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Two-qubit quantum gates with minimal pulse sequences
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Working with trapped atoms at a close distance to each other, we show that one can implement entangling
gates based on nonindependent qubits using a single pulse per qubit, or a single structured pulse. The optimal
parameters depend on approximate solutions of Diophantine equations, causing the fidelity to never be exactly
one, even under ideal conditions, although the errors can be made arbitrarily smaller at the cost of stronger
fields. We fully characterize the mechanism by which the gates operate and study the effects of thermal motion
and intensity fluctuations in the laser beams for different physical implementations of the gates. If instead of
one pulse, we control the system with a two-pulse sequence, a plethora of mechanisms become possible where
one can choose the optimal parameters from a wide range of values to achieve high-fidelity gates that are more
protected from the effects of laser intensity fluctuations.
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I. INTRODUCTION

Most quantum control protocols rely on complex pulse
sequences or pulse structures in the time domain. We show in
this work that, for ordered systems with a high degree of con-
trol in their spatial structure, it is possible to use the simplest
pulse sequences and achieve the same level of control acting
on the spatial degrees of freedom, adding some complexity in
the spatial domain.

Quantum computers are the paramount systems where one
needs a maximum degree of control over their spatial and time
domain properties to minimize the effects of decoherence,
and to synchronize the different interference effects that are
involved in the speed-up properties of quantum algorithms
[1–13]. Atoms trapped by optical tweezers [14–18], using
highly excited Rydberg states for dipole-blockaded interac-
tions [19–23], are one of the promising platforms for quantum
computing due to their extended coherence times [13], strong
and long-range interactions [13], scalability [14,24], and ad-
dressability [23,25–28]. This adaptability makes Rydberg
atoms a versatile resource for implementing multiparticle en-
tanglement [6,29–38], simple quantum circuits [27,33,39–51],
and even quantum gates across different quantum computing
platforms [52–57].

Current technology enables precise control over the po-
sition and spatial organization of the atoms in atomic traps,
and this property has been extensively used for quantum
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simulations and to prepare various entangled states [58,59].
Most quantum circuits, however, have relied on the use of
independent qubits, which for homogeneous qubits impose
large interatomic distances and hence operate with weak
dipole blockades, leading to slow two-qubit gates. Several
controlled-PHASE (CPHASE) [39,48,60] and controlled-NOT

(CNOT) [40] gate proposals reported implementation times in
the microsecond.

Since the ancillary states are highly excited (although long-
lived) Rydberg states, speeding up the processes has obvious
advantages, as it drastically reduces the effect of decoherence.
But this typically requires working with closer, and hence

nonindependent, qubits, which brings an additional level of
control in the atomic positions and the spatial profiles of the
laser beams, for which we proposed a spatiotemporal control
framework [61–63]. It turns out that by addressing both qubits
at the same time using structured light and controlling the
amplitude of the fields at the location of each qubit, one can
extend the well-known scheme proposed by Jacksch et al.
[39] with minimal changes, but working in the nanosecond
regime, at least under ideal conditions [61]. The scheme,
called the SOP (symmetrically orthogonal protocol), prepared
a coherent dark state to transition the population through
Rydberg states, isolating the effects of odd and even pulses
in the pulse sequence, which added to the effect of the dipole
blockade [61]. But by breaking the symmetry of the system
with apparent disorder and fully controlling the spatial profile
of the lasers, we showed that a multitude of schemes could
implement the controlled-Z (CZ) gate with higher fidelity, in
two-qubit [62] and N-qubit systems [63].
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Alternatively, there have been recent promising results ad-
dressing two or three qubits in symmetric arrangements of the
atoms, which correspond to a very specific scenario from our
setup of possible arrangements. Here, the control is enhanced
by phase modulation of the pulses [51,64], so all the pulse
complexity lies again in the time domain.

It is possible to classify the optimal control protocols ob-
tained by numerical algorithms and to analyze the correlations
among subsets of control parameters. In particular, we found
highly constrained optimal parameters in protocols that use
two-pulse sequences [62]. In this work, we focus on the mini-
mal pulse sequences, where all the control practically depends
only on the spatial domain. We find that, for nonindependent
qubits, there are solutions that require a single pulse, which
depends on approximate solutions of Diophantine equations.
By scrutinizing the nature of two-pulse sequences, we deter-
mine the set of possible protocols and analyze the working
principles behind their dynamics. In this work, we also pro-
pose a different physical realization of the nonindependent
qubit gates, using partially superposed Gaussian beams, and
provide an analysis of the role of the fluctuation and noise
in the different control parameters on the robustness of the
protocols.

II. SETUP

A. Dynamics

We study gate protocols based on nonindependent qubits
that operate with pulses that interact with both qubits (or
more than one qubit in the general setup) at the same time.
Then, one must control both the temporal features of the pulse
sequence (pulse areas, frequencies, relative phases) as well as
the spatial properties of the pulse beams.

