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Observing quantum many-body scars in random quantum circuits
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The Schwinger model describes quantum electrodynamics in 1+1 dimensions, it is a prototype for quantum
chromodynamics, and its lattice version allows for a quantum link model description that can be simulated
using modern quantum devices. In this work, we devise quantum simulations to investigate the dynamics of this
model in its low-dimensional form, where the gauge field degrees of freedom are described by spin- 1

2 operators.
We apply Trotterization to write quantum circuits that effectively generate the evolution under the Schwinger
model Hamiltonian. We consider both sequential circuits, with a fixed-gate sequence, and randomized ones.
Utilizing the correspondence between the Schwinger model and the PXP model, known for its quantum scars, we
investigate the presence of quantum scar states in the Schwinger model by identifying states exhibiting extended
thermalization times in our circuit evolutions. Our comparison of sequential and randomized circuit dynamics
shows that the nonthermal sector of the Hilbert space, including the scars, is more sensitive to randomization.

DOI: 10.1103/PhysRevA.109.052602

I. INTRODUCTION

Gauge theories describe fundamental interactions in nature
[1,2], such as the strong force. Developing quantum devices
for quantum simulations of lattice gauge theories is essential
as they provide a nonperturbative tool to explore real-time
evolution of gauge theories [3–8]. There are several different
quantum platforms for quantum simulators, such as neutral
atoms systems [9,10], superconducting circuits [11,12], and
trapped ions [13,14]. The possibility of engineering multi-
body interactions facilitates the quantum simulation of gauge
theories. In Ref. [15], a scheme for trapped ions has been
proposed which generalizes the Mølmer-Sørensen gate [16]
and effectively generates Rabi oscillations between the spin
states |↑↑↑〉 and |↓↓↓〉. The three-body gate σ+

i σ+
j σ+

k + H.c.
created by this strategy can be used to simulate a U(1) lattice
gauge theory. When simulating quantum theories in a quan-
tum computer, we need to express the evolution operator as a
product of quantum gates that we understand how to generate.
Hence, assuming that the trapped ions strategy is feasi-
ble, in this work we Trotterize the lattice Schwinger model
Hamiltonian to simulate the evolution using these three-body
gates.

Our main interest concentrates on the nonequilibrium be-
havior of this model, especially its thermalization dynamics.
Recent advances in quantum technologies allowed the study
of many-body systems dynamics out of equilibrium, and the
realization of new states of matter. In 2017 [17], a quantum
simulator experiment consisting of 51 Rydberg atoms dis-
covered the existence of initial states with anomalously slow
thermalization. The Rydberg atoms system is described by
the PXP model, which acts on any sequence of three atoms

by exciting or deexciting the central atom while projecting its
neighbors onto the ground state. For this model, the existence
of initial states with slow thermalization was explained as a
consequence of quantum many-body scars in the spectrum
[18,19]. It has then been recognized that quantum many-
body scars [20–26] are characteristic for dynamical models
with constrained Hilbert spaces [27,28], and the study of
this phenomenon has become a hot topic in the lattice gauge
theory quantum simulation community. Quantum many-body
scars are Hamiltonian eigenstates from the middle of the
spectrum that highly violate the eigenstate thermalization hy-
pothesis [29,30]. Remarkably, in contrast to other mechanisms
such as many-body localization and integrability, quantum
many-body scars do not depend on the presence of many
integrals of motion to exist [28]. In fact, they are observed
in interacting, nonintegrable, and disorder-free models, and
have very high overlap with simple many-body states [31].
The PXP model can be mapped to a U(1) lattice gauge the-
ory on the line [32], the massless Schwinger model. In this
study, we investigate how quantum many-body scars manifest
in the Schwinger model and study the behavior of states
with slow thermalization under Trotterized evolution gener-
ated by quantum circuits. We compare using sequential and
random quantum circuits to simulate the evolution of states.
Random quantum circuits provide a convenient instrument to
explore thermalization properties of quantum states [33], and
have been used to study measurement-induced phase transi-
tions [34]. Moreover, recent quantum computing experiments,
such as IBM’s 127-qubit experiment on noise characterization
[35] and Google’s 67-qubit experiment on phase transitions
[36], were performed by implementing randomized quantum
circuits.
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As expected, we find that sequential quantum circuits
provide a good approximation to the exact Schwinger Hamil-
tonian evolution for sufficiently large number of Trotter steps.
Also, random quantum circuits are able to reproduce the
dynamics of the Schwinger model, if both the number of
Trotter steps and circuit realizations is large, yet the agree-
ment becomes significantly worse for initial state with slow
thermalization. This includes the states with large overlap
with the scar state Hilbert space sector, but also other states
with anomalously slow thermalization. Interestingly, this re-
sult indicates that random quantum circuits can be used as
a tool to identify states of long thermalization times with
information obtained from short time simulations. We note
that the Loschmidt echo can also be used to identify these
states in simulations of similar timescales.

