are
robust to noise, and of immediate implementation in electrical
and mechanical systems.

II. SQUEEZING LIMITS

Let us begin with considering the task of preparing
squeezed vacuum states with Eq. (1), and investigate the lim-
itations posed by the nonlinear term.

We imagine a protocol where a system that is initially in the
ground state of the harmonic oscillator |0〉 evolves for t � 0
according to Eq. (1), due to the application of a parametric
drive. During this dynamics, we are interested in studying
the evolution of the state’s minimum uncertainty quadra-
ture, namely of Vmin(t ) ≡ minθ Var[(âe−iθ + â†eiθ )/

√
2], with

Var[Â] = 〈Â2〉 − 〈Â〉2 the variance of A. Since for coherent
states Vmin = 1/2, observing Vmin < 1/2 implies a reduction
of the quantum noise below the classical limit, and thus im-
plies that the state is squeezed.

For the dynamics we consider, there is in general no known
analytic closed-form expression for Vmin, which therefore has
to be computed numerically. We show in Fig. 2(a) the plot
of Vmin(t ) for (�, ε) = (0, 2) and different values of K . For
K = 0 it is known that Vmin(t ) = 1

2 e−4εt , meaning that an
arbitrarily small uncertainty is achievable for sufficiently long
times. For K �= 0, however, we observe that Vmin attains a
minimum value at a finite time topt. This is expected, as the
nonlinearity results in a non-Gaussian evolution of the state
which limits the achievable squeezing [10,11]. We thus define
the parameter χ−2

opt = 1/Vmin(topt), which we will later show
to be related to the state sensitivity, and show in Figs. 2(b)
and 2(c) the dependence of χ−2

opt and topt on ε/K , now also
for different values of �. Note that higher squeezing can be
prepared in a shorter time as ε/K increases, since the effect of
the nonlinearity gets relatively less important.

Since squeezed states have a quadrature with reduced un-
certainty, they can provide an advantage in metrological tasks
[40–42]. For this reason, it may look as if the best strategy to
achieve a larger advantage is to have ε/K as large as possible

FIG. 2. Optimal squeezing of a Kerr oscillator. (a) Minimum
variance of the state e−iĤt |0〉, fixing � = 0. For K > 0 there is an
optimal squeezing point, that we further investigate also as a function
of �. (b) Squeezing level at the optimal point. (c) Optimal squeezing
time.

and stop the state preparation at topt, since longer evolution
times degrade Vmin. However, as we will now show, this is not
necessarily true.

III. METROLOGICAL ADVANTAGE
OF NON-GAUSSIAN STATES

Let us remember that, in a typical quantum metrology
scheme, the task is to estimate a parameter d that is encoded
in a probe state ρ by a generator Ĝ as ρd = e−idĜρeidĜ.
A fundamental limit to the sensitivity is provided by the
so-called quantum Cramér-Rao bound �2d � �2dQCR ≡
(FQ[ρ, Ĝ])−1, where FQ[ρ, Ĝ] is the quantum Fisher informa-
tion (QFI). For a pure state the QFI is calculated from the
variance of the generator as FQ[ρ, Ĝ] = 4Var[Ĝ]. Importantly,
to achieve the maximum sensitivity (�2dQCR)−1 it is neces-
sary to optimize the measurement that is performed on ρd in
order to estimate d . In general, if one measures M̂ then the
achieved sensitivity is [22]

(�2d )−1 = χ−2[ρ, Ĝ, M̂] ≡ |〈[Ĝ, M̂]〉|2
Var[M̂]

, (2)

which satisfies χ−2[ρ, Ĝ, M̂] � FQ[ρ, Ĝ] [43].
To now understand the connection between (2) and squeez-

ing, let us consider the task of sensing the amplitude of
a displacement from the measurement of a phase-space
quadrature. We thus have Ĝ(φ) = (âe−iφ + â†eiφ )/

√
2, the

generator of a displacement along direction φ + π/2, and
M̂(θ ) = (âe−iθ + â†eiθ )/

