PHYSICAL REVIEW A 109, 052441 (2024)

Solving various NP-hard problems using exponentially fewer qubits on a quantum computer

Yagnik Chatterjee,l’z’* Eric Bourreau,?" and Marko J. Ran&i¢!+*
"TotalEnergies, Tour Coupole - 2 place Jean Millier, 92078 Paris la Défense cedex, France
2LIRMM, Université de Montpellier, CNRS, 161 rue Ada, 34392 Montpellier Cedex 5, France

® (Received 5 January 2024; accepted 13 May 2024; published 30 May 2024)

NP-hard problems are not believed to be exactly solvable through general polynomial time algorithms. Hybrid
quantum-classical algorithms to address such combinatorial problems have been of great interest in the past
few years. Such algorithms are heuristic in nature and aim to obtain an approximate solution. Significant
improvements in computational time and/or the ability to treat large problems are some of the principal promises
of quantum computing in this regard. The hardware, however, is still in its infancy and the current noisy
intermediate-scale quantum (NISQ) computers are not able to optimize industrially relevant problems. Moreover,
the storage of qubits and introduction of entanglement require extreme physical conditions. An issue with
quantum optimization algorithms such as the quantum approximate optimization algorithm is that they scale
linearly with problem size. In this paper, we build upon a proprietary methodology which scales logarithmically
with problem size—opening an avenue for treating optimization problems of unprecedented scale on gate-based
quantum computers. To test the performance of the algorithm, we first find a way to apply it to a handful of
NP-hard problems: Maximum Cut, Minimum Partition, Maximum Clique, Maximum Weighted Independent Set.
Subsequently, these algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and
on a real quantum computer up to graph sizes of 256. To our knowledge, these constitute the largest realistic
combinatorial optimization problems ever run on a NISQ device, overcoming previous problem sizes by almost

tenfold.

DOI: 10.1103/PhysRevA.109.052441

I. INTRODUCTION

NP-hard problems are problems that do not have algo-
rithms that can give an exact solution in polynomial time,
whereas it is “easy” to verify the solution if it is known
[1-3]. While finding exact solutions to large problems is
difficult, there exist many algorithms that find approximate
solutions to these problems [4—7]. In the scope of quantum
computing, a huge amount of research has been carried out
on hybrid quantum-classical algorithms [8-20]. In such al-
gorithms, quantum circuit measurements are used in tandem
with a classical optimization loop to obtain an approximate
solution.

One of the most commonly used hybrid algorithms is
the quantum approximate optimization algorithm (QAOA)
[8,21-24]. One of the main drawbacks of the QAOA is that
the number of qubits required scales linearly with problem
size [25]. This means that a graph of n nodes would require
an n-qubit quantum computer to be solved. At the moment,
the largest available universal gate-based quantum computer
is IBM’s Osprey device, containing 433 qubits. All the qubits
are not of the same quality and the larger the problem, the

“yagnik.chatterjee @totalenergies.com

feric.bourreau @lirmm.fr

Present address: University of Heidelberg, Institute of Com-
puter Engineering, Im Neuenheimer Feld 368, 69120 Heidelberg,
Germany; marko.rancic @ziti-uni-heidelberg.de

2469-9926/2024/109(5)/052441(13)

052441-1

more likely it is to obtain noisier results due to the presence
of qubits with higher error rates. Moreover, these qubits are
not all-in-all connected, meaning that in case of large sized
problem, numerous SWAP gates would have to be used in order
to run the circuit, leading to more noise.

It is therefore not surprising that a smaller scale quantum
computer is likely to provide much better results that a larger
one. In light of this, an algorithm to encode the Maximum
Cut problem on a quantum computer using logarithmically
fewer qubits was developed [26]. This encoding allows us to
represent much larger problems using a fairly small number
of qubits. Therefore a Maximum Cut problem with a graph of
n nodes can be represented using only [log,] qubits.

Since the developed algorithm deals specifically with solv-
ing the Maximum Cut problem, a logical extension of this
algorithm would be to expand the applicability of the algo-
rithm to other problems. This can be approached in two ways,
as shall be demonstrated in the following sections.

The paper is structured as follows: In Sec. II B, we describe
in detail the logarithmic encoding of the Maximum Cut prob-
lem on a quantum computer. In Sec. II C, we show how this
algorithm can be applied on a variety of NP-hard problems
by converting them, directly or indirectly, to the Maximum
Cut problem. In Sec. IID, we show how any quadratic un-
constrained binary optimization problem (QUBO) problem
can be treated using the logarithmic encoding. In Sec. III,
experimental results of all the methods described in the previ-
ous sections are shown. Notably, we show quantum simulator
results with instances of sizes of over a hundred nodes or

©2024 American Physical Society

https://ror.org/04sk34n56
https://ror.org/013yean28
https://ror.org/051escj72
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.052441&domain=pdf&date_stamp=2024-05-30
https://doi.org/10.1103/PhysRevA.109.052441

CHATTERJEE, BOURREAU, AND RANCIC

PHYSICAL REVIEW A 109, 052441 (2024)

objects, as well as quantum hardware (QPU) results for prob-
lem sizes up to 256.

II. METHODS

A. An introduction to the quantum model of computation

Quantum computing [27-30] presents a new way of doing
computations by making use of fundamental properties of
quantum mechanics such as superposition and entanglement.
A classical bit consists of two possible states, 0 and 1. In
quantum computing the first building block is the quantum
bit or qubit. Much like a classical bit, a qubit has two basis
states |0) and |1).

However unlike a classical bit, a qubit can exist in any
linear combination of |0) and |1). Let |v) define the state of a
qubit, then it can be mathematically defined as

[¥) = «l0) + BI1), (1)

where o and B are complex coefficients such that |a|> +
|8I> = 1. The coefficients « and B are such that |«|> and
|B|? represent the probability of a qubit being in the state
|0) and |1), respectively. The existence of qubits in all the
intermediate states between 0 and 1 is called superposition.

Another important concept is that of entanglement. Two
qubits are said to be entangled if they cannot be represented
as a product state. This means that they can only be written
in a combined superposition of all possible two-qubit basis
states. Let |W) be an N-qubit state. It can be represented
mathematically as follows:

> aili). 2)

ief0, 1}V

To completely describe the N-qubit state, we require 2V
coefficients. If there is no entanglement then each qubit can
be expressed separately. From Eq. (1) it can be seen that we
need two coefficients to encode a single qubit and therefore we
would need only 2N coefficients to represent N nonentangled
qubits. Entanglement is therefore of paramount importance
in quantum computing because it helps encode much more
information.

The specific model of quantum computation used in this
paper is called gate-based quantum computing. There exist
other types of quantum computing such as quantum annealing
[31], topological quantum computing [32], and measurement-
based quantum computing [33]. These are, however, beyond
the scope of this paper. In the gate-based model we create a
quantum circuit which is a combination of qubits and opera-
tions on qubits.

Operations on qubits are known as quantum gates. Math-
ematically, these can be represented by square matrices. A
important property of gates is that they must be Hermitian.
There are two basic types of gates:

(1) Single qubit gates. They act on a single qubit and alter
the state of the qubit.

(2) Multiple qubit gates. These gates act on multiple
qubits. These are also referred to as entangling gates. The
simplest entangling gate is the CNOT gate.