In the light of the above, this paper is organized as fol-
lows. In Sec. II, we introduce the lattice Schwinger model
and rewrite it in a quantum device-friendly formulation: the
Schwinger quantum link model. In Sec. III, we show how
to use quantum circuits with three-body gates to effectively
generate the evolution under the full Schwinger quantum link
model Hamiltonian, i.e., how to Trotterize the Hamiltonian. In
Sec. IV, we discuss the mapping between the PXP model and
the Schwinger quantum link model and through correspon-
dence we also highlight the existence of quantum many-body
scars in both of these models. In Sec. V, we provide the
results obtained by simulating the evolution of states using
the quantum circuits.

II. LATTICE SCHWINGER MODEL

The Schwinger model is the theory of quantum electro-
dynamics on the line, i.e., a U(1) gauge theory in 1 + 1
dimensions. The Kogut-Susskind lattice formulation of this
theory with staggered fermions is described by the Hamilto-
nian

H = J
L∑

j=1

(�†
j Uj, j+1� j+1 + H.c.) +

L∑
j=1

E2
j, j+1

+ μ

L∑
j=1

(−1) j�
†
j � j, (1)

where the fermionic matter fields � j and �
†
j live on the

lattice sites, particles on the odd sites and antiparticles on
the even sites, while the gauge fields (Ej, j+1,Uj, j+1) live
on the links connecting lattice sites. The fermionic fields
satisfy the anticommutation relations {�†

j , �k} = δ j, k

and {� j, �k} = 0, while the gauge fields satisfy the
commutation relation [Ej, j+1,Uk, k+1] = δ j,kUk, k+1.
We consider L lattice sites, and use periodic bound-
ary conditions j ∼ j + L. The three terms in this
Hamiltonian are as follows. The kinetic term for the
fermion fields, the kinetic term for the gauge fields, and
the fermionic mass term. In the lattice formulation, the gauge
invariance is encapsulated in the Gauss’ law: The difference
between the discrete divergence Ej, j+1 − Ej−1, j and the
dynamical charge �

†
j � j is a conserved quantity. In fact, the

operator

G̃ j = Ej, j+1 − Ej−1, j − �
†
j � j (2)

commutes with the Hamiltonian, and hence its value is a
static charge that defines different sectors of the Hilbert space:
G̃ j |�phys〉 = q j |�phys〉, where |�phys〉 are the physical states
of the theory. Throughout this work, we fix the static charges
such that the Gauss’ operator takes the form

Gj = Ej, j+1 − Ej−1, j − �
†
j � j + 1

2 [1 − (−1) j]. (3)

This operator annihilates the physical states, i.e., Gj |�phys〉 =
0.

The Schwinger model admits a quantum link model
(QLM) representation, where the gauge fields are described
by spin variables: (Ej, j+1,Uj, j+1) → (Sz

j, j+1, S+
j, j+1). After

this transformation, we can write the Hamiltonian for the
Schwinger QLM. From now on, the gauge fields will carry
only one lattice index: They occupy even lattice sites, while
fermions occupy the odd ones:

H = J
∑
j odd

(�†
j S+

j+1� j+2 + H.c.) +
∑
j even

(
Sz

j

)2

+ μ
∑
j odd

(−1)( j+1)/2 �
†
j � j . (4)

We choose to work on the lowest-energy limit of this model,
where the gauge fields are spin- 1

2 variables. The gauge field
kinetic term becomes trivial in this limit. We perform a
Jordan-Wigner transformation on the fermionic fields,

�
†
j → σ+

j

∏
k< j
k odd

eiπ
(
σ z

k +1
)
/2

, (5)

and drop two trivial terms to find the Hamiltonian

H =
∑
j odd

[
J

2
(σ+

j σ+
j+1σ

−
j+2 + H.c.) + μ

2
(−1)(j+1)/2 σ z

j

]
.

(6)

Lastly, we perform the unitary rotations U = ∏
j σ

x
j σ

x
j+1,

where the product runs only over j (mod 4) = 3. This rota-
tion transforms the fermionic mass term to a magnetic field
proportional to −μ/2. We fix μ = 0 and write the energy
in units of J/2 to reach the form of the Schwinger QLM
Hamiltonian used throughout this work:

HQLM =
∑
j odd

σ+
j σ+

j+1σ
+
j+2 + H.c. (7)

We also modify the Gauss’ law operator Gj defined in Eq. (3)
by using the quantum link model representation, the Jordan-
Wigner transformation, and unitary rotations Gj → U†GjU to
find

Gj = σ z
j − σ z

j−1 − σ z
j+1 − 1. (8)

The rotations actually give a factor of −1 in the Gauss op-
erator for matter sites with j (mod 4) = 1, but this is not
relevant since the physical states are the ones annihilated by
this operator. In this formulation, the operator that counts the
number of particles and antiparticles is

∑
j odd(1 − σ z

j )/2.
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step 1

step N

..
.