√
2, the measurement along direc-

tion θ . Looking at the numerator of Eq. (2), we note that
the sensitivity is highest when M̂ is perpendicular to Ĝ,
meaning when M̂ is along the displacement direction, as
we would expect. In this case we obtain χ−2[ρ, Ĝ(θ +
π/2), M̂(θ )] = 1/Var[(âe−iθ + â†eiθ )/

√
2], and by further

optimizing over the measurement direction θ we have χ−2 ≡
maxφ,θ χ−2[ρ, Ĝ(φ), M̂(θ )] = 1/Vmin.
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FIG. 3. Sensitivity comparison for the state e−iĤt |0〉 with Kt =
0.5. (a) Squeezing χ−2, where the white dotted lines represent the
standard quantum limit χ−2

SQL = 2. (b) QFI FQ, where the black dot-
dashed line is a boundary (FQ − χ−2)/FQ = 0.05. (c) Sensitivity for
the MAI method χ−2

MAI. White solid lines are for ε = |�/2|, and
indicate the classical phase diagram for a squeezed Kerr oscillator
[38].

These results shows us two things. First, for sensing dis-
placements from quadrature measurements then Vmin (i.e., the
squeezing) is the correct figure of merit that needs to be
optimized, but if the displacement is estimated from another
type of measurement this might not be the case. Second,
depending on the state ρ we are considering then the choice
of performing a quadrature measurement might not be the
optimal one saturating the quantum Cramér-Rao bound, and
thus not achieving χ−2[ρ, Ĝ, M̂] = FQ[ρ, Ĝ]. This measure-
ment choice is however proven to be optimal for sensing
displacements with Gaussian states [see Secs. I–III of the
Supplemental Material (SM) [44]].

To illustrate this last point for the scenario introduced
in the previous section, we compute squeezing and QFI of
the states ρ = e−iĤt |0〉 prepared through Eq. (1) at Kt =
0.5. We plot in Figs. 3(a) and 3(b) the quantities χ−2 =
1/Vmin and FQ ≡ maxφ FQ[ρ, Ĝ(φ)] = maxφ 4Var[Ĝ(φ)], re-
spectively, for different values of �/K and ε/K . Figure 3(a)
shows that when linear quadrature measurements are per-
formed, then a quantum-enhanced sensitivity, i.e., χ−2 > 2,
is attained only for a limited set of states. In general, one
can also have χ−2 < 2, which indicates even worse sensitivity
than the one achieved by coherent states [see also Fig. 2(a)
for t > 0.25, when the colored lines show Vmin > 1/2]. When
this is the case, since here we are dealing with pure states, it
necessarily implies that the state is non-Gaussian. On the other
hand, Fig. 3(b) shows that any state (besides the trivial case

ε/K = 0) has FQ > 2 and can thus show a quantum-enhanced
sensitivity to displacements if the correct measurement is per-
formed.

Even if, strictly speaking, linear quadrature measurements
are never optimal for ε/K > 0, there are regimes in which
they are very close to being optimal. This is indicated by
the region below the black line in Fig. 3(b), which corre-
sponds to states for which (FQ − χ−2)/FQ � 0.05, and thus
to states that are faithfully approximated by being Gaussian.
Outside this region, different measurements are required to
approach the maximum sensitivity, which is what we want to
investigate in the next sections by considering two strategies
that are experimentally relevant.

IV. NONLINEAR MEASUREMENTS

The first strategy consists of measuring higher-order mo-
ments of phase-space quadratures, and it can be studied
systematically in the following way [22]. We define M(k) to
be a vector involving up to kth-order moments of the quadra-
ture operators X̂ = (â + â†)/

√
2 and P̂ = −i(â − â†)/

√
2,

such that, e.g., linear quadrature measurements are described
by M(1) = (X̂ , P̂), while second-order ones are described
by M(2) = (X̂ , P̂, X̂ 2, P̂2, (X̂ P̂ + P̂X̂ )/2). Then, we introduce
the nonlinear squeezing parameter as [22]

χ−2
(k) ≡ max

φ, �m
χ−2[ρ, Ĝ(φ), �m · M(k)]. (3)

