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Generalized wave-particle-mixedness triality for n-path interferometers
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The wave-particle duality, one of the expressions of Bohr complementarity, is usually quantified by path
predictability and the visibility of interference fringes. With the development of quantum resource theory,
quantitative analysis of wave-particle duality is increasing, most of which are expressed in the form of specific
functions. In this paper, we obtain the path-information measure for pure states by converting the coherence
measure for pure states into a symmetric concave function. Then we prove the function as a path-information
measure is also valid for mixed states. Furthermore, we also establish a generalized wave-particle-mixedness
triality. Although the mixedness proposed in the text is not a complete mixedness measure, it also satisfies some
conditions of the mixedness measure. From the perspective of resource theory, the path information we establish
can be used as the measure of the resource of predictability, and the triality relationship we establish reveals the
relationship among coherence, predictability, purity, and mixedness degree to a certain extent. According to our
method, given either the coherence measure or path information, a particular form of wave-particle-mixedness
triality can be established. This will play an important role in establishing connections between wave, particle,
and other physical quantifiers.
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I. INTRODUCTION

Wave-particle duality is a fundamental property of quan-
tum physics which plays a pivotal role in quantum mechanics
and is ubiquitous in the microcosmic world. The earliest
research on wave-particle duality can be traced back to the
complementarity principle proposed by Bohr in 1928 [1], but
it is just a qualitative idea. Wootters and Zurek were the first
ones to quantitatively analyze wave-particle duality [2]. Later,
Greenberger and Yasin proposed a complementarity relation;
they analyzed the problem with the assumption that unequal
beams in a two-path interferometer allow for predicting, to a
certain degree, which of the two paths the quantum followed.
They established the duality relation [3]

P2 + W 2 � 1, (1)

where P quantifies the particle feature (path information) and
W quantifies the wave feature (interference) of the state in an
interferometric setup [4].

As the theory progressed, Englert derived a new duality
relation by including a path detector in the interferometer
which was used to determine which path a specific quantum
took [5]:

D2 + V 2 � 1. (2)

In this inequality, D is the distinguishability of the possible de-
tector states, and V is a measure of the quality of the interfer-
ence fringe. The equality holds if the particle state and the path
detector state are pure. Investigations of quantitative measures
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of wave and particle properties in a multipath interferometer
were initiated by Durr [6], whose criteria for generalized
predictability and generalized visibility were later further
pursued in [7–9].

In recent years, with the establishment of quantum re-
source theory, quantitative analysis of wave-particle duality
has returned to the public’s eye. These studies about the wave-
particle duality have revealed close relationships and interplay
among predictability, distinguishability, visibility [2,3,5–8],
and some quantum informational concepts such as asymme-
try [10], entropy [11–13], entanglement [14–19], coherence
[20–32], and purity [33].

At the same time, people are trying to build a neat com-
plementary relationship. In the pure case, the wave-particle
duality is a strictly complementary relation, but attempts to
generalize the equation to mixed states always turn it into an
inequality. Through further analysis of the n-path interferome-
ter with the addition of the path detector, Roy et al. proposed a
coherence–path predictability–I concurrence triality [14,34];
I concurrence is a normalized entanglement measure with
some functional relationship to the generalized concurrence.

By splitting the path distinguishability into path pre-
dictability and an entanglement measure, Basso and Maziero
proposed a new triality relation [35]; this new triality formal-
izes entanglement as the third quantity.

Unlike the above authors, Fu and Luo did not adopt the
interferometer analysis method but deduced a very concise
triality relationship by combining the quantum uncertainty
with coherence and path information [36].

In this paper, we analyze whether all coherence mea-
sures satisfy the neat complementarity relation according to
the triality mentioned in [36]. We transform the coherence
measure of pure states into a symmetric concave function
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related only to the main diagonal elements, and we find that
all coherence measures can establish a neat complementarity
relation; the function that is complementary to the symmetric
concave function converted from the coherence measure per-
fectly meets the requirements of the particle property measure.
Moreover, we can also obtain a triality relation in the mixed
state; although the third quantity is not a complete measure of
mixedness, it still satisfies some properties of the mixedness
measure.

II. PRELIMINARIES

In this section, we introduce some basic notation we are
going to use. In Sec. II A, we briefly introduce the quan-
tum coherence resource theory and the conditions for the
coherence measurement. We also show that the coherence
measures for the pure state can be expressed as a symmetric
concave function and the coherence measures for the mixed
state can be constructed by convex tops. In Sec. II B, we
discuss the basic knowledge of wave-particle duality and its
recent development, which includes a brief introduction to the
theoretical analysis of multipath interferometer experiments
and the recently established wave-particle duality. Finally,
we will discuss the conditions that must be satisfied for the
measure of wave and particle feature in Sec. II C. We explore
whether the measures of particles and waves we propose next
meet these conditions.