All quantum operations can be represented using single
qubit gates and the CNOT gate. The gate-based model is there-
fore a universal model of quantum computation.

Once we have created a circuit out of qubits and gates
we finally need to “measure” our qubits, which is equivalent
to calculating the expectation value the system. Let all the
gates in the circuit be represented by unitary matrix U. If it
is applied to the initial state |¥), we have the following final
state:

V') = U|W). 3)

The expectation value of a measurable H is given by the
following expression:

(H) = (V|H|¥'). 4)

A measurable can be mathematically represented by a Her-
mitian matrix.

Since quantum computers were first theorized in the 1980s,
the theoretical advantages of quantum algorithms compared
with their classical counterparts have been proven for several
problems [34-36]. However, implementing them requires a
significant amount of high-quality quantum resources. Specif-
ically, they need quantum computers with many qubits as well
as the ability to handle a lot of quantum operations (gates)
without generating much noise. In other words, they should
be able to run deep quantum circuits on several qubits. Such
quantum computers might become available in the medium
term but at present we have noisy intermediate-scale quantum
(NISQ) computers, which cannot handle these algorithms.
This has led to a significant amount of research in the develop-
ment of hybrid algorithms that can run on currently available
hardware.

B. A qubit-efficient Maximum Cut algorithm

Contemporary quantum optimization algorithms in general
scale linearly with problem size. This means that if the prob-
lem consists of an n node graph, the algorithm will require
n qubits to solve the problem. Note that to solve a problem
here implies to obtain an approximate solution. Following
Ref. [26], we present an algorithm that scales logarithmically
with the problem size. For a problem of size n, the number of
qubits required is [log, n].

1. Description of the algorithm

Recall first the definition of Maximum Cut:
Maximum Cut

Input: A weighted graph G(V, E, w).

Task: Find xe {1, -1}Vl that maximizes
Zij wi/‘w vV {(i, j) € E}, where w;; are the weights
on the edges.

Given a graph G(V, E), the Maximum Cut can be repre-

sented using the graph Laplacian matrix. The graph Laplacian
is defined as follows:

degree(i) ifi=j
Lij = { —wj; ifi#jand (i, j) € E 5)
0 otherwise.

Note that the degree here is a weighted degree.

052441-2

SOLVING VARIOUS NP-HARD PROBLEMS USING ...

PHYSICAL REVIEW A 109, 052441 (2024)

Quantum Part: Algorithm 1

Calculate the Expectation
Value /Energy
H=-L
C(0) = (L (0)| H [¥(0))

i/ UO) [

The Variational Ansatz /

Classical optimization loop to minimize the
expectation value:

Update the parameters until the best value is
reached.
AP — Value of § at Pt iteration.
JL
From the best parameters
obtained, interpret the required
partition vector.
C*(6*) =min C(0)

0r —V

__

FIG. 1. Diagrammatic representation of the hybrid quantum-
classical algorithm.

The Maximum Cut value is given by the following equa-
tion [37]:

Maximum Cut = }thLx, (6)

where L is the Laplacian matrix and x € {1, —1}/V! is the bi-
partition vector.

Due to fact that the Laplacian is a Hermitian matrix, it
resembles a Hamiltonian of an actual physical system. The
quantum analog of Eq. (6) is

COr-+-0,) =2""(W(O -)LV (O, ---6,)), (]

where L is the Laplacian matrix of the graph, |¥) is the
parametrized ansatz, n is the size of the graph, and 6 =
{6) - - -6,) are the variables to be optimized. 2”2 is the nor-
malization constant.

As described in Fig. 1, we have designed a variational al-
gorithm that finds a good approximation to the best Maximum
Cut. Starting from the initial values of 6 parameters, we call a
quantum circuit to evaluate the objective function (Algorithm
1) and run a classical black box optimization loop over the 6
parameters (Algorithm 2). As a result, we obtain 6* to evaluate
the best solution.

To evaluate the expectation value C on a quantum com-
puter, first we need to create the ansatz |W(6, - - - 6,)). To do
this the following steps are required:

(1) We define a function R(6;) as follows:

_JO i 0K <
R(Qk)_{l if 1 <6 <2m. ®)

Therefore,

ifO0<b,<m
if m <6 <2m.

exp[iTR(0))] = {1_1 ©)
The point of doing this is that not all classical optimizers
accept binary variables. The function R converts a continuous
variable into a binary one, which is what we need.
(2) Given a graph G(V,E) such that |V| =n and |E| =
m, to create the ansatz we first define the number of qubits

ALGORITHM 1. Log encoding of Maximum Cut: Building the
objective function.

Input: Laplacian matrix of a graph G(V, E)
1 L +Graph Laplacian of size |V| x |V|
2 N « [log, |V]]
L Oy~
3 L* 2=l
Oan vy Oon v

4N
4 He X S Tr(Ji - L*)J; where J = {[]r_, S®*}
i=1
5 6 < List of |V| parameters
6 Function EvalCost (6):
7 Q@ < Quantum Circuit of N qubits
8 Add Hadamard gate to each Qubit
9 U <+ diagonal gate diag(0, R)
10 Apply U to Q
11 F + ExpectationValue(Q, H)
12 return 2!VI72F
13

required as follows:
N = [log, n]. (10)

When the number of nodes are not an exact power of two, we
can adjust L to be of size 2" by adding null matrices of size
2N v, Qv _yy|, as shown in line 3, Algorithm 1.

(3) Create a quantum circuit and apply a Hadamard gate
to all the qubits to achieve an equal superposition of the states
(lines 7 and 8, Algorithm 1).

(4) To the circuit, apply a diagonal gate U (line 9,
Algorithm 1) of the following form:

oI TRO)) 0 0
Uo) — 0 'R 62) 0 . an
0 0 0 €O
Therefore the final ansatz is
(W (9)) = U(O)H®N|0)®N. 12)

ALGORITHM 2. Log encoding of Maximum Cut: Minimizing
the objective function.

Input: EvalCost ()
1 Function Optimizer (EvalCost () 0™):

2 repeat
3 0P + 6 at p*" iteration
4 C <+ EvalCost (6")
5 if C is sufficiently good then
6 C*«C
7 ‘ break
8 else
9 Update 67 — PT1
10 ’ continue
11 end
12 return C”
13

052441-3

CHATTERJEE, BOURREAU, AND RANCIC

PHYSICAL REVIEW A 109, 052441 (2024)

The state in the above equation is obtained in line 10 of
Algorithm 1.

Having an ansatz, we can now define the Laplacian as an
observable and evaluate the measurement [as in Eq. (7)] which
is the energy of the system. Since the classical optimizer min-
imizes the cost function we take the negative of the Laplacian
matrix. Thus the final cost function is

CO) = =2" (W O)ILIV(H)). 13)

To evaluate this expectation value, the Laplacian matrix needs
to be converted into a sum of tensor products of Pauli matrices
(line 4 Algorithm 1, see Appendix A).

Using classical black-box meta optimizers such as
COBYLA, Nelder-Mead or a genetic algorithm (as detailed
in Algorithm 2), we then obtain

C*(0*) = min C(0). (14)

The final parameters obtained 0* gives the bipartition vec-
tor, using Eq. (9).