Crucially, this optimization task can be cast into an eigenvalue
problem of easy solution (see Sec. I of the SM [44]). With
higher-order moments involved, these parameters are capable
of revealing quantum-enhanced sensitivities in a wider class
of states, even beyond the Gaussian regime. Moreover, the
hierarchy χ−2

(1) � χ−2
(2) � · · · � FQ holds, showing that for suf-

ficiently high k one can attain the maximum sensitivity.
In squeezed Kerr oscillators the nonlinearity can result

in highly non-Gaussian states, whose metrological advantage
is unlocked only for measurements of sufficiently high or-
der. Observing χ−2

(1) = χ−2 < 2 implies that linear quadrature
measurements are not sufficient, and thus that k > 1 is nec-
essary. Based on this observation, we computed χ−2

(2) but,
perhaps surprisingly, did not find any advantage compared
to χ−2

(1) . A careful exploration of the terms involved shows
that this is due to the fact that commutators between the
generator and second moments of the quadrature give terms
linear in the quadrature, whose expectation value is zero for
the states we consider (see Sec. I of the SM [44]). This means
that, in our scenario, considering M(2) does not provide any
advantage compared to M(1). In order to see an advantage one
would need to consider at least M(3), which requires a mas-
sive increase in the measurement statistics and low detection
noise. This can be of impractical implementation in several
experimental situations, and it is thus viable to consider also
alternative strategies.

V. MEASUREMENT-AFTER-INTERACTION PROTOCOL

The second approach we consider consists of preceding a
linear quadrature measurement by a time-reversed evolution
with Eq. (1), i.e., e+iĤt . A similar idea has been investigated
for spin states both theoretically [46–51] and experimentally
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[52,53]. For CV systems, an experiment with Gaussian states
and transformations has been presented in Ref. [54]. In this
framework, reversing the evolution results in an amplification
of the signal to be detected, but also of the quantum noise
(see Fig. 1 of Refs. [47,54]). For this reason, an advantage is
obtained only in the presence of detection noise limiting the
measurement resolution, as the ratio between the signal and
the quantum noise level remains constant (see Secs. IV and
V of the SM [44]). In fact, linear quadrature measurements
are already optimal for sensing displacements with Gaussian
states, in the sense that they achieve χ−2 = FQ (see Sec. III of
the SM).

In the following we will show that the measurement-after-
interaction (MAI) protocol can provide tremendous sensitivity
enhancements when considering CV non-Gaussian states and
transformations. Necessary conditions for this protocol to be
viable are (i) the capability of implementing a time-reversed
evolution and (ii) low enough noise to tolerate a second time
evolution of the state. For point (i), it is sufficient to be able
to invert the sign of the parameters in the Hamiltonian. In
the specific case of Eq. (1), � and ε are easily tuned by
the parametric drives, while K can be tuned by changing the
anharmonicity of a trapping potential (e.g., in the case of a
trapped ion) or the coupling between the bosonic mode and a
two-level system (e.g., in a circuit-QED setup).

Formally, the additional evolution that precedes the mea-
surement can be absorbed into a redefinition of the measure-
ment operator. In our case we have M̂MAI(θ ) = Û (ae−iθ +
a†eiθ )Û †/

√
2, where Û = e−iHt , from which we define

χ−2
MAI ≡ max

φ,θ
χ−2[ρ, Ĝ(φ), M̂MAI(θ )]. (4)

We plot this parameter in Fig. 3(c) for the states e−iHt |0〉
prepared at Kt = 0.5. From a comparison with the FQ shown
in Fig. 3(b) we are able to conclude that the MAI protocol
can attain a sensitivity close to optimal. In particular, this is
true also for the non-Gaussian regime, where by looking at
Fig. 3(a) we see that by performing linear quadrature without
the time-reversed dynamics one would only get χ−2 < 2. A
more quantitative comparison will be discussed later in Fig. 4,
while an analysis of the scaling with N can be found in Sec. VI
of the SM [44].