1 2 3 4 5 6 7 8 9 10 11 12

FIG. 1. Example of quantum circuit corresponding to a sequen-
tial Trotterized evolution with 12 qubits. Unitaries are defined as
U2 j−1(T/N ) := e−iHj T/N , and Hj = σ+

2 j−1σ
+
2 jσ

+
2 j+1 + H.c. This circuit

is expected to reproduce the evolution under the full Hamiltonian
e−iHQLMT in the limit N → ∞.

III. TROTTERIZED EVOLUTION

In this section, we describe two different quantum circuits
that provide approximations to the exact evolution under the
Schwinger quantum link model Hamiltonian from Eq. (7).
The first is a sequential quantum circuit, based on a regu-
lar Trotterization of the Hamiltonian, while the second is a
random quantum circuit, also based on Trotterization. The
Hamiltonian we are interested in simulating has L/2 parts, and
some of them do not commute, HQLM = ∑L/2

j=1 Hj , where

Hj = σ+
2 j−1σ

+
2 jσ

+
2 j+1 + H.c. (9)

Using the Trotter-Suzuki formula, we approximate the evo-
lution operator exp(−iHQLMT ) as a sequence of unitaries
exp(−iHjτ ) acting for a shorter period of time τ = T/N ,

e−iHQLMT =
⎛
⎝L/2∏

j=1

e−iHjτ

⎞
⎠

N

+ O(Nτ 2). (10)

The right-hand side of this equation defines what we will refer
to as the sequential quantum circuit, which consists of NL/2
gates. A representation of a sequential circuit of 12 qubits is
provided in Fig. 1.

The other kind of quantum circuit considered in this work
is the random quantum circuit. In this case, we apply NL/2
random unitaries e−iHjτ for a short period of time τ . Define
R as a set of NL/2 random integers ∈ [1, L/2], the random
quantum circuit evolution is defined as

ŨR(T ) ≡
∏
j∈R

e−iHjτ . (11)

In order to obtain reliable results with random quantum cir-
cuits, we average quantities over several runs. For instance, if
we want to compute the expectation value of an operator Ô at
time T , we generate K sets Rk , k = 1, . . . , K , each consisting

of NL/2 random sites, and average out the operator Ô over
different random circuit runs. Then the expectation value of Ô
at time T is defined as

〈Ô〉K,T = 1

K

K∑
k=1

〈ψk (T )| Ô |ψk (T )〉 , (12)

where |ψk (T )〉 = ŨRk (T ) |ψ (0)〉 is the state evolved by the
random circuit defined by Rk , and |ψ (0)〉 is the initial state.

IV. QUANTUM SCARS

In this section, we describe our procedure to find scar states
in the Schwinger model. Before that, we introduce the PXP
model, which is the model where the quantum many-body
scars have been initially studied in the literature. We also de-
scribe how to map the PXP model to the Schwinger QLM. The
existence of such mapping implies the presence of quantum
many-body scars also in the Schwinger QLM, and we identify
them in this section.

A. Scar states in PXP model

In Ref. [17], the authors realized a 51-qubit quantum sim-
ulator consisting of 57Rb atoms trapped in an optical lattice.
The atoms are organized in a one-dimensional array, and they
can be either in the ground state |1〉 or in a highly excited
Rydberg state |0〉. In this system, nearby excitations are highly
suppressed, therefore, the atoms dynamics is appropriately
captured by the PXP model Hamiltonian

HPXP =
N∑

j=1

Pj σ x
j+1Pj+2, (13)

where Pj is the ground-state projector Pj = |1 j〉 〈1 j |. The
presence of Pj and Pj+2 enforces the Rydberg blockade mech-
anism: the evolution under the PXP Hamiltonian does not
create nearby excitations.

The authors compared the decay of the domain wall density
oscillations for a system of 25 atoms initialized in two dif-
ferent states, the Néel state |0101 . . .〉 and the ferromagnetic
state |11 . . .〉. They observed that when the initial state is
the Néel state, the oscillations last much longer than for the
ferromagnetic state. In fact, the Néel state takes longer to
thermalize than other “typical” physical configurations.

Following this experiment, a sequence of theoretical stud-
ies by Turner et al. [18,19] indicated that the existence of
physical states with long thermalization times is a conse-
quence of highly nonthermal eigenstates in the spectrum,
named quantum many-body scars. In the PXP model, the
dynamics of physical states is constrained by the Rydberg
mechanism, hence, the theory weakly breaks ergodicity. As
a consequence, in this case we cannot rely on the eigenstate
thermalization hypothesis (ETH) to describe the long-time
behavior of quantum states [29,30,37], i.e., there are states
that prevent physical observables from relaxing to the thermal
value predicted by the canonical ensemble, even after a long-
time evolution.
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B. Mapping PXP model onto the Schwinger model