A. Quantum coherence

Coherence is a fundamental feature of quantum physics
that represents possible superposition between orthogonal
quantum states. Similarly, it is widely believed that quantum
superposition is a manifestation of the fluctuating nature of
quantum particles. Therefore, the quantum coherence has a
strong correspondence to the wave properties of quantum
particles.

Based on Baumgratz et al.’s suggestion [37], any proper
measure of coherence C must satisfy the following axiomatic
postulates.

(1) The coherence measure vanishes in the set of incoher-
ent states, C(ρ) = 0 for all ρ ∈ I .

(2a) Monotonicity exists under incoherent operation �,
C(�(ρ)) � C(ρ).

(2b) Monotonicity exists under selective measurements
on average,

∑
n pnC(ρn) � C(ρ), where pn = tr(KnρK†

n ) and
ρ = 1

pn
KnρK†

n for all {Kn}, with
∑

n K†
n Kn = I and

KnρK†
n /Tr(KnρK†

n ) ∈ I (3)

for all ρ ∈ I .
(3) The coherence measure is nonincreasing under mixing

of the quantum state (convexity),

C

( ∑
n

pnρn

)
�

∑
n

pnC(ρn) (4)

for any ensemble {pn, ρn}.
In general, the coherence monotone must satisfies condi-

tions 1, 2a, and 3, and the coherence measure must meet all
the conditions.

Corresponding to the functional form of the entan-
glement measure, the functional form of the coherence
measure was given by Du et al. [38] as follows: Let
� = {x = (x1, x2, . . . , xd )t | ∑d

i=1 xi = 1 and xi � 0},
where (x1, x2, . . . , xd )t denotes the transpose of the row
vector (x1, x2, . . . , xd ). Let π be an arbitrary permutation of
{1, 2, . . . , d} and Pπ be the permutation matrix corresponding
to π that is obtained by permuting the rows of a d × d
identity matrix according to π . Given any non-negative
function f : � �→ R+ such that (1) the function is zero if only
one of the terms is 1 and the rest are 0, i.e.,

f (Pπ (1, 0, . . . , 0)t ) = 0 (5)

for every permutation π , (2) it is invariant under any permu-
tation transformation Pπ , i.e.,

f (Pπx) = f (x) (6)

for every x ∈ �, and (3) it is concave, i.e.,

f [λx + (1 − λ)y] � λ f (x) + (1 − λ) f (y) (7)

for any λ ∈ [0, 1] and x, y ∈ �, then a coherence measure can
be derived by defining it for pure states (normalized vectors
|ψ〉 = (ψ1, ψ2, . . . , ψd )t in the fixed basis {|i〉}d

i=1) as

Cf (|ψ〉 〈ψ |) = f ((|ψ1|2, |ψ2|2, . . . , |ψd |2)t ). (8)

The function f is extended to the whole set of density matrices
by the form of the convex-roof structure:

Cf (ρ) = min
p j ,ρ j

∑
j

p jCf (ρ j ), (9)

where the minimization should be performed over all the pure-
state ensembles of ρ, i.e., ρ = ∑

j p jρ j .
For any pure state |ψ〉, all symmetric concave functions

f satisfying the above conditions are coherence measures.
In reverse, a symmetric concave function can be found for
any coherence measure. Moreover, the above conditions also
point out a way to construct a coherence measure of mixed
states from a coherence measure of pure states. There are
many examples, such as α entropy [39], the fidelity coherence
measure [40], and so on.

B. Wave-particle duality

There are two main types of n-path interferometers, those
with and without path detectors (see Fig. 1). A particle is
fired from an emitter, travels through one of n paths as the
manifestation of the property of the particle, and ends up
hitting the screen to create a number of interference patterns
as the manifestation of the property of the wave. With the de-
velopment of coherence resource theory, interference fringes
on the screen can be formulated as coherence, and which path
the particle passes depends on the path information.

For an interferometer without path detectors, we cannot
clearly determine which path the particle takes, so we can only
predict the path with the greatest probability using the proper-
ties of the particle itself, which is called the path predictability
of the particle. This in itself is guesswork, so there are many
ways to characterize path-predictable rows, such as the classic
single-bet protocol [4] and the multibet protocol [6,7].
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FIG. 1. Diagram of an n-path interferometer with the path detec-
tor; a detector device is installed on each path, and when a particle
passes through the ith path, the detector changes from |d0〉 to |di〉.

For an interferometer with path detectors, we can clearly
determine which path the particle takes, so we do not have
to guess, and instead, we judge the path, which is called
the path distinguishability of the particle. The initial detector
state is |d0〉; when the particle ρ = ∑

i j ρi j |ψi〉 〈ψ j | passes
through the ith path and becomes entangled with the detector,
through the controlled unitary interaction, each of the paths is
marked with a detector state |di〉, and the path distinguishabil-
ity is equivalent to discriminating the detector states. In other
words, if the quantum passes through the ith path, the resulting
detector states becomes |di〉 with probability |ρii|. Because
detector states |di〉 are not mutually orthogonal in general, we
have partial knowledge of