VI. ROBUSTNESS TO LOSSES

To show that the MAI protocol gives an actual advantage
in realistic scenarios we have to consider the effect of ex-
perimental imperfections. During both state preparation and
time-reversal dynamics the evolution of the system is affected
by inevitable losses and decoherence, which ultimately limit
the maximum duration of the protocol. If these are too severe
compared to the robustness of the MAI protocol, then no
advantage is obtained.

To study this in detail, in our numerical simulations we
replace the unitary time evolutions Û and Û † by evolutions
according to a master equation. We focus on losses (i.e.,
energy relaxation), which pose a major limitation in CV sys-
tems. These can be described by a jump operator

√
γ â, where

γ = 1/T1 is the energy relaxation rate.

FIG. 4. Noise robustness. (a) Sensitivities FQ, χ−2
MAI, and χ−2

obtained for �/K = 0, ε/K = 2, and different levels of energy relax-
ation rates γ /K . (b) Wigner functions at different steps of the MAI
protocol for Kt = 0.4 and γ /K = 0.1. From left to right: Prepared
state, displacement, and time-reversed nonlinear evolution. Solid
and dashed lines are optimal directions of the generator and linear
quadrature measurement, respectively.

Since here we are dealing with mixed states and nonunitary
evolutions, calculating the sensitivity becomes more tedious.
The QFI for a general state ρ is computed as FQ[ρ, Ĝ] =
∑

kl
(λk−λl )2

(λk+λl ) | 〈k| Ĝ |l〉 |2, where λk and |k〉 are the eigenvalues

and eigenstates of ρ, respectively. To calculate χ−2 and χ−2
MAI

we use the fact that |〈[Ĝ, M̂]〉|2 = | ∂
∂d Tr[M̂ρd ]|2d=0, where

ρd = e−idĜρeidĜ, and then discretize the derivative numeri-
cally by applying a small displacement to the state.

We show a comparison of the sensitivities in Fig. 4(a),
for �/K = 0, ε/K = 2, and different loss rates γ /K (even
stronger than the one observed in experiments [38]). The sen-
sitivity χ−2 obtained from linear quadrature measurements is
almost unaffected by losses, but as we have seen it approaches
FQ only for small times (Kt ≈ 0.1). On the other hand, the
sensitivity χ−2

MAI obtained from the MAI protocol is always
significantly larger than χ−2, and it approaches FQ for a longer
time interval (Kt ≈ 0.25). We thus conclude that the MAI
protocol is robust, in the sense that a large amount of losses is
required before having the maximum of χ−2

MAI smaller than the
maximum of χ−2 (see also Sec. VII of the SM [44]). Let us
emphasize that the observed performance of the MAI protocol
is remarkable, considering that doubling the time evolution
significantly increases losses.

To have a better understanding of the MAI protocol, we
plot in Fig. 4(b) the Wigner function of the state at different
steps. First, a non-Gaussian state is prepared by evolving |0〉
according to Eq. (1) with �/K = 0, ε/K = 2, and Kt = 0.4.
Then, the state is subject to the displacement we want to sense,
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followed by an evolution with −Ĥ for another Kt = 0.4.
Finally, a linear quadrature measurement is performed on
the state to estimate the displacement amplitude. Solid and
dashed lines in Fig. 4(b) indicate the optimal generator and
measurement directions, respectively.

VII. CONCLUSIONS

We addressed the problem of optimally using a squeezed
Kerr oscillator for a metrological task. In particular, we fo-
cus on sensing displacements with the non-Gaussian states
that result from the nonlinear evolution of this system, and
investigate measurement strategies to approach the highest
sensitivity. We show that, while a direct quadrature measure-
ment requires us to access high-order moments, preceding the
measurement by a time-reversed nonlinear evolution allows us

to achieve high sensitivities even for first moments. Crucially,
the protocol we propose is robust to noise, and can be imple-
mented in current experiments for quantum-enhanced sensing
of, e.g., electromagnetic fields [37,38] or forces [39]. Future
works could address the interesting problem of multiparame-
ter estimation for entangled nonlinear oscillators [55–58].
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