In this work, we are interested in states of long thermaliza-
tion times in the Schwinger model. In Ref. [32], the authors
describe how to map the PXP model to the Schwinger QLM.
The mapping is based on interpreting the spins in the PXP
model as gauge fields in the Schwinger QLM, in such a way
that a system with N spins in the PXP model corresponds to a
system with L = 2N lattice sites in the Schwinger QLM. More
precisely, consider the state |α1α2 . . . αN 〉 in the PXP model,
where |α j〉 = |0〉 or |1〉 at site j. We identify |α j〉 as the state of
the gauge field occupying the lattice site 2 j in the Schwinger
QLM. Then we use the Gauss’ law to determine the state of
the missing odd lattice sites, which correspond to matter par-
ticles. Hence, the mapping between states is |α1α2 . . . αN 〉 →
|β1α1β2α2 . . . βNαN 〉 with |βk〉 defined by Gk |αk−1βkαk〉 = 0.
On the Hamiltonian level, the mapping between the terms is
Pjσ

x
j+1Pj+2 → σ+

k σ+
k+1σ

+
k+2 + H.c., with k = 2 j − 1. Creat-

ing an excitation in the PXP side corresponds to destroying a
pair of particles in the QLM side. For instance, the Néel state
|0101〉 of the PXP model with four sites, which corresponds
to the vacuum state |00010001〉 in the Schwinger QLM, and
the ferromagnetic state |1111〉 corresponds to the fully filled
state |11111111〉. With the mapping between the PXP model
and the Schwinger QLM established, scar states must occur in
the Schwinger QLM side as well.

C. Scars in the Schwinger model

We use three quantities to identify which eigenstates are
the scar states of the Schwinger model: the overlap with the
vacuum state, the scaling of the entanglement entropy, and
the dynamics of the local magnetization, which we elaborate
below. We work with the Schwinger QLM with L = 40 sites,
and use exact diagonalization methods in this subsection.

The Schwinger QLM Hamiltonian is symmetric under
translations of two sites, hence, we can use the eigenstates of
the two-site translation operator T2 to diagonalize the Hamil-
tonian HQLM. The action of T2 in a physical1 configuration | f 〉
generates a cyclic family of configurations connected by T2,
with multiplicity m f . For instance, the vacuum configurations
| f 〉 = |0001〉 and T2 | f 〉 = |0100〉 are a family of multiplicity
2. We make superpositions of the states in the same family to
build the eigenstates of T2,

|�p, f 〉 =
m f∑

k=1

eipk

√
m f

T k−1
2 | f 〉 , (14)

with eigenvalue e−ip, where the momentum can assume val-
ues p = 2πn/m f , n ∈ Z. For L = 40 lattice sites, the Hilbert
space has dimension 766.2 Throughout this project, we work

1By physical we mean that | f 〉 is a spin configuration allowed by
the Gauss’ law: Gj | f 〉=0 for all odd j.

2The physical Hilbert space dimension, before taking
translation symmetry into consideration, is dim(H1/2

L ) =
2 + ∑ L

2 −2
2

i=1
(2i+

L
2 −2i

2 )!

(2i)!(
L
2 −2i

2 )!
+ 1 + ∑ L

2 −4
2

i=1
(2i+

L
2 −2−2i

2 )!

(2i)!(
L
2 −2−2i

2 )!
+ 1. For gauge

fields of spin s, the physical Hilbert space dimension generalizes to
dim(Hs

L ) = dim(s) + (dim(s) − 1)[dim(H1/2
L ) − 2].

on the zero-momentum sector, and we work with two basis
sets: the physical basis {|� f 〉} of T2 eigenstates, where p = 0
is implied, and the energy eigenstates {|En〉}.

As discussed before in Ref. [17], the Néel state has an
anomalous slow thermalization time when compared to a
typical configuration such as the ferromagnetic state. In the
Schwinger QLM, the Néel state corresponds to the vacuum,
while the ferromagnetic state corresponds to the fully filled
state. In Fig. 2, we compare the evolution of a local observ-
able, the magnetization at the center of the spin chain, for
these two states. At t = 10, the fully filled state is already
thermalized since the local magnetization after this point only
oscillates with low amplitude around the thermal value3 of the
local magnetization. On the other hand, for the vacuum state
even longer after t = 10, the local magnetization still oscil-
lates with high amplitude. For this reason, in the Schwinger
QLM we use the overlap with the vacuum state to identify
scar eigenstates.