An example is the SOP scheme [61], where one applies
a sequence of three structured pulses, using hybrid modes
of light (e.g., superposition of TEM modes), with differ-
ent amplitudes at the qubit sites: �k (�rA, t ) = akμ0rEk (t )/h̄ =
ak�k (t ), �k (�rB, t ) = bkμ0rEk (t )/h̄ = bk�k (t ). The first pulse
has a large amplitude on qubit A, a1, and a smaller amplitude
on qubit B, b1. The second one reverts the role, but with a
phase shift in one amplitude: a2 = −b1, and b2 = a1. Finally,
the third pulse is a replica of the first one. The role of the a
and b coefficients can be obviously interchanged. Arranging
the factors that participate in the local amplitudes (hereafter
called geometrical factors) as components of vectors ek (here-
after called structural vectors), we observe that e1e2 = 0 and
e1e3 = 1. The geometrical factors can be partially incorpo-
rated into the Franck-Condon factors μ0r , so one can assume,
without loss of generality, that ak and bk are normalized to

unity (|ek| =
√

a2
k + b2

k = 1).
For atoms a short distance apart, the dipole blockade for-

bids that more than one Rydberg state can be populated during
the laser action. In the simplest model that describes the two-
qubit gate [62], the system is described by eight states: the
computational basis and ancillary states with Rydberg excita-
tions, as the pulse frequencies are chosen to be in resonance
with the |0〉 → |r〉 transition [65]. The Hamiltonian is block-
diagonal for each computational basis HV

k ⊕ HA
k ⊕ HB

k ⊕ HD,

where

HV
k = − 1

2�k (t )(ak|00〉〈r0| + bk|00〉〈0r| + H.c.)

is the Hamiltonian of a three-level subsystem in V
configuration, acting in the subspace of {|00〉, |r0〉, |0r〉}
states, while HA

k = − 1
2 ak�k (t )(|01〉〈r1| + H.c.) and HB

k =
− 1

2 bk�k (t )(|10〉〈1r| + H.c.) are two-level Hamiltonians act-
ing in the subspace of {|01〉, |r1〉} and {|10〉, |1r〉} respec-
tively. We will refer generally to any of these subsystems with
the superscript S (S = V, A, B). Finally, HD = 0|11〉〈11| is
the Hamiltonian acting on the double-excited qubit state |11〉,
decoupled from any field.

Using temporally nonoverlapping pulses, the propagator
for the time evolution is the time-ordered product of the evo-
lution operators for each pulse, US = ∏Np−1

k=0 U S
Np−k , which is

analytical. For the V subsystem,

UV
k =

⎛⎜⎝ cos θV
k iak sin θV

k ibk sin θV
k

iak sin θV
k a2

k cos θV
k + b2

k akbk
[
cos θV

k − 1
]

ibk sin θV
k akbk

[
cos θV

k − 1
]

b2
k cos θV

k + a2
k

⎞⎟⎠,

(1)
where the mixing angle

θV
k = 1

2

∫ ∞

−∞
�k (t )dt = 1

2
Ak

is half the pulse area. For the two-level subsystems A and B,
we can use the same expression for the relevant states with
ak = 1, bk = 0, for U A

k , and vice versa for U B
k . However, the

mixing angles depend on the local coupling: θA
k = akAk/2 and

θB
k = bkAk/2. We will refer to the generalized pulse areas,

2θS
k , as GPA.
The SOP uses spatially orthogonal vectors such that the

state of the system after the first pulse acting on |00〉 is a dark
state of the Hamiltonian for the second pulse HV

2 , so the sec-
ond pulse does not affect this state. In this way, the SOP works
similarly to the well-known protocol proposed by Jacksch and
collaborators [39] (JP), but with nonindependent qubits. In
this work, we will study families of schemes that can operate
with even fewer pulses, although they typically require the
same (or larger) accumulated pulse area, AT = ∑

k |Ak|. In the
following section, we propose a possible scheme to control
the structural factors over a wide range of values (including
negative factors) by using superposed laser beams.

B. Implementation

Under the approximations of the effective Hamiltonian
used in this work, the spatial control is encoded in the ak and
bk parameters. In this section, we sketch several implemen-
tations that enable various degrees of control over the spatial
features of the pulses. In Ref. [61] we proposed the use of
hybrid modes of light to implement the SOP. Suppose that,
for a certain step in the protocol, we want the laser k to act
with spatial coefficient ak at qubit A and bk at qubit B, such as
shown in Fig. 1(a). A suitable linear combination of electro-
magnetic modes TEM00 and TEM01, centered at mid-distance
between the qubits, can generate the pulse with the proper
spatial values at the qubit sites. This implementation has the
advantage of using a single pulse per step in the protocol.
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FIG. 1. Diagram showing the spatial profile of the pulses at t0

acting on the nonindependent qubits for different implementations
of our scheme. In (a) the qubits are driven by a linear superposition
of TEM00 and TEM01 modes of light, focused midway between the
atoms, such that the amplitude of the field at qubits A and B is given
by the desired controlled values, ak and bk . In (b) we achieve the
same level of control by acting with two Gaussian beams focused on
each atom. When the amplitudes ak and bk , and hence their ratio xk ,
can be positive as in this work, it is possible to use a wide beam,
centered on one qubit or in between, to achieve the desired control,
as shown in (c).