2. Complexity analysis of algorithm

The algorithm helps us represent large problems (by
current standards of quantum computing) on a quantum com-
puter. Algorithms like the QAOA, for example, require 128
qubits to represent a 128-node Maximum Cut problem. The
same problem can be solved by the proposed algorithm using
only seven qubits. It therefore has the promise of being able
to be applied to interesting and even industrially relevant sizes
using the currently available sizes of NISQ QCs.

Here we try to analyze the time complexity of our algo-
rithm with respect to depth and density of the problem.

The number of CNOT gates required for the QAOA ansatz
is p|E|, where p is the depth of the algorithm and |E| is the
number of edges in the graph. In the worse-case scenario, or
when the graph is a clique, |E| = |[V|>.

The time taken to do a complete measurement will depend
the number of Pauli terms in the decomposition of the Hamil-
tonian matrix. This is because to evaluate every Pauli term we
require a separate circuit [see Eq. (A4)]. For a graph of size
[V],weneed N = [log, |V|] qubits. In the worst-case scenario
we have 4" Pauli terms to measure. Therefore, the complexity
for a measurement will be O(4"). An increase in density
of the graph will increase the number of Pauli terms. Since
N = [log, |V|], the complexity is therefore O(41°2VD) =
o(VI?).

Note that this is exactly the same complexity as if the
expectation were calculated classically. For the vertex whose
corresponding 6 value is between [0,], it is put into the
first partition. For vertex whose corresponding 6 values are
between [, 27r], it is put into the second partition. Then the
expectation can be calculated if one considers whether all the
edges are cut. The process can be finished within O(V?).

However, for sparse matrices, much more efficient schemes
to decompose the Hamiltonian into m summands and calculate
the expectation values with less than m queries to the quantum
computer exist (where m < |V|?). This is discussed in detail
in Appendix E.

In order to calculate one expectation value, we need to eval-
uate O(|V|?) circuits. In a single circuit the number of CNOT

MaxCut

Minimum Max2SAT Partition

Bounded Set] / \\

3SAT Knapsack Subset Sum

\

Set Cover

Vertex Cover

I Exact Cover
Coloring Independent Set
K-Coloring Clique

FIG. 2. Graph of Maximum Cut transformation family for NP-
complete problems.

gates is equal to |V| — 1, |V| being the number of vertices.
Hence we have a total of |V|* cNOT gates.

While QAOA has p|E| < p(JV]*> = [V])/2 number of
CNOT gates, all our circuits are of depth |V| which makes
QAOA dramatically more sensitive to errors (because it has
quadratically more CNOT gates). Moreover, for all practical
purposes, p >> 1 [38], and hence ocp|V |? CNOT gates could be
comparable or even greater than our total of |V|? CNOT gates.

Finally, in our study to propose a new encoding compatible
with NISQ, the search space remains the same as that of
the classical search space. A procedure to reduce the number
of variables has been presented in Ref. [26]. However, this
method is beyond the scope of the current work. Readers
should also refer to follow-up studies [39] where the algorithm
was evaluated on the Maximum Cut problem by using the
alternating optimization procedure [40] which scales polyno-
mially in problem size.

C. Applying the algorithm to other NP-hard problems

A logical next step is to attempt to solve a variety of
combinatorial optimization problems using the algorithm. In
Karp’s paper from 1972 [41], he outlined how we can convert
one NP-complete problem into another. A more recent paper
[42] lists numerous more such reductions. Figure 2 shows a
subset (a transformation family) of these reductions directly or
indirectly relating to Maximum Cut. Here, we follow a similar
logic to convert various NP-hard problems to Maximum Cut.

Note, however, that these conversions might not have a
one-to-one scaling. For example, an n variable Maximum 2-
Sat problem requires us to solve a 2n node Maximum Cut
problem.

In Karp’s paper all the transitions are from one decision
problem to another. Usually in classical computing it would
be considered trivial to convert a decision problem into an
optimization problem. However, our algorithm is inherently
an optimization algorithm and moreover will give various
results for a various runs. The point being it will not respond
well to yes-no decision problems. Therefore, it is important to
make reductions between the optimization versions. Moreover
it is important to make sure that these conversions support a
wide definition of the problems (for example Maximum 3-Sat
instead of 3-Sar).

052441-4

SOLVING VARIOUS NP-HARD PROBLEMS USING ...

PHYSICAL REVIEW A 109, 052441 (2024)

Following are some such polynomial-time reductions of
NP-hard problems:

1. Minimum Partition to Maximum Cut
Minimum Partition

Input: AsetS ={w:w € Z™"}.

Task: Find A CS that minimizes
ZwléA wy | .

This can be converted to the maximum cut problem in the
following manner:

(1) Create a graph such that there is a node for every
number.

(2) For every pair of nodes (i, j), connect them using an
edge of weight w; * w;.

(3) The maximum cut value of this graph gives a bi-
partition that is equivalent to the minimum partition.

| ZwkeA Wi —

2. Maximum 2-Sat to Maximum Cut
Maximum 2-Sat

Input: A set of m clauses C = {wy(x, +x4) : Xp, X4 €
XUX'} where X ={x:x€{0,1}}, X' ={x:x € X}, and
w,, are the clause weights.

Task: Find the variable assignment X that maximizes the
combined weight of the satisfied clauses.

The problem is said to be satisfiable if all the clauses are
satisfied.

We can convert this problem into the maximum cut prob-
lem in the following manner:

(1) Ina graph, assign two nodes for every variable, one for
the variable and another for the complement of the variable.
Hence there are 2|X | nodes in the graph.

(2) Draw an edge between the nodes representing the vari-
ables and their complements. For example connect x; and x7,
x, and X, and so on. Add a large edge weight (about 10™).
This is to make sure that the variables and their complements
do not fall in the same partition.

(3) For every clause, add an edge between the respective
nodes with edge weight as w,.

(4) The maximum cut of this graph is equivalent to
theMaximum 2-Sat solution.

3. Maximum Clique to Maximum 2-Sat
Maximum Clique

Input: A graph G(V, E).
Task: Maximize |V/| in the graph
E"): V' CV,E' CE|E'|=|V'|(IV'|-1/2}.

It can be converted to the Maximum 2-Sat problem in the
following manner:

(1) Consider a graph G(V, E) having vertices v; € V. For
each vertex v; add a variable x; and an auxiliary variable z. We
therefore have |V | 4+ 1 variables.

(2) For every variable add the following two clauses: (x; +
z) and (x; + 7). Let us refer to these clauses as type A clauses.

(3) Add the following clauses: (x; +X;) V (i, j) ¢ E. We
refer to these clauses as clauses of type B.

{G'v',

(4) The clauses of type A ensure that the maximum num-
ber of nodes are selected and the clauses of type B make sure
that the selected subgraph is a clique.

(5) To the type B clauses, add a large weight. Due to the
nature of the algorithm and its susceptibility to errors, we may
get solutions that are not cliques at all. Moreover finding a
clique and maximizing it are two different problems and by
adding weights we make sure that they are not affected by one
another.

(6) The Maximum 2-Sat problem is solved for this set of
clauses. The partition of selected variables form the Maximum
Clique.

D. Generalizing the algorithm

The algorithm described above solves, originally, the Max-
imum Cut problem. Various conversions are then used in
order to solve other problems. Here, a second, more general
approach, shall be described, where any problem which can
be written in the form of a quadratic unconstrained binary
optimization (QUBO) problem [43] can be solved. Instead of
taking the Laplacian matrix as the input, this algorithm takes
as input the QUBO matrix of the problem.