In Fig. 3(a), we have the entanglement entropy as a func-
tion of the energy for all eigenstates |En〉. The Hilbert space
partition used to compute the entanglement entropy is HA ⊗
HB, where HA is the first L/2 spins and HB is the other L/2
spins. For each eigenstate, we compute the entanglement en-
tropy S(ρA) = −TrA(ρA ln ρA), where ρA = TrB(ρn) and ρn =
|En〉 〈En|. The majority of eigenstates have entanglement en-
tropy S > 3. In Fig. 3(d), we show how the entanglement
entropy scales for some states, including those with low entan-
glement entropy. Most eigenstates are distributed as expected
by ETH following a volume law. There are, however, a class
of states with subvolume behavior, which violate ETH. In
Fig. 3(b), we have the overlap between the energy eigenstates
and the vacuum state. As discussed in the previous section, the
vacuum state in the Schwinger QLM corresponds to the Néel
state of the PXP model, and both have much longer thermal-
ization times than a typical physical configuration such as the
fully filled state. The vacuum state also has several revivals
in the Loschmidt echo, defined as the overlap between the
evolved state and the initial state, which is another indication
of slow thermalization. Hence, we use the overlap as a signa-
ture to track which eigenstates are behind long thermalization
behavior of the vacuum. In Fig. 3(c), we take a local operator,
the magnetization in the center of the spin chain, and com-
pute its expectation value for each eigenstate. We compare
this with the thermal value expected for this quantity, and
we observe that some states highly deviate from the thermal
prediction. The points highlighted in purple (dark gray) are
the same eigenstates through Figs. 3(a)–3(c), and these have
all of the following properties: low entanglement entropy, high
overlap with the vacuum, and they highly violate the thermal
expectation of a local observable. For these reasons, we will
refer to them as the quantum many-body scar states of the
Schwinger QLM for L = 40 lattice sites.

In our investigation, we notice that a superposition of
eigenstates equally spaced in energy will always have re-

3Given a state |ψ〉, we fix its inverse temperature β using the
equation Tr(ρψH ) = 〈ψ | H |ψ〉, where ρψ is the thermal state ρψ =
e−βH/Z , and Z = Tr(e−βH ). Then we use ρψ to compute the expec-
tation value of the operator Ô as Tr(ρψ Ô).
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FIG. 2. Evolution of expectation value of the local magnetization at the center of the spin chain, at site j = 21, generated using exact
diagonalization. The purple (dashed, dark gray) curve has the vacuum as initial state, while the green (solid, light gray) curve starts at the fully
filled state. The constant curve at 〈σ z

21〉 = 0.105 indicates the thermal value of the local magnetization for both vacuum and fully filled states.

vivals in the Loschmidt echo. Consider the initial state |ψ0〉 =∑N
n=0(|−nω〉 + |nω〉)/

√
2N , where HQLM |nω〉 = nω |nω〉.

The Loschmidt echo at time t is |∑N
n=0 cos(nωt )/N |2, and

this function reaches unity at times t = 2πk/ω for k =
0, 1, 2, . . . . Thus, the occurrence of revivals in the Loschmidt
echo is expected when the superposed eigenstates are evenly
spaced in energy. In both the Schwinger QLM and the PXP
model, the scar states are nearly equidistant in energy, leading
to revivals in the Loschmidt echo when superposed. However,
a state exhibiting revivals in the Loschmidt echo may not
necessarily strongly overlap with the scar states; rather, it may
belong to another class of nonthermal states. We also notice
that the Schwinger QLM may have other classes of scar states.
In the entanglement entropy scaling plot, Fig. 3(d), we see
that the scaling of eigenstate |E3〉 is closer to the scars than
to the other typical eigenstates. In Figs. 3(b) and 3(c), we see
that there is an arc of states right below the quantum many-
body scars in purple (dark gray), that also highly overlap with
the vacuum and violate the thermal expectation for the local
magnetization. Our numerical simulations show that a super-
position of these states also have slow thermalization times for
the local magnetization, and for these reasons we believe they
could be regarded as a different class of quantum scar states.

V. RESULTS

In this section, we provide results obtained by implement-
ing the sequential and random quantum circuits defined in
Sec. III. First, we show that the sequential quantum circuit
with time step τ = 0.1 provides a good approximation to the
evolution obtained using exact diagonalization. Then, we in-
vestigate the evolution of different initial states under random
quantum circuits with τ = 0.1, and compare to the sequential
quantum circuit results. For the states considered here, we
observe that random quantum circuits provide a particularly
bad approximation to the evolution of nonthermal states, such
as states that highly overlap with the quantum many-body
scars.

Throughout this section, we use the normalized standard
deviation to attest the quality of the results generated by the
quantum circuits. The standard deviation we use is defined as

(Q) =
√∑N

n=0[Q(nτ ) − Q̄(nτ )]2∑N
n=0 Q̄(nτ )2

, (15)

where Q̄(nτ ) is the reference value for a physical quantity
Q at time t = nτ , and Q(nτ ) is the approximate value of

Q at time t = nτ . Specifically, to assess the quality of the
sequential Trotter evolution, we choose Q(nτ ) and Q̄(nτ ) as
quantum expectation values obtained from sequential Trotter
evolution and exact evolution. On the other hand, to estimate
the effect of randomization of the circuits, Q(nτ ) is the sta-
tistical expectation value defined in Eq. (12) and Q̄(nτ ) is the
corresponding value obtained from sequential Trotter evolu-
tion. This standard deviation has contributions from all times
before t = Nτ , hence, we are able to discuss the evolution of
the standard deviation, which is computed by changing the
number of Trotter steps in the sums.