However, it may require complex light structures [66–68] in
systems with more than two qubits that could be too difficult
to prepare in the laboratory. In addition, large values of ak and
bk with opposite phases can put strong limits to the allowed
spatial separation between the qubits.

In this work, we propose a different implementation based
on partially superposed Gaussian beams [69,70] (although
in principle, any beam shape is valid) centered at each
atom. Assume again two qubits A and B at a distance R
of each other, illuminated by pulses �ak (centered at qubit
A), and �bk (centered at qubit B), as shown in Fig. 1(b).
If both lasers have the same time dependence given by the
function of time f (t ), at t0k their sum will give the local
field at �rA, �k (�rA, t0k ) = �ak (�rA, t0k ) + �bk (�rA, t0k ) = [�̃ak +
σ�̃bk] ≡ ak�̃0k , where the Rabi frequencies with a tilde rep-
resent values at peak amplitude and σ = e−αR2

gives the
overlap between the pulses, where α is any measure of the
beam’s waist. We have assumed that the spatial profile of
the lasers is the same for all the pulses in the sequence,
as will be the case in most laboratory implementations.
Correspondingly, �k (�rB, t0k ) = �ak (�rB, t0k ) + �bk (�rB, t0k ) =
[σ�̃ak + �̃bk] ≡ bk�̃0k .

The geometrical factors ak , bk can be arranged as a column
vector �ek . In addition, we can define the column vector �Ek with
components �̃ak, �̃bk , and the spatial overlap matrix

S =
(

1 σ

σ 1

)
(2)

such that �̃0k�ek = S �Ek and �Ek = �̃0kS−1�ek ,(
�̃ak

�̃bk

)
= �̃0k

1 − σ 2

(
1 −σ

−σ 1

)(
ak

bk

)
, (3)

which gives

�̃bk

�̃ak
= xk − σ

1 − σxk
, (4)

where xk = bk/ak is the ratio of the geometrical factors.
For xk � 1, |�̃bk/�̃ak| < |bk/ak|. Whenever σ > xk , �̃bk/�̃ak

must be negative. This can be achieved by controlling
the relative phase between the pulses. In fact, one can
use the superposition of Gaussian pulses as a technique to
remove the effect of one pulse over an unwanted qubit, if we
want to work with independent qubits even when α ∼ R−2.
In this case, the goal is to make �k (�rb, t0k ) = 0, for which
�̃bk = −σ�̃ak .

Using superposed Gaussian beams, it is always possible to
control the geometrical factors of more than two qubits by
controlling the ratio of the peak amplitudes of the fields (as
well as the pulse phases). In the general case, one needs to
define a different σab for each pair of qubits. The matrix S is
always invertible, as long as σab 
= 1, and thus two qubits do
not occupy the same place.

Finally, for two-qubit or few-qubit systems, and positive
relative ratios, it is possible to perform the operation with
a single broad pulse, controlling the relative positions of
the atoms with respect to the pulse waistbeam, as shown in
Fig. 1(c). This again has the advantage of minimizing the
number of pulses, reducing possible sources of error.

III. SINGLE-PULSE PROTOCOLS

One of the advantages of working with nonindependent
qubits is that it is possible to use shorter pulse sequences.
In principle, there are enough control knobs to implement an
entangling gate with a single-pulse sequence.

For the CZ gate, we use the unconventional (but equivalent)
gate definition, where the amplitudes in each computational
state, except the |11〉, experience a π shift at the end of the
gate [39]. We calculate the fidelity as

F = 1
16

(−U A
11 − U B

11 − UV
11 + 1

)2
, (5)

where every term U S
11 is the first matrix element of Eq. (1). For

each subsystem S of states coupled by the radiation, starting
from the different computational states, one must then achieve
cos(θS ) = −1. These probability amplitudes correspond to
so-called zero-loop processes [62], where the amplitude stays
solely on the computational basis by the end of the pulse. For
a single-pulse dynamics, only zero-loops can realize the gate.
However, it is very simple to prove that zero-loops can never
be exactly achieved for the three subsystems with a single
pulse, so the gate mechanism cannot yield perfect fidelities
even in the absence of noise or perturbations. The proof is
simple to sketch.