First, we define the QUBO matrix. To describe a problem
as a QUBO, all the terms in the objective function should be
either linear or quadratic. Since the variables in the objective
function are binary, a linear term can be easily converted to a
quadratic one, since xiz =x; Vx e {0,1}.

Consider the objective function of the following form:

P = E ajjXiXj. (15)
ij
It can be rewritten as
ar an s dlp X1
ayy dxp - A X2
P=@x...o)f 7 70 0 L] (e
anl (%) e Ann Xn
P =x"Qx, (17)
a; ap Aaip
0= azy dyp - Qo (18)
Aanl [2%%) e Ann

Q is the required QUBO matrix.

This matrix cannot be directly used in the algorithm be-
cause, in the original Maximum Cut algorithm, the variable
used belongs to the set {1, —1} and not {0, 1}. To make the
equation mathematically consistent, we need to reformulate
the QUBO matrix.

Let ze{l,—1} and x € {0,1},
Equation (15) therefore becomes

11—z 1—z1—z
p:Xi:aﬁ > +;ai, 19

i#]
Note that in the first term (1 — z;)/2 has been used instead
of [(1 — z;)/2]? since x? = x;.

then x = (1 —z)/2.

052441-5

CHATTERJEE, BOURREAU, AND RANCIC

PHYSICAL REVIEW A 109, 052441 (2024)

In the search for optimal values of parameters z we can
eliminate the constant terms in P because they only add a
constant shift to the cost function. We can therefore simplify
(19) as follows:

.
P= Za,, S Za,, — (20)
Z#J
1 1
=52 @il =)+ 7) ay(l—z—z+2z) Q1)
l igj
1 1
=-3 Xl: a;zi + 2 Z a;j(—zi — zj + zizj)- (22)

ij
i#]

The above cannot be represented in a matrix form similar
to Eq. (18) since it has linear terms that cannot be quadratized
since z7 # z;.

We therefore need to reformulate the problem. In this
reformulation the linear terms are represented in the off-
diagonal terms instead of the diagonals. Let us have 2n
variables {z1,2,...,20.} Where zi,...,z, € {lI,—1} and
Zntls - - - Z2n € {1}. Then to represent a linear variable z;, we
can have the term z;z;+, where z;+, = 1. The Eq. (22) can be
rewritten as follows:

P=—= Zauzzzl-m + — Zau(ZiZitn — ZjZj+n + Zzz])

z#]
(23)

This is our reformulated QUBO, which we call the spin-
QUBO (sQUBO). This is a matrix of size 2n x 2n. It requires
[log, 2n] = (1 4 [log, n]) qubits, or, in other words, one
more qubit than the original algorithm. Note that this is still
an optimization problem of n variables since the variables
Znals - - -5 Z2n are fixed.

Using our formulation, we propose that any problem that
can be represented in a QUBO format can be solved using the
algorithm described in Algorithm 3.

1. Maximum Weighted Independent Set using quadratic
unconstrained binary optimization

Maximum Weighted Independent Set

Input: A graph G(V, E) with node weights w;.

Task: Find x € {0, 1}V! that maximizes _, w;x; such that
x,-+xj< 1V (@, j)ekE.

The Maximum Weighted Independent Set problem consists
of an objective function and constraints. We can however
incorporate the constraints in the objective function as penalty
terms. Let p be the magnitude of the penalty.

wa,—i—p Z XX . 24)

(i,j)eE

W = max
Since x; is binary

W = max

wa +p Z XiX;j . 25)

@i,j)eE

ALGORITHM 3. Log encoding of a QUBO problem: Building
the objective function.

Input: QUBO Matrix
1 Convert QU BO to sQU BO

2 @ +sQUBO
3 N « [log, 2n]

* Q ©2N7n
4 Q < |:©2N—n ©2N7'n

41\
5 H e L S Tr(Ji - Q*)J; where J = {[[r_, S®*}
n =1

6 0 < List of n parameters
7 Function EvalCost (0):
8 QC + Quantum Circuit of N qubits
9 Add Hadamard gate to each Qubit
10 U <« diagonal gate diag(0, R)
11 Apply U to QC
12 F + ExpectationValue(Q, H)
13 return I
14

Hence we have a QUBO matrix of the following form:
—w; if (@, j)eEandi=j

0i; = 2 if (i,j)eEandi #j (26)
0

if (i, j) ¢ E.

Q;; can now be used as input in Algorithm 3 to solve the
problem.

III. RESULTS AND DISCUSSIONS

In this section we first show the performance of the algo-
rithm for the Maximum Cut problem. We compare the results
from our algorithm with the optimal solution achieved using
an integer linear program. We test our algorithm on both a
quantum simulator and real hardware. Then, the effect of in-
creasing graph density on performance is tested to surpass the
sparse examples found in the literature. Finally for Maximum
Cut, quantum simulator runs of up to 256 nodes are shown.
Then we display the results of the Minimum Partition prob-
lem, which has been solved by converting it to the Maximum
Cut problem.

Next, the results from the QUBO method are shown. The
Minimum Partition problem is solved, this time using the
QUBO method, and the results are compared with the con-
version method.

A. Maximum Cut

We start by benchmarking the Maximum Cut al-
gorithm against classical methods such as 0-1 inte-
ger linear programming and Goemans-Williamson method.
All graph instances in this section are generated using
the fast_gnp_random_graph() function of the NETWORKX
Python package, with seed = 0 for all cases.

Figure 3(a) shows the performance of the algorithm versus
the optimal solution obtained using an integer linear program
(ILP, see Appendix B). Two different classical optimizers
have been used for the runs on the quantum simulator. We

052441-6

SOLVING VARIOUS NP-HARD PROBLEMS USING ...

PHYSICAL REVIEW A 109, 052441 (2024)

MaxCut for 32 Nodes - Normalized

(@)

100 —
5 : % %
O
P o
© o
Z 85 @

80

75

01 02 03 04 05 06 07 08 09 1.0
Density

(b)

200 MaxCut for 32 Nodes - Graph Density = 0.65

jrnal A ABM
_P‘Opt‘m S-\m\,\\ator Wl G ‘ Wl COB\(\’%\)U \B

mu\a\.o

FIG. 3. (a) Performance of the algorithm on a 32-Node graph instance. The QPU result is based on a single run while the simulator results
are based on 50 runs. (b) The Maximum Cut of 32-node graphs of varying densities. Optimizer used is the genetic algorithm (GA). Data is
based on 50 runs for each instance and is normalized using the optimal result obtained using ILP.

can see that both classical optimizers give fairly similar re-
sults, 90.04% of the optimal for the genetic algorithm and
91.04% of the optimal for COBYLA. The result from the
QPU is slightly worse (83.58% of the optimal), as expected
due to the noise present in the current devices. Note that
only a single instance has been considered here as opposed
to multiple. This is because running algorithms on real hard-
ware is extremely time consuming due to queue times (wait
times).