For random quantum circuits, there is an error associated
with the standard deviation due to the random choice of lattice
sites. In fact, each standard deviation (Q) comes with a label
k associated with the set of random sites used to generate the
evolution. If we have a total of M circuit runs available and
each standard deviation k (Q) is computed using K runs, then
the error is given by

Err(Q) =
√∑M/K

k=1 [k (Q) − ̄(Q)]2

M/K
, (16)

where ̄(Q) is the average of the M standard deviations
k (Q) available.

A. Sequential quantum circuit

We simulate the evolution of the local magnetization and
the Loschmidt echo of the vacuum and the fully filled state
using sequential quantum circuits with time step size τ = 0.1
from t = 0 to 10. This amounts to 100 Trotter steps, each
consisting of two sets of 10 commuting gates, similar to what
is represented in Fig. 1, but in our simulations we use L = 40
lattice sites. The standard deviations from the sequential quan-
tum circuit to the exact diagonalization results are given in
Table I. In all cases, the standard deviation is smaller than 0.1,
which means that for this time step size the approximation is

TABLE I. Standard deviation of local magnetization and
Loschmidt echo, comparing sequential quantum circuit to the exact
diagonalization results. We use time step size of τ = 0.1 and final
time T = 10.

Initial state 
(〈
σ z

21

〉)
 (Loschmidt)

Vacuum 0.056 0.032
Fully filled 0.077 0.036
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FIG. 3. (a) Entanglement entropy of energy eigenstates. Scar
states in purple (dark gray), and some typical states, arbitrarily cho-
sen, in green (light gray). (b) Overlap of the energy eigenstates with
the vacuum state. Eigenstates with overlap with the vacuum state
smaller than 10−12 are not shown. (c) Expectation value of local
magnetization for each energy eigenstate. The curve is the thermal
value of the local magnetization. (d) Entanglement entropy of some
energy eigenstates as a function of the subsystem size lA. In these
plots, some eigenstates En are labeled by their energy index n, a
number that runs from 0 to 765, and the scar states are shown in
purple (dark gray).

FIG. 4. Evolution of local magnetization for the vacuum, purple
(dark gray) curves, and the fully filled state, green (light gray) curves,
using exact diagonalization (solid lines) and sequential quantum
circuit with time step τ = 0.1 (dashed lines). Final time standard
deviations are provided in the second column of Table I.

close to the exact result. Indeed, in Fig. 4 we plot the evolution
of the local magnetization for both states, and visually the se-
quential and exact curves are quite similar, another indication
that the standard deviation <0.1 is small.

B. Random quantum circuits

We maintain time step size τ = 0.1, and now use ran-
dom quantum circuits to simulate the evolution of the local
magnetization at the center of the chain, at site j = 21, and
the Loschmidt echo. We simulate M = 1000 different ran-
dom quantum circuits for each different initial state, and
separate them in 10 groups of K = 100 to compute errors
in the standard deviation. The standard deviations for local
magnetization and Loschmidt echo are given in Fig. 5. We

FIG. 5. Standard deviation of local magnetization 〈σ z
21〉 and

Loschmidt echo for different initial states as function of the projec-
tion of the initial state in the quantum many-body scars sector. This is
the standard deviation of the random quantum circuit evolution with
respect to the sequential quantum circuit, with time step size τ = 0.1
and duration T = 10. The lines are error bars calculated using 1000
circuit runs separated in 10 groups of 100 runs, and the markers are
the mean values.
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FIG. 6. Evolution of the Loschmidt echo for different initial
states, computed using sequential quantum circuits with time step
size τ = 0.1. The Loschmidt echo is the overlap between the evolved
state and the initial state.

show the results as function of the projection in the quan-
tum scar states sector P̂scars = ∑

s |s〉 〈s|, where the sum runs
over the scar eigenstates of the Hamiltonian. Aside from the
vacuum and the fully filled state, we simulate the evolution
of other four eigenstates of the two-site translation operator,
as in Eq. (14). The fundamental configurations that generate
the cyclic families representing the states simulated are as
follows: two particles at sites j = 1 and 3 (one pair of particles
close to each other), two particles at sites j = 1 and 19 (one
pair of particles far from each other), four particles at j = 1,
3, 5, and 7 (two pairs, all particles close to each other), and a
configuration full of particles, except for sites j = 1 and 3. We
label these states as |�1〉, |�2〉, |�3〉, and |�4〉, respectively.