Let the system have two qubits. For perfect fidelity, the
following conditions must be satisfied:

cos(A/2) = −1 →
√

a2 + b2A = (4l + 2)π, l ∈ Z

cos(aA/2) = −1 → aA = (4l ′ + 2)π, l ′ ∈ Z

cos(bA/2) = −1 → bA = (4l ′′ + 2)π, l ′′ ∈ Z, (6)

where we used normalized structural factors. However, it is
not possible to fulfill all the required conditions of Eq. (6) at
the same time. Calling p = 4l + 2, n = 4l ′ + 2, m = 4l ′′ + 2,
squaring the argument of the third condition, and comparing
with the first two conditions, we obtain the relation between
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FIG. 2. Map of the fidelity for the CZ gate as a function of the
pulse area and the ratio between the geometrical factors, for protocols
based on a single pulse acting simultaneously on both qubits. In
dashed lines, we show the protocols for which the action of the laser
is minimal in the qubit b. The peaks appear at approximate solutions
of a Diophantine equation.

the integers m, n, p: m2 + n2 = p2. Equations like this that
require integer solutions are generically called Diophantine
equations. They have an infinite number of solutions, but it
can be easily shown that the solutions cannot be constrained
such that all m, n, p are of the form 2, 6, 10, . . . 4l + 2. For ex-
ample, let p > n � m, such that m2 = p2 − n2 = (p + n)(p −
n) = 16(l + l ′ + 1)(l − l ′). On the other hand, by directly
squaring m2, we obtain m2 = 16(l ′′)2 + 16l ′′ + 4. Both ex-
pressions must be equal. But, dividing both sides by 16, we
have (l ′′)2 + l ′′ + 0.25 = (l + l ′ + 1)(l − l ′). The left-hand
side cannot be integer, while the right-hand side is always
integer.

It can be shown that the same restrictions apply when-
ever the logic tableaux implies an odd number of sign flips.
For some nonentangling two-qubit phase gates, on the other
hand, exact solutions may exist. This issue becomes more
pronounced as the number of qubits increases. For instance,
with three qubits, we have 3 V subsystems and three two-
level systems where the previous Diophantine approximate
solutions must hold, in addition to a tripod system, which adds
another equation like m2 + n2 + p2 = q2, that does not hold
solutions for m, n, p, q integers of the type 2, 6, . . . , 4l + 2 or
similar.

While it is not possible to achieve perfect fidelity, Eqs. (6)
can be in principle fulfilled up to any desired accuracy. For
instance, in the CZ gate, 142 ≈ 102 + 102 with a relative
error of approximately 4/200 ≈ 2%, so that an approximate
solution exists using equal geometrical factors in the qubits
(a = b = 1/

√
2) and a pulse area of A ∼ 14π , which leads to

a fidelity F = 0.992. In Fig. 2 we show a map of the fidelity
of the gate as a function of the pulse area A and the ratio
of the geometrical factors, x = b/a. Because the role of the
geometrical factors is equivalent (the fidelity is the same for
x and x−1), we only show the map for x � 1. The density of
high-fidelity protocols increases for small x (or alternatively,
for x � 1). The simplest solutions involve bA = 2π . For large
A and small b,

√
1 − b2 ≈ 1 and aA ≈ A. This gives the series

FIG. 3. Gate error as a function of the pulse area, for the solu-
tions that satisfy bA = 2π, 6π, 14π (that is, for the set of points that
follow the trajectory shown by the dotted lines in Fig. 2). In gen-
eral, as bA increases, one needs larger areas to achieve high-fidelity
protocols, but better approximate solutions of the Diophantine equa-
tions may exist for smaller areas, like A = 14π when a = b.

of solutions shown by the white dotted line in Fig. 2, where
bA = 2π , from which

bA = x√
1 + x2

A = 2π −→ A = 2π

√
1 + x2

x
. (7)

A similar equation must be satisfied by aA. Dividing both, we
obtain the values of x at which the fidelity is maximized,

xop = b

a
= bA

aA
= 4l ′′ + 2

4l ′ + 2
. (8)

For the smallest possible local area in qubit b, bA = 2π

(l ′′ = 0), xop lie in the sequence of inverse odd numbers, xop =
1/(2l ′ + 1). To fully optimize the gate, the contribution of the
three terms U A

11,U B
11,UV

11 must be maximized, for which the
optimal pulse area must be slightly corrected as the average
between the value expected from Eq. (7) with xop, and the
value of the area that maximizes the UV

11 term,

Aop = (2l + 1 +
√

(2l ′ + 1)2 + (2l ′′ + 1)2)π, (9)

where l � l ′ � l ′′ ∈ Z. The protocol with the smallest pos-
sible area (l, l ′, l ′′ = 0, 0, 0) is achieved with Aop = 2.4π at
xop = 1, giving a relatively low fidelity of F = 0.804. The
second maxima, at A = 6.17π with x = 1/3, gives already a
fidelity F = 0.968. For very large integers, the relative error
can be as small as desired by increasing the pulse area, prop-
erly adjusting the ratio of the geometrical factors following
Eq. (8) and the area with Eq. (9). In Fig. 3 we show the
gate error as a function of the pulse area, for protocols that
obey bA = (4l ′′ + 2)π conditions. As expected, one needs
larger areas to achieve high-fidelity protocols as bA increases,
but better approximate solutions of the Diophantine equa-
tions may exist for smaller areas, as, e.g., when x = 1 for
A = 14π . However, as discussed in Sec. V, taking into ac-
count the effect of fluctuations in the parameters due to
shot-to-shot noise can shift the maximum fidelities to the
lower pulse area protocols.
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FIG. 4. The fidelity for protocols based on two-pulse sequences,
as a function of the pulse areas, inherit the properties of − cos(θ1) −
cos(θ2) (left) and − cos(θ1 ± θ2 ) (center and right). We represent
the cosine scaled and shifted as (− cos x + 1)/2 so that its range is
between 0 and 1, like the fidelity.