In Fig. 3(b), ten randomly generated 32-node instances
are tested with increasing graph density. Here graph density
implies the fraction of the total possible edges present in the
graph. For each instance, data were collected for 50 runs,
using two different types of classical optimizers, COBYLA
and the genetic algorithm. In addition, a 01 integer linear
program (ILP) [44] was used to obtain the optimal result of
each of the instances. The ILP data are then used to normalize
the simulator data. Hence, the data are in the form of percent-
age of optimal value. In most instances, the genetic algorithm
(GA) performed better than COBYLA. This, however, might
be due to the fact that the genetic algorithm is simply able to
cover a larger search space. Larger instances might require a
larger number of iterations with high computational cost. In
these cases, using COBYLA could be more practical. While
the GA results vary with each run, the results from COBYLA
are the same in each run. This can be seen from the fact
that the COBYLA plot has a flat error bar. It is seen that the
performance improves with an increase in the density of the

problem. This might be since in graphs of lower density, the
choice including or not including one or two nodes can have
a relatively significant impact on the final cost function. For
example, the minimum, maximum and average cost function
for density 0.1 is (30, 36, 32) and for 0.9 is (234, 243, 239).
This shows that the variation of cost function is similar for
both densities. This higher instability is why we see a higher
dispersion on the results in the lower densities. The important
point here is that the performance does not degrade with
increasing density, a property which will be useful in the
sections to follow.

To demonstrate the scalability of the algorithm, we further
test the algorithm on problem instances of 64, 128, and 256
nodes (6, 7, and 8 qubits, respectively). For the case of 64
node graphs, as shown in Table I, each instance is run 10
times on the quantum simulator and their mean and standard
deviation are shown. The genetic optimizer (GA) is used for
all obtained data. Table II shows the parameters of GA used in
the algorithm runs. The ILP model solved the problem up to
a specified integrality gap of 4%. Also shown are the results
of the Goemans-Williamson (GW) method [45]. Since this is
an approximate method, a solution range is shown over 50
runs. We can see that, for all cases, the quantum simulator
results are nearly or over 90% of the ILP optimal cut. It is
seen again that increase in graph density does not degrade the
performance.

For 128 and 256 nodes (Tables III and IV), only the GW
method is used for benchmarking. This is because the ILP

TABLE 1. 64-Node Maximum Cut benchmarks.

ILP GW Quantum simulator QPU
Graph density Solution Time(s) Gap(%) Solution Time(s) Solution Time(s) Solution Time(s)
0.30 383 7.6 3.92 371.4 0.94 343.9 280 282 383
0.35 443 69.7 3.84 428.7 1.00 400.8 272 365 439
0.40 497 1077.7 3.82 486.2 1.01 454.3 270 380 393
0.45 553 1375.2 3.98 539.6 1.14 512.8 272 446 518

052441-7

CHATTERJEE, BOURREAU, AND RANCIC

PHYSICAL REVIEW A 109, 052441 (2024)

TABLE II. Parameters of the genetic algorithm used in the Max-
imum Cut, Minimum Partition and Maximum Clique experiments.

TABLE IV. 128- and 256-node Maximum Cut results using QPU
with GA.

GA parameter Value Instance Q. sol. GW range % diff.
max_num_iteration 20 Size = 128, density = 0.4 1538 1796-1864 82.5-85.6
population_size 20 Size = 128, density = 0.5 2022 21862271 89.0-92.5
mutation_probability 0.1 Size = 256, density = 0.5 8079 8701-8880 90.9-92.8
elit_ratio 0.05
crossover_probability 0.5

t ti 0.3
parents_portion . optimizer used is GA. Details of the GA parameters are given
crossover_type Uniform in Table IT
max_iteration_without_improv None 1n fable 1.

took longer than two days without converging (Gurobi op-
timizer) on a PC. The GW mean is based on 50 runs. The
quantum solution is compared with the GW upper bound. The
GW upper bound is calculated by dividing the worst solution
of the GW with 0.878. Table III shows results using a quantum
simulator while Table IV shows results obtained using an IBM
quantum computer. The ibmqg_mumbai backend was used for
the instances of size 128 while the ibmq_guadalupe was
used for the instance of size 256. The results demonstrate the
stability of the results (around 84% of the GW upper bound)
as the size increases.

It is highly time consuming to carry out each run on an
IBM QPU due to the significant wait times in addition to
the inability to run multiple instances or runs simultaneously.
This is the reason we decided to demonstrate only one run
per instance where possible. The aim of the QPU runs is
not to present a performance analysis of the QPU but merely
indicative of the current gap between the quantum simulator
and the QPU.

It is important to note that the number of GA iterations
has a significant impact on the quality of the solution. This is
demonstrated in Table V with the instances of size 128. The
solutions improve with an increase in GA iterations.

B. Minimum Partition as a conversion from Maximum Cut

As described in Sec. II C 1, the number partitioning prob-
lem can be directly converted into the Maximum Cut problem.
The graphs hence formed are weighted fully dense graphs.

For the instances, all the numbers used were random inte-
gers between 1 and 100. Tests were carried out on the quantum
simulator as well as on real hardware from IBM. The classical

The results of partition differences have been normalized
in the following manner: For a problem with N numbers, if
the partition difference is p, then the normalized difference
1S Pnorm = (SON — p)/50N. All our numbers are random in-
tegers between 1 and 100, hence 50.5 on an average. For
simplicity we use 50 in pyorm-

The optimal value for each instance is obtained using the
integer quadratic model described in Appendix C.

Figure 4 displays the performance of 32, 64, and 128-
number Minimum Partition converted to Maximum Cut. For
32 integers, we have a mean value of 98% and a very small
dispersion using the quantum simulator. For 64-number Min-
imum Partition, the mean values are better than 85% for all
instances. Moreover, for both problems sizes, despite the fact
that the Minimum Partition problem leads to a complete graph
Maximum Cut problem, actual QPUs are able to demonstrate
an approximate solution. The problem of size 128 has mean
values of about 97% on a quantum simulator.

All QPU runs in this section are done on ibmq_mumbai.

C. Maximum Clique as a conversion from Maximum Cut

The Maximum Clique problem can be converted to the
Maximum Cut problem by first converting it to the Maximum
2-Sat (IIC 2) and then from the Maximum 2-Sat to Maximum
Cut (IIC3).

After the conversion, a n-node Maximum Clique prob-
lem requires the solution of a 2(n + 1)-node Maximum Cut.
Table VI shows results for various instances run on a quantum
simulator. The classical optimizer used is GA; the details of
the GA parameters are given in Table II. It is seen that in half
of the instances, the best solution is the optimal solution as
obtained using numpy. It should be noted that our approach
finds a dense subgraph and then removes the nodes with
lowest degree iteratively.

TABLE III. 128- and 256-node Maximum Cut benchmarks.

128 nodes 256 nodes
GW upper Quantum Ratio with GW GW upper Quantum Ratio with GW
Graph Density GW mean bound solution bound (%) GW mean bound solution bound (%)
0.3 1405.6 1567 1305 83.2 5543.5 6159 5066 82.2
0.4 1837.5 2045 1691 82.7 7264.1 8071 6736 83.5
0.5 2249.6 2489 2103 84.5 8120.3 9910 8367 84.4
0.6 2654.1 2981 2546 85.4 10615.1 11794 9967 84.5

052441-8

SOLVING VARIOUS NP-HARD PROBLEMS USING ...