The results in Fig. 5 show that states that highly over-
lap with the scars, such as the vacuum and |�1〉, have high
standard deviation of the Loschmidt echo and the local mag-
netization. If the initial state has low 〈P̂scars〉, it does not
necessarily mean that the standard deviation is small, which
is the case of |�2〉 and |�3〉. Although these states do not
highly overlap with the scars, we observe persistent revivals
in the Loschmidt echo in Fig. 6. Such behavior is character-
istic of nonthermal states. This is not the case for the fully
filled state or |�4〉: they have low overlap with the scars,
there are no revivals in the Loschmidt echo, and they have
low standard deviation. These results reveal that nonthermal
states are the ones with higher standard deviation, suggest-
ing that the nonthermal sector of the Hamiltonian is more
sensitive to randomness, including the quantum many-body
scars. In Fig. 7, we plot the evolution of the standard de-
viation of the Loschmidt echo for the same initial states as
in Fig. 5, but this time all 1000 runs are averaged out, i.e..
there is just one point and no error bars. Before t = 3 the
standard deviation of the Loschmidt echo are all close to
each other, but after t = 3 there is a clear separation between
thermal and nonthermal states, and states that highly overlap
with the quantum many-body scars have the highest standard
deviations. This feature can potentially be used to identify
nonthermal states in relatively short simulations. We note that
the nonthermal behavior could also be spotted at early times

FIG. 7. Evolution of the standard deviation of the Loschmidt
echo for different initial states. This is the standard deviation of
the random quantum circuit evolution with respect to the sequential
quantum circuit, with time step size τ = 0.1, duration T = 10. The
random quantum circuits were averaged over K = 1000 runs for each
state.

observing the height of the Loschmidt echo peaks between
t = 0 and 4. However, we believe the standard deviation,
especially the evolution plot in Fig. 8, is a valuable tool as it
provides another method to separate thermal and nonthermal
states.

C. Thermal and nonthermal states

In the last paragraph, we discussed how the standard de-
viation and the peaks in the Loschmidt echo can be used to
separate thermal from nonthermal states. In this paragraph,
we use the entanglement entropy and the local magnetization
as further proof to categorize the states. In Fig. 8, we used se-
quential quantum circuits of time step size τ = 0.1 to simulate
the evolution of the half-chain entanglement entropy for the
different initial states introduced in the previous paragraphs:
vacuum state, fully filled state, |�1〉, |�2〉, |�3〉, and |�4〉.
Comparing the entanglement entropy values at t = 0 and 5,
we observe that the fully filled state and the state |�4〉 are

FIG. 8. Evolution of the entanglement entropy for different ini-
tial states, computed using sequential quantum circuits with time
step size τ = 0.1. This is the half-chain entanglement entropy: The
Hilbert space partition used is HA ⊗ HB, where HA consists on the
first L/2 spins, and HB on the other L/2 spins.
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FIG. 9. Evolution of the local magnetization 〈σ z
21〉 for differ-

ent initial states, computed using sequential quantum circuits with
time step size τ = 0.1. The constant curve at 〈σ z

21〉 = 0.105 repre-
sents the thermal value of the local magnetization for these initial
states.

the ones that increased faster in this period. On the other
hand, in this same period the vacuums |�1〉, |�2〉, and |�3〉
had slower growth of the entanglement entropy. We expect
thermal states to have fast growth of entanglement entropy,
hence, Fig. 8 is an evidence that the vacuum states |�1〉, |�2〉,
and |�3〉 are nonthermal states, while the fully filled state and
|�4〉 are thermal. We also used sequential quantum circuits of
time step size τ = 0.1 to simulate the evolution of the local
magnetization in Fig. 9. The vacuums |�1〉, |�2〉, and |�3〉
highly oscillate in the period from t = 0 to 10, while the fully
filled state and |�4〉 are the states that considerably decrease
their oscillation amplitude to approach their thermal value of
〈σ z

21〉 = 0.105 in this timescale.

VI. DISCUSSION

The discovery of quantum many-body scar states is one
of the exciting results in the field of quantum simulations of
lattice gauge theories. In a previous work [15], we proposed a
strategy for quantum simulation of the Schwinger model using
three-body gates engineered by Raman beams and trapped
ions. In this work, we use the mapping from Ref. [32] be-
tween the Schwinger model and the PXP model to identify the
quantum many-body scars in the Schwinger model. Then we
compare the behavior of thermal and nonthermal states under
evolution generated by sequential and randomized quantum
circuits.

The sequential and random quantum circuits used are
defined in Sec. III, and the quantum many-body scars are
described in Sec. IV and in Fig. 3, where we show how
they highly violate the eigenstate thermalization hypothesis.
In Sec. V, we explored the dynamics of physical states using
Trotterization with quantum circuits consisting of three-body
gates as engineered in our previous work [15]. We used the
normalized standard deviation defined in Eq. (15) to evalu-
ate the quality of different quantum circuits. For a quantum
simulation of total time T = 10, sequential quantum cir-
cuits with N = 100 Trotter steps, or τ = 0.1, provide a good
approximation to the exact diagonalization results, with

standard deviations smaller than 0.1, as described in Table I.
Each Trotter step consists of 20 three-body gates, which is
the number of terms in the Schwinger QLM Hamiltonian of
Eq. (7) with L = 40 sites. In Fig. 4 we compare the evolution
of the local magnetization generated by a sequential circuit
with τ = 0.1 to the exact evolution. This direct comparison
for the vacuum and the fully filled state corroborate that stan-
dard deviations of <0.1 are quite small.