IV. TWO-PULSE PROTOCOLS

For two-pulse sequences, the time-evolution operators for
the A and B subsystems have two terms,

U S′
11 =cos (α2A2/2) cos (α1A1/2)−sin (α2A2/2) sin (α1A1/2)

(10)

where S′ = A, B, α = a, b, and the subscript refers to the
pulse order. The first term is responsible for a gate mecha-
nism based on a zero-loop, as in single-pulse sequences. The
second term accounts for another mechanism that prepares
the gate, the so-called one-loop, where the first pulse excites
the population to the Rydberg state and the second pulse
takes the population back to the computational basis [62].
For this to happen, the GPA must be an odd multiple of π .
In the V subsystem, the second term is scaled by the prod-
uct of the structural vectors, UV

11 = cos(A2/2) cos(A1/2) −
e2e1 sin(A2/2) sin(A1/2) (e2e1 = a1a2 + b1b2). For each sub-
system, it is in principle possible to have gate mechanisms
that behave as zero-loops, one-loops, or superpositions of both
[62]. However, due to the e2e1 factor, UV

11 can only be close to
−1 if it follows a zero-loop or e2e1 = ±1. In the latter case
x2 must be equal to ±x1, forcing the structural vectors to be
aligned or antialigned.

We will first analyze zero-loop protocols, which are a nat-
ural extension of single-pulse-based mechanisms. For zero-
loop protocols in the V subsystem, cos(A2/2) cos(A1/2) =
−1, which force A1 = (4l + 2)π and A2 = 4mπ (l, m ∈ Z) or
vice versa, forming the checkered pattern of the map of pro-
tocols as a function of the pulse areas (see Fig. 4 left), which
was found by Sola et al. [62] using optimization algorithms.

In Fig. 5(a) we show the fidelity map as a function of
A2 and x2, after choosing A1 = 6π and x1 = 1/3, which are
valid parameters in a single-pulse protocol. Hence, A2 = 0 is
always a possible solution. In addition, all areas of the form
A2 = 4m (m ∈ Z) provide high-fidelity gates. As the choice
of x1 forces the A and B subsystems to follow a zero-loop
mechanism (since cos θS′

1 = −1, S′ = A, B), then a2A2 = 4m′,
b2A2 = 4m′′ and xop

2 = 4m′′/4m′. Obvious solutions of the
corresponding Diophantine equations show up at every m′
for m′′ = 0 [since then m2 = (m′)2 exactly], but also, e.g., at
m = 5, m′ = 4, m′′ = 3, for which xop

2 = 0.75, etc.
In Fig. 5(b) we choose A1 = 4π and x1 = 1/4. Solutions

exist for all areas of the second pulse of the form A2 =

FIG. 5. Fidelity of the gate for two-pulse protocols as a function
of x2 and A2. In (a) we choose A1 = 6π and x1 = 1/3, which are
parameters that prepare a high-fidelity gate in the absence of the
second pulse, based on a zero-loop mechanism for all subsystems.
In (b), A1 = 4π and x1 = 1/4, so that the gate follows a one-loop
mechanism for the B subsystem. The maps are very similar to those
of single-pulse sequences but with displaced areas and ratios of the
geometrical factors.

(4m + 2)π . Now, b1A1 ≈ π , a1A1 ≈ 4π , so the first pulse
opens a one-loop mechanism for the B subsystem, and a
zero-loop mechanism for the A subsystem. Then, the sequence
of fidelity peaks must occur at xop

2 = (2m′′ + 1)/(4m′ + 2)
for all m′, m′′ ∈ Z. For the smallest possible m′′ = 0, b2A2 =
x2A2/

√
1 + x2

2 ≈ π and hence A2 = π

√
1 + x2

2/x2. This is the
dotted line shown in Fig. 5(b) for which high-fidelity peaks
show up at xop

2 = 1/2, 1/6, 1/10, . . . , 1/(4m′ + 2).
It is important to note, however, that any superposition of

mechanisms can occur in the A and B subsystems. As long as
the pulse areas A1 and A2 alternate as (4l + 2)π and 4mπ or
vice versa, it is always possible to find high-fidelity protocols
for any x1, because from Eq. (10), U S′

11 = cos(θ2 ± θ1), with
θk = αkAk/2 (α = a, b). The minus sign inside the cosine
applies when the ratios (x1 and x2) or areas (A1 and A2) change
signs. There will always be values of x1, x2 (or, more precisely,
of a1A1 + a2A2 and b1A1 + b2A2) for which U S′

11 = −1 for the
choice of pulse areas A1, A2 that make UV

11 = −1. Depending
on x1 and x2, the A and B subsystems belong to a continuous
range of mechanisms, from zero-loops to one-loops, passing
through any combination.