PHYSICAL REVIEW A 109, 052441 (2024)

TABLE V. Evolution of Maximum Cut solutions with increasing
GA iterations on 128-node instances.

Density
GA iterations 0.3 0.4 0.5 0.6
10 1286 1704 2090 2523
20 1305 1730 2119 2546
30 1322 1745 2121 2553
40 1322 1747 2145 2577

D. Maximum Weighted Independent Set using quadratic
unconstrained binary optimization method

In this section, results of the Maximum Weighted Indepen-
dent Set problem solved using the QUBO method (Sec. IID 1)
is presented.

For each figure the performance of the algorithm is shown.
The data are normalized using the optimal solution found
using the commercial CPLEX solver.

Figure 5 shows the data for graphs of size 32, 64, and
128. The data for 32, 64, and 128 nodes are based on 50, 50,
and 10 runs, respectively. The data represented only take into
account the feasible solutions produced. For graphs of size 32,
the mean values for all instances are above 80% and the best
obtained result is optimal for every instance. For graphs of size
64, the mean values for all instances are above 60% and the
best obtained result is on an average over 80%. For 128-node
graphs, the solutions are slightly degraded in comparison.
Note, however, that the data for 128-node instances are based
only on a few runs. Moreover, the performance also depends
on the number of GA iterations used in the algorithm run. The
details of the GA parameters used are given in Table VII.

Table VIII shows how the performance varies depending
upon the number of GA iterations used. For this table, the
Maximum Weighted Independent Set Instance 4 of size 64
has been taken. An increase in the number of GA iterations
improves not only the performance but also the percentage of
feasible results.

IV. CONCLUSION

In this paper, we investigated and further developed meth-
ods to logarithmically encode combinatorial optimization
problems on a quantum computer. We begin with expanding
the work done in Ref. [26], which describes a way to loga-
rithmically encode the Maximum Cut problem. We performed
several runs of this algorithm with various instances, on the
quantum simulator as well as real hardware, using different
classical optimizers like COBYLA and the genetic algorithm.

We then reformulate a number of NP-hard combinatorial
optimization problems into the Maximum Cut problem, either
directly or indirectly and solve it on a real quantum computer.
We take the Minimum Partition problem as an example and
solve it by using a reduction as mentioned in Sec. IIC 1.
This is possible since the algorithm is largely unaffected by
increasing the density of the Maximum Cut graph in question,
since the Minimum Partition problem converts into a weighted
fully dense graph. Some performance benchmarks of the par-
tition problem have been presented.

We then proceed to present a more general formulation
inspired from the structure of the Maximum Cut algorithm.
We see that instead of using the Laplacian, we can use the
QUBO matrix of a problem in order to solve it. We intro-
duce the sQUBO representation of the QUBO matrix for it to
be compatible with the algorithm. This therefore opens up the
applicability of the algorithm to a wide range of algorithms.
The Maximum Weighted Independent Set problem is solved
using its sSQUBO matrix.

The authors will make all data available upon reasonable
request.

ACKNOWLEDGMENTS

Y.C. and M.R. acknowledge funding from European
Union’s Horizon 2020 research and innovation program, more
specifically the NEASQC project under Grant Agreement No.
951821.

32 Numbers 64 Numbers 128 Numbers QPU Average
1.00 A 1.00 1.00
wn
[0}
13
S 0.951 0.951 0.951
g
=
a
c 0.901 0.90 1 0.90 1
°
=
=
&
- 0.851 0.85 1 0.85 1
(9}
N
©
€ 0.80 0.80 1 0.80
S m Optimal s Optimal m Optimal
s Quantum Sim. s Quantum Sim. B Quant Sim.

' ' 7 0.75 0.75- ! 0.75

2 3 4 6 7 8 1 2

Instances Instances Instances

FIG. 4. The difference between partition sets for 32, 64, and 128 numbers. Each instance was run on the quantum simulator with GA,
100 times for 32 numbers, 10 times for 64 numbers, and 4 times for 128 numbers. The QPU data are the aggregate of single runs for every

32- and 64-number instance.

052441-9

CHATTERJEE, BOURREAU, AND RANCIC

PHYSICAL REVIEW A 109, 052441 (2024)

TABLE VI. Maximum Clique results using quantum simulator with GA.

Instance No. of qubits No. of runs Best solution Worst solution Ave. solution Opt. solution
Size = 31, density = 0.3 6 50 4 3 3.38 4
Size = 31, density = 0.4 6 50 5 3 3.92 5
Size = 31, density = 0.5 6 50 6 3 4.46 6
Size = 31, density = 0.6 6 50 7 4 5.34 8
Size = 31, density = 0.7 6 50 8 5 6.26 9
Size = 63, density = 0.5 7 10 8 6 6.5 8
Size = 63, density = 0.6 7 10 8 6 7.2 10
Size = 63, density = 0.7 7 10 11 8 9.3 12

A part of the methodology presented in the paper is pro-
tected by a provisional patent claim “Method for optimizing a
functioning relative to a set of elements and associated com-
puter program product” submission number EP21306155.9
submitted on August 8, 2021.

APPENDIX A: CALCULATING THE EXPECTATION
VALUE OF AN OBSERVABLE

Given a Hamiltonian matrix H, we first need to convert into
a sum of tensor products of Pauli strings.

Let H be a nxn Hamiltonian matrix and S =
{I,X,Y,Z}" = {81, S5, S3, S4}" be the set of Pauli matrices.
We can consider n to be a power of two without any loss of
generality. If the size of the Hamiltonian matrix is n’ which
is not a power of two, we can easily convert it to a size of
n = 2°20) which is a power of two. The extra space in the
matrix is filled with zeros.

This Hamiltonian can now represented on N =
log,(n) qubits. Consider the set J={S;, ®Spn---®
Sivlit, i, ..., iy € {0, 1,2, 3}} which consists of all tensor

product combinations of the Pauli matrices.
Then the Hamiltonian can decomposed as

The Hamiltonian therefore becomes

4N
1
H=-) Tr{J;-H)J,.
nZ v(J; - H)

i=1

(A3)

The expectation value becomes a sum of the expectation
values of all the terms:

1 &
(VIH|WY) = - ZTT(Ji -H)(W|J;|). (A4)

i=1

APPENDIX B: INTEGER LINEAR PROGRAM
FOR MAXIMUM CUT PROBLEM

Given a graph G(V, E) such thatn = |V|, and A;; being the
corresponding adjacency matrix terms, we have

Objective: max Zlgigjgn xiinj

Constraints:

(D) x5 < X + x5

(2) xij + X +xxj <25

3) Xij € {0, 1}.

4N APPENDIX C: INTEGER QUADRATIC PROGRAM
H=Y"ci, (A1) FOR MINIMUM PARTITION PROBLEM
i=1 GivenasetS = {w:w € Zt}and A C S, we have
where the coefficients are . 1 ifw eA
Variables: x; = { .
1 0 if wi ¢ A.
G = ;TI'(J, -H). (A2) Objective: min(Z:’ZI w;X; — Z:’:I w;(1 — Xi))Z.
32 Nodes 64 Nodes 128 Nodes
1.0 - - 101 o 0.75 -
- o 1
4’-711 I__L_I 0.9 1 l——l_—| T 0.70
O 0.9 I’—I :
% \T‘ 08 ? ’l‘ l‘ 0.65 - y
U 0.8 - |_J T '
o 0.7+ []
© 0.60 -
€ 0.7 0.6 o LJ
S © 0.55 -
= 0.6 [0.5 o
-2 = © | os0- . .
1 2 3 4 5 1 2 3 4 5 1 2

Instances

FIG. 5. Maximum Weighted Independent Set problem for 32-, 64-, and 128-node graphs using a quantum simulator. Each instance was run
on a quantum simulator with GA 50 times for graph sizes of 32 and 64 and 10 times for a graph size of 128.