The standard deviations are larger when using random
quantum circuits to generate the evolution, and in this case
we have to consider errors, defined in Eq. (16), coming from
the different choices of random sites for each random quantum
circuit. We generated 1000 different random quantum circuits
to perform simulations for six initial states. In each case, we
used the random quantum circuits to evolve the Loschmidt
echo and the local magnetization.

In Fig. 5 we have the standard deviation at time t = 10
as function of the projection of the initial state in the scars
sector. We observe a similar trend for both Loschmidt echo
and local magnetization: States that highly overlap with the
scars have high standard deviation of the random quantum
circuits with respect to the sequential one, which is the case
of the vacuum and the state |�1〉. On the other hand, the
fully-filled state and states |�2〉, |�3〉, and |�4〉 have lower
projection in the scars sector, with |�2〉 and |�3〉 having the
highest standard deviations. In Fig. 6 we show the evolution
of the Loschmidt echo for all states simulated: the evolution
here is generated by a sequential circuit with τ = 0.1. The
revivals in the Loschmidt echo only happen for states that
have high standard deviation in Fig. 5, which is a suggestion
that the nonthermal states are more sensitive to randomization.
The nonthermal behavior of the states |�1〉, |�2〉, |�3〉 and
the vacuum is evident from the presence of revivals in the
Loschmidt echo, from the slower growth of entanglement as
shown in Fig. 8, and the persistent oscillations away from
the thermal value in the local magnetization in Fig. 9. The
results obtained from the initial states simulated encourage
us to believe that the nonthermal sectors of the Schwinger
QLM Hamiltonian, including the quantum many-body scars,
are destroyed by the presence of random gates as the gates
now promote mixing of the nonthermal states with states in
the thermal sector.

Upon trying to construct an effective Hamiltonian to cap-
ture the behavior of the scar states under evolution by a
random circuit, we observe that the random gates do not
respect the two-site translation symmetry of the original
Hamiltonian, hence, we need to consider a Hilbert space with-
out the equivalence classes of Eq. (14). This increases the
Hilbert space size by a factor of ∼L/2, and to identify the
new scars we need to perform several exact diagonalizations,
which becomes computationally costly even if we consider
only a few random quantum circuit runs. Another direction
for a continuation of this work would be exploring different
classes of quantum scars, which have been identified for the
PXP model [38]. Moreover, by including local measurements
into the random circuits, one might investigate entanglement
transitions [39], at a critical measurement rate which we ex-
pect to differ significantly between scar states and generic
states.
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[26] L. Logarić, S. Dooley, S. Pappalardi, and J. Goold, Quantum
many-body scars in dual-unitary circuits, Phys. Rev. Lett. 132,
010401 (2024).

[27] A. S. Aramthottil, U. Bhattacharya, D. González-Cuadra, M.
Lewenstein, L. Barbiero, and J. Zakrzewski, Scar states in de-
confined Z2 lattice gauge theories, Phys. Rev. B 106, L041101
(2022).

[28] D. Banerjee and A. Sen, Quantum scars from zero modes in an
abelian lattice gauge theory on ladders, Phys. Rev. Lett. 126,
220601 (2021).

[29] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog.
Phys. 81, 082001 (2018).

[30] G. De Palma, A. Serafini, V. Giovannetti, and M. Cramer,
Necessity of eigenstate thermalization, Phys. Rev. Lett. 115,
220401 (2015).

[31] A. Chandran, T. Iadecola, V. Khemani, and R. Moessner, Quan-
tum many-body scars: A quasiparticle perspective, Annu. Rev.
Condens. Matter Phys. 14, 443 (2023).

[32] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose, A. Gambassi,
and M. Dalmonte, Lattice gauge theories and string dynamics
in Rydberg atom quantum simulators, Phys. Rev. X 10, 021041
(2020).

[33] M. P. A. Fisher, V. Khemani, A. Nahum, and S. Vijay, Random
quantum circuits, Annu. Rev. Condens. Matter Phys. 14, 335
(2023).

[34] S. Czischek, G. Torlai, S. Ray, R. Islam, and R. G.
Melko, Simulating a measurement-induced phase
transition for trapped-ion circuits, Phys. Rev. A 104, 062405
(2021).

[35] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S.
Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel, K. Temme and A.
Kandala, Evidence for the utility of quantum computing before
fault tolerance, Nature (London) 618, 500 (2023).

[36] A. Morvan, B. Villalonga, X. Mi, S. Mandrà, A. Bengtsson, P.
V. Klimov, Z. Chen, S. Hong, C. Erickson, I. K. Drozdov, J.
Chau, G. Laun, R. Movassagh, A. Asfaw, L. T. A. N. Brandäo,
R. Peralta, D. Abanin, R. Acharya, R. Allen, T. I. Andersen, K.
Anderson et al., Phase transition in random circuit sampling,
arXiv:2304.11119.

[37] M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body
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