Can this realization of every possible mechanism include
the V subsystem? Indeed, if the structural vectors are aligned
or antialigned, e1 = ±e2, for which x2 = ±x1, then the three
terms U S

11 (S = A, B,V ) behave as Eq. (10), which can be
written as cos(θS ), with θV = (A1 ± A2)/2, θS′ = (α1A1 +
α2A2)/2 (S′ = A, B). These are exactly the same equations as
in the single-pulse sequence, except that now the argument
depends on the sum of pulse areas,

AT = A1 ± A2 = (4n + 2)π, n ∈ Z, (11)

where the plus sign applies for aligned vectors and the minus
for antialigned vectors. So, every combination of pulse areas
that sums (4n + 2)π can generate a high-fidelity gate, where
the mechanism can be any superposition of zero-loops and
one-loops for all the different subsystems.
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FIG. 6. Fidelity map as a function of the pulse areas A1 and
A2 for (left) aligned structural vectors with x1 = x2 = 1/5, (center)
antialigned structural vectors with x1 = −x2 = 1/5, and (right) or-
thogonal structural vectors with x1 = −1/x2 = 1/5.

In Fig. 6 we show the fidelity map as a function of the pulse
areas A1 and A2 for x = x1 = x2 = 1/5 (left) and x = x1 =
−x2 = 1/5 (center). There are high-fidelity straps for pulse
areas that sum (4n + 2)π , but not for all values of n. The
actual maximum fidelity observed and its location depends
on the choice of x. The direction of the straps depends on
whether the vectors are aligned or antialigned. These pat-
terns inherit the properties of − cos(θ1 ± θ2) shown in
Fig. 4. In Fig. 7 we show the fidelity map as a func-
tion of x and A2, where we fixed A1 = 7π for both
aligned (a) and antialigned (b) vectors. As observed,
A2 = (4n − 5)π . x = x2 = x1 [Fig. 7(a)], x = x2 = −x1

[Fig. 7(b)]. The solution that appears at x = 0.2 corre-
sponds to A2 = 3π (the sum of areas equals 10π ). Allowing
x to change, one can typically find high-fidelity proto-
cols for any possible valid n, and consequently, for any
A2 [71].

Finally, it is even possible to find optimal protocols where
the structural vectors are orthogonal, e1e2 = 0. They imply
a superposition of the aligned and antialigned vectors, for
which the fidelity map looks like the pattern observed in Fig. 6
(right). The fidelity peaks now form a rotated lattice. The
peaks are a distance of 4π apart, and the angle of the lattice
depends on the choice of x. These are the solutions explored
in the so-called SOP (symmetrical orthogonal protocol),
explained in Ref. [61].

FIG. 7. Fidelity map as a function of the second pulse area A2

and the ratio of geometrical factors x for (a) aligned (x2 = x1) and
(b) antialigned (x2 = −x1) structural vectors. For the figure, we
choose A1 = 7π .

V. EVALUATING THE EFFECTS OF NOISE

To analyze in detail all the effects of noise on the pro-
posed schemes, one needs to better define the setup of the
system, choosing very concrete parameters for the lasers and
atomic traps, which is outside the scope of this work. Our
analytical approach follows from an approximate Hamilto-
nian from which we can obtain the time-evolution operator,
so we cannot incorporate the sources of noise at the level
of the dynamical description. From the physical point of
view, the schemes shown here operate using the Rydberg
blockade, so one can expect a similar sensitivity to the fluc-
tuation of the laser frequency, the spontaneous emission,
and the thermal motion of the atoms, as reported else-
where [72]. However, because the atoms are much closer, the
dipole blockade much larger, and the pulses much shorter
(operating, in principle, in tens of nanoseconds) and much
more intense, the phase-induced detunings or changes in
population due to spontaneous decays—which are the main
sources of errors in microsecond experiments—become al-
most negligible in our setup. Mainly shot-to-shot fluctuations,
rather than decoherence, will have some impact on the
fidelities.

Herein, we develop a simple model to evaluate the impact
of fluctuations in the pulse energy (hence pulse areas) and
geometrical factors on the fidelity for the CZ gate in two-qubit
systems, using two partially overlapping pulse beams centered
at each qubit.

The impact of amplitude fluctuations over the pulse areas
is direct. For a pulse with intensity I0 ∝ �̃2

0, given that the
area is A0 = �̃0S0/h̄, where S0 is a shape factor, neglecting
fluctuations in the pulse duration (or rather, subsuming the
effect on the peak intensity fluctuation), the relative error in
the pulse areas is

δA0 ≡ �A0/A0 = �I0/2I0. (12)

Using stabilized microsecond pulses, δI0 can be estimated as
∼3% or smaller [72].