052441-10

SOLVING VARIOUS NP-HARD PROBLEMS USING ...

PHYSICAL REVIEW A 109, 052441 (2024)

TABLE VII. Parameters of the genetic algorithm used in the
Maximum Weighted Independent Set experiments.

TABLE IX. Data for time taken for various instance sizes in the
QPU and in the quantum simulator.

Instance size

Genetic algorithm parameter 32 64 128
max_num_iteration 50 100 200
population_size 20
mutation_probability 0.1

elit_ratio 0.05
crossover_probability 0.5
parents_portion 0.3
crossover_type Uniform

max_iteration_without_improv None

APPENDIX D: A COMPARATIVE STUDY OF TIME TAKEN
BY THE SIMULATOR AND THE QPU

In Table IX and Fig. 6, the time taken to run the algorithm
for different Maximum Cut instance sizes is compared. While
the quantum computer still takes a significant amount of time
to solve the problem, the time taken does not increase expo-
nentially as in the case of the simulator. As we move towards
larger instances, we reach a point where it is quicker to run a
problem on a QPU than using a simulator.

Note that the QPU time here does not take into account the
queue time or waiting time for the QPU runs. The real-world
time was several hours or even several days for the largest run
instance. This prevented us from running larger instances on
the quantum computer.

The utility of comparing the time consumption of the simu-
lator and QPU is to underline the reason why we could not go
further than 256 nodes using the simulator. It is to show that,
even though it would take a very long time to simulate the
algorithm at 512 or more variables, the increase in cost should
not be as much to run it on a quantum system. Therefore,
provided we have the required level of access to a quantum
computer, experiments of over 256 nodes could potentially be
run on a quantum computer.

APPENDIX E: EFFICIENT DECOMPOSITION
OF d-SPARSE HAMILTONIANS

An efficient way to decompose sparse Hermitian matrices
to sums of unitaries is shown in Ref. [46]. Let our d-sparse
Hamiltonian H be of size n x n and let N = log, n.

TABLE VIII. Maximum Weighted Independent Set results
demonstrating the relationship between GA iterations and perfor-
mance. The instance 4 of size 64 is used for this table. The
performances are an average over 10 runs.

Solution as percent of Percent of feasible

Size GA iterations optimum solutions
64 50 54.8 60

64 100 66.6 96

64 200 77.8 100

QPU Quantum simulator
N (minutes) (minutes)
32 1.7 3
64 9 52
128 45 222
256 112 3202

The quantum operators U,, Uy, and § can then be defined,
which act as follows:

. 1 .
U:14)10}[0)[0) = 7 D NNV HE0)+/T — [Hyl[1)

iek;

(EL)
Uy0)157)10)10)

1
= = 2 WG 100+ T=TH N0, (E2)

I'eFy
SIN YD) = 1) (E3)

In all the above equations there are four quantum registers.
The first two registers contain N qubits each while the last
two contain one qubit each. H;; refers to an element of the
Hamiltonian matrix with indices i and j. F; is the set of indices
i for which H;; # 0.

Let |0) = |0)]|0)]0) represent the last three quantum regis-
ters. Then, using Eqs. (E1)—(E3), it can be shown that

H ® |0)(0] = d10)(0|U; U,S|0)(0] (E4)

d e o
70~ OO TU ST — ™00 (ES)

QPU vs Simulator Time Comparison

—— Quantum Simulator
3000 —@— QPU

2500 A

2000 A

1500 A

Time (Minutes)

1000 A

500 A

—0
2 4

50 100 150 200 250
Number of Nodes

FIG. 6. Plot demonstrating the time taken by the quantum sim-
ulator versus the time taken to solve the same instance on real
hardware.

052441-11

CHATTERJEE, BOURREAU, AND RANCIC

PHYSICAL REVIEW A 109, 052441 (2024)

Equation (ES) is the decomposition of the Hamiltonian H
into four unitaries. To generate the operations of U, and U,, we
need access to the oracle P4 as shown in Sec. 1.1 of Ref. [47].
We can generate U, and U, using three queries to this oracle
as shown in Ref. [46]. Since both U, and U, require three
queries, each of the four unitaries in (E5) require a total of
six queries to P4. Besides the queries, the gate complexity of

Uy and Uy, depend on how accurately and precisely the matrix
elements of H are defined. The gate complexity of ¢ 10l
is O(log, n).

In addition to this, an expectation value of a sum of m
summands can be obtained in less than m queries to the
QPU, again for sparse operators. More details can be seen in

Ref. [48].

[1] C.J. Hillar and L.-H. Lim, Most tensor problems are NP-hard,
J. Assoc. Comput. Mach. 60, 1 (2013).

[2] G. J. Woeginger, Exact algorithms for NP-hard problems: A
survey, in Combinatorial Optimization—Eureka, You Shrink!
(Springer, Berlin, 2003), pp. 185-207.

[3] A. Sénchez-Arroyo, Determining the total colouring number is
NP-hard, Discrete Math. 78, 315 (1989).

[4] P. N. Klein and N. E. Young, Approximation algorithms for
NP-hard optimization problems, in Algorithms and Theory of
Computation Handbook: General Concepts and Techniques
(Chapman Hall/CRC, 2010), Chap 34.

[5] D. S. Hochba, Approximation algorithms for NP-hard prob-
lems, SIGACT News 28, 40 (1997).

[6] T. N. Bui and C. Jones, Finding good approximate vertex and
edge partitions is NP-hard, Inf. Process. Lett. 42, 153 (1992).

[7] J. M. Hendrickx and A. Olshevsky, Matrix p-norms are NP-hard
to approximate if p # 1, 2, oo, SIAM J. Matrix Anal. Appl. 31,
2802 (2010).

[8] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[9] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D.
Venturelli, and R. Biswas, From the quantum approximate op-
timization algorithm to a quantum alternating operator ansatz,
Algorithms 12, 34 (2019).

[10] A. Callison and N. Chancellor, Hybrid quantum-classical algo-
rithms in the noisy intermediate-scale quantum era and beyond,
Phys. Rev. A 106, 010101 (2022).

[11] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, A varia-
tional eigenvalue solver on a photonic quantum processor,
Nat. Commun. 5, 4213 (2014).

[12] N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross,
D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn
et al., Quantum optimization using variational algorithms on
near-term quantum devices, Quantum Sci. Technol. 3, 030503
(2018).

[13] J. Stokes, J. Izaac, N. Killoran, and G. Carleo, Quantum natural
gradient, Quantum 4, 269 (2020).

[14] K. M. Nakanishi, K. Fujii, and S. Todo, Sequential minimal op-
timization for quantum-classical hybrid algorithms, Phys. Rev.
Res. 2, 043158 (2020).

[15] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio et al.,
Variational quantum algorithms, Nat. Rev. Phys. 3, 625 (2021).