Fluctuations in the geometrical factors depend both on
fluctuations in the laser amplitudes as well as on the thermal
motion of the atoms. For xk obtained by a superposition of
beams,

xk = �̃bk + σ�̃ak

�̃ak + σ�̃bk
, (13)

we estimate, for the fluctuation on the intensity of the pulses,(
∂xk

∂�̃ak

)2

(��̃ak )2 =
(

σ − xk

�̃ak + σ�̃bk

)2(
�̃ak

δI0

2

)2

(14)(
∂xk

∂�̃bk

)2

(��̃bk )2 =
(

1 − σxk

�̃ak + σ�̃bk

)2(
�̃bk

δI0

2

)2

. (15)

Since (σ − xk )2�̃2
ak = (1 − σxk )2�̃2

ak by Eq. (4), summing
both terms, we obtain an error of the order of x2(δI0)2/2
(actually, strictly smaller than this value, for positive xk).

For the fluctuation in the atomic positions due to thermal
motion, assuming pulse beams overlap such that 2αR2 ∼ 1,
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we obtain(
∂xk

∂σ

)2(
∂σ

∂R

)2

(�R)2 =
(

1 − �̃bk (σ + xk )

�̃ak + σ�̃bk

)2

(σδR)2,

(16)

which is of the order of (and for positive xk , strictly smaller
than) (σδR)2. Assuming independent sources of fluctuation,
the overall error can be written as

(δxk )2 = 1

2
(δI0)2 + σ 2

x2
k

(δR)2. (17)

To evaluate the error in δR, we use a simple estimation
assuming a diffusion model for the dispersion of the atoms,
�R ∼ √

2Dtg, where tg is the gate duration and D the diffu-
sion coefficient. In Ref. [72], working with atoms separated
5 µm and using gates that operate in ∼5 µs at ∼25 µK, the
authors evaluate �R as ∼50 nm. If we assume that our gates
operate under similar conditions (e.g., temperature) but 25
times faster, that would imply �R ∼10 nm, for a relative
error of δR ∼1% when the atoms are approximately 1 µm
apart, although our approximations may underestimate the
error during the measuring of the gate’s state. To evaluate the
effect of the temperature, we will assume a linear dependence
with the mean square displacement, as in Brownian motion,
or for classical and quantum oscillators under certain limits
[73,74].

We use Eqs. (12) and (17) to evaluate a distribution of
parameters A and x following the noise statistics. We also
include a Gaussian distribution in the absolute phase of the
lasers with standard deviation �φ. Mean fidelities F̄ and
standard deviations δF are obtained after analyzing the results
with 1000 samples of the noisy parameters for several single-
pulse optimal protocols (with l ′′ = 0 and l = l ′) with different
noise contributions. In Fig. 8 we show the fidelities in the
absence of fluctuations (circles) and the average fidelities with
δI = 0.03, δR = 0.01 (T ∼25µK) and �φ = 0.1π , labeled
as “standard,” which are the errors reported in Ref. [72]. The
error bars δF show how much the fidelity fluctuates for differ-
ent experiments, reaching δF = 0.17 for l ′ = 6. The results
reveal that the fidelity is severely affected for protocols with
large l ′ (and l and hence A), which correlates to protocols that
operate with larger Rabi frequencies and smaller ratios of the
geometrical factors.

The effect of fluctuations in the laser amplitudes (purple
lines) is significantly stronger than the effect of fluctuations
on the atomic positions due to the thermal motion of the
atoms (gray lines). Although the relative error in both A and
x is linearly proportional to the relative error in the pulse
intensities, the required precision in the intensities should
increase for protocols that use stronger fields, as a small error
in A can easily shift the GPA from an odd multiple to an
even multiple of π (and vice versa), completely changing
the excitation mechanism. Hence, for intensity fluctuations of
∼3%, only the lowest area protocols (A � 10π ) survive with
fidelity errors smaller than 5%. It is necessary to reduce the
laser fluctuations to one-half of this value or lower (1.5% in
solid purple line) to reduce the gate errors to less than 2% in
protocols with A = 14π . For comparison, to observe the same
level of error from thermal effects only, we need to increase

FIG. 8. Fidelity for single-pulse protocols with different l = l ′

and l ′′ = 0 for different levels of noise in the parameters. Gray
lines show the mean fidelities when the noise is induced by thermal
fluctuations in the positions of the atoms, with relative standard
deviations δR = 0.0316, corresponding to T = 250 µK (dotted), and
δR = 0.01, corresponding to T = 25 µK (solid). Purple lines show
the mean fidelities when the noise is induced by fluctuations in the
peak intensities of the pulse, with relative standard deviations δI =
0.03 (dotted) and δI = 0.015 (solid). Lines with error bars show
the mean and standard deviations for the results in the presence of
both noise sources, in different laboratory conditions that we termed
“standard” (T = 25 µK, δI = 0.03, �φ = 0.1π , in dark violet) and
“ultra” (T = 3 µK, δI = 0.007, �φ = 0.01π , in black). Finally, the
circles are the results in ideal conditions.

the temperature by a factor of 10, as shown in the dotted gray
line (T ∼ 250 µK, δR ∼ 0.032).

In Fig. 8, labeled as ultra, we show also the results obtained
using noise statistics with state-of-the-art laser stabilization
(δI ∼ 0.007, �φ = 0.01π ) [31] and sideband cooling (T =
3 µK), which show that errors in fidelity could, in principle,
be reduced to less than 1%. In fact, all the errors in such
conditions depend on δI , as practically the same results would
be obtained at T = 30 µK.

For implementations of the gate based on a single broad
Gaussian beam [only valid in general for two qubits and
positive x as in Fig. 1(c)], δxk only depends on the thermal
motion of the atoms to a good approximation, so the overall
error is smaller. In Fig. 9 we show the infidelity, ε = 1 − F̄ ,
of different gates with l ′′ = 0 and increasing values of l ′
(correlated to increasing values of Aop and decreasing values
of xop), prepared with a single-pulse protocol, implemented by
a single beam or a superposition of two Gaussian beams, with
different levels of noise. As observed, the results only differ
for protocols with large l ′.

On the other hand, because the error is dominated by
fluctuations in the largest Rabi frequency, protocols that share
the total area between two or more pulses will improve the
average fidelity. In Fig. 9 we also show the gate infidelities
for protocols based on two-pulse sequences (implemented by
superposed Gaussian beams), using aligned structural vec-
tors x1 = x2, in two cases: when A1 = 7π and when A1 =
14π . In these cases, from Eq. (11), AT = Aop

2 + A1 = 4n + 2
practically coincides with the previously optimized areas for
single-pulse protocols. Therefore, to avoid double labels and
to compare the fidelities obtained with protocols with the same
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FIG. 9. Gate infidelity, 1 − F̄ , in protocols corresponding to
different l ′ numbers, for different implementations using a single
Gaussian beam, two superposed Gaussian beams, and two-pulse
sequences using superposed Gaussian beams with aligned structural
vectors (x1 = x2), where two possible values of A1 have been chosen.
For the two-pulse sequence, l ′ corresponds to n in Eq. (11). In (a) we
use standard noise statistics, while in (b) we use conditions labeled
as ultra.

total area AT , we also use l ′ instead of n for the two-pulse
protocols in Fig. 9.

When A1 = 7π , the error will be dominated by this pulse
area until A2 is of the order or larger than 7π . It is as if we had
subtracted area from AT so that the infidelities are shifted to-
ward higher n. Hence, the error does not increase significantly
until n > 3 (AT > 14π ). One can approximately control how
to displace the error curves to larger n by choosing A1. For
instance, comparing the results for A1 = 7π and A1 = 14π ,
we observe the shifting toward higher n of the latter curve.
If A1 = 14π , the noise is approximately distributed equally
among the pulses at A2 = 12π (AT = 26π ), so that the error
will not significantly increase until n > 6 (AT > 26π ). This
can be observed in the results with noise statistics correspond-
ing to ultra conditions. In principle, one could extend this
strategy to longer pulse sequences, using as many pulses as
needed to adjust the largest pulse area allowed given the noise
statistics of the setup, such that the infidelity is as small as
possible.

VI. CONCLUSIONS

By implementing qubits in atoms trapped at a short dis-
tance from each other, thereby boosting the dipole blockade, it
is in principle possible to speed up the gates to the nanosecond
timescale [61]. In this work, we have studied minimal pulse
sequences that implement the CZ gate on two adjacent and

nonindependent qubits with high fidelity, where the number
of pulses used per qubit can be as small as one. Indeed, using
structured light, one can in principle implement the gate with
a single pulse. We have proposed a possible implementation
using superposed Gaussian beams, and we have analyzed the
role of parameter fluctuations induced by shot-to-shot noise.

The optimal parameters must be approximate solutions
of Diophantine equations, imposing strict conditions on the
areas and overlaps between the pulses. While perfect fideli-
ties can never be achieved even under ideal conditions, the
errors can be made as small as desired using intense pulses.
But, increasing the areas ultimately penalizes the minimum
duration of the protocol, partially compensating the gains of
using nonindependent qubits. Adopting two-pulse sequences
alleviates restrictions on parameter values for optimizing the
gate, allowing to lower the largest pulse areas. One finds that
a continuum of mechanisms, described in terms of quantum
pathways, can be used for its implementation, although strong
correlations in the areas of the pulses of the form A1 = (4l +
2)π , A2 = 4mπ (l, m ∈ Z) or vice versa, are typically found
in optimal protocols.

Analyzing the effect of noise on the fidelity of the proposed
protocols, we found that intensity fluctuations have a much
stronger impact on the gates than the thermal motion of the
atoms, mainly in protocols with large pulse areas and, con-
sequently, stronger fields (assuming that we use the shortest
possible pulses). Our preliminary analysis reveals that the sta-
bilization of the lasers that allows to reduce the relative errors
in the pulse intensities below 1% may be necessary for the
laboratory implementations of these protocols. On the other
hand, the experiments could be performed at typical ultracold
temperatures of ∼100 µK.

While an in-depth analysis of all protocols can only be
made for small pulse sequences, comparing the fidelities
based on single pulses versus two-pulse sequences, we expect
that the use of protocols with several pulses with similar total
accumulated Rabi frequency, but smaller peak intensities, can
result in higher fidelities and more robust gates.
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