[16] L. Bittel and M. Kliesch, Training variational quantum algo-
rithms is NP-hard, Phys. Rev. Lett. 127, 120502 (2021).

[17] M. Lubasch, J. Joo, P. Moinier, M. Kiffner, and D.
Jaksch, Variational quantum algorithms for nonlinear problems,
Phys. Rev. A 101, 010301(R) (2020).

[18] N. Mariella and A. Simonetto, A quantum algorithm for the sub-
graph isomorphism problem, ACM Trans. Quantum Comput. 4,
1 (2023).

[19] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and
S. Woerner, Improving variational quantum optimization using
CVaR, Quantum 4, 256 (2020).

[20] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant,
L. Wossnig, I. Rungger, G. H. Booth er al., The variational
quantum eigensolver: A review of methods and best practices,
Phys. Rep. 986, 1 (2022).

[21] F. G. Fuchs, H. @. Kolden, N. H. Aase, and G. Sartor, Efficient
encoding of the weighted MAX k-cut on a quantum computer
using QAOA, SN Comput. Sci. 2, 89 (2021).

[22] J. Larkin, M. Jonsson, D. Justice, and G. G. Guerreschi, Evalu-
ation of QAOA based on the approximation ratio of individual
samples, Quantum Sci. Technol. 7, 045014 (2022).

[23] R. Herrman, L. Treffert, J. Ostrowski, P. C. Lotshaw, T. S.
Humble, and G. Siopsis, Globally optimizing QAOA circuit
depth for constrained optimization problems, Algorithms 14,
294 (2021).

[24] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D.
Lukin, Quantum approximate optimization algorithm: Perfor-
mance, mechanism, and implementation on near-term devices,
Phys. Rev. X 10, 021067 (2020).

[25] G. G. Guerreschi and A. Y. Matsuura, QAOA for max-cut
requires hundreds of qubits for quantum speed-up, Sci. Rep. 9,
6903 (2019).

[26] M. J. Ranci¢, Noisy intermediate-scale quantum computing
algorithm for solving an n-vertex maxcut problem with log(n)
qubits, Phys. Rev. Res. 5, L012021 (2023).

[27] M. A. Nielsen and 1. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition (Cambridge
University Press, Cambridge, 2011).

[28] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[29] J. Preskill, Quantum Computing 40 Years Later, in Feynman
Lectures on Quantum Computation (CRC Press, Boca Raton,
2023).

[30] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[31] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and
W. D. Oliver, Perspectives of quantum annealing: Methods and
implementations, Rep. Prog. Phys. 83, 054401 (2020).

[32] A. Stern and N. H. Lindner, Topological quantum
computation—from basic concepts to first experiments,
Science 339, 1179 (2013).

[33] H. J. Briegel, D. E. Browne, W. Diir, R. Raussendorf, and
M. Van den Nest, Measurement-based quantum computation,
Nat. Phys. 5, 19 (2009).

052441-12

https://doi.org/10.1145/2512329
https://doi.org/10.1016/0012-365X(89)90187-8
https://doi.org/10.1145/261342.571216
https://doi.org/10.1016/0020-0190(92)90140-Q
https://doi.org/10.1137/09076773X
https://arxiv.org/abs/1411.4028
https://doi.org/10.3390/a12020034
https://doi.org/10.1103/PhysRevA.106.010101
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/2058-9565/aab822
https://doi.org/10.22331/q-2020-05-25-269
https://doi.org/10.1103/PhysRevResearch.2.043158
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1103/PhysRevLett.127.120502
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1145/3569095
https://doi.org/10.22331/q-2020-04-20-256
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1007/s42979-020-00437-z
https://doi.org/10.1088/2058-9565/ac6973
https://doi.org/10.3390/a14100294
https://doi.org/10.1103/PhysRevX.10.021067
https://doi.org/10.1038/s41598-019-43176-9
https://doi.org/10.1103/PhysRevResearch.5.L012021
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/BF02650179
https://doi.org/10.1088/1361-6633/ab85b8
https://doi.org/10.1126/science.1231473
https://doi.org/10.1038/nphys1157

SOLVING VARIOUS NP-HARD PROBLEMS USING ...

PHYSICAL REVIEW A 109, 052441 (2024)

[34] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Rev. 41,
303 (1999).

[35] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the Twenty-Eighth An-
nual ACM Symposium on Theory of Computing (ACM Press,
New York, NY, 1996), p. 212.

[36] I. Kerenidis and A. Prakash, A quantum interior point method
for LPs and SDPs, ACM Trans. Quantum Comput. 1, 1
(2020).

[37] A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse
matrices with eigenvectors of graphs, SIAM J. Matrix Anal.
Appl. 11, (1990).

[38] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F.
Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S. Boixo
et al., Quantum approximate optimization of non-planar graph
problems on a planar superconducting processor, Nat. Phys. 17,
332 (2021).

[39] D. Winderl, N. Franco, and J. M. Lorenz, A comparative study
on solving optimization problems with exponentially fewer
qubits, arXiv:2210.11823.

[40] J. C. Bezdek and R. J. Hathaway, Some notes on alternating op-
timization, in AFSS International Conference on Fuzzy Systems
(Springer, Berlin, 2002), pp. 288-300.

[41] R. M. Karp, Reducibility among combinatorial problems, in
Complexity of Computer Computations, edited by R. E. Miller,

J. W. Thatcher, and J. D. Bohlinger, The IBM Research Sym-
posia Series (Springer, Boston, 1972).

[42] J. A. Ruiz-Vanoye et al., Survey of polynomial transformations
between NP-complete problems, J. Comput. Appl. Math. 235,
4851 (2011).

[43] E. Glover, G. Kochenberger, and Y. Du, Quantum bridge an-
alytics I: A tutorial on formulating and using QUBO models,
Ann. Oper. Res. 17, 335 (2019).

[44] W. F. de la Vega and C. Kenyon-Mathieu, Linear programming
relaxations of maxcut, in Proceedings of the Eighteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms SODA *07
(ACM Press, New York, NY, 2007), pp. 53-61.

[45] M. X. Goemans and D. P. Williamson, Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming, J. Assoc. Comput. Mach. 42, 1115
(1995).

[46] C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio,
and P. J. Coles, Variational quantum linear solver, Quantum 7,
1188 (2023).

[47] A. M. Childs, R. Kothari, and R. D. Somma, Quantum al-
gorithm for systems of linear equations with exponentially
improved dependence on precision, SIAM J. Comput. 46, 1920
(2017).

[48] D. W. Berry, G. Ahokas, R. Cleve, and B. C. Sanders, Effi-
cient quantum algorithms for simulating sparse Hamiltonians,
Commun. Math. Phys. 270, 359 (2007).

052441-13

https://doi.org/10.1137/S0036144598347011
https://doi.org/10.1145/3406306
https://doi.org/10.1137/0611030
https://doi.org/10.1038/s41567-020-01105-y
https://arxiv.org/abs/2210.11823
https://doi.org/10.1016/j.cam.2011.02.018
https://doi.org/10.1007/s10288-019-00424-y
https://doi.org/10.1145/227683.227684
https://doi.org/10.22331/q-2023-11-22-1188
https://doi.org/10.1137/16M1087072
https://doi.org/10.1007/s00220-006-0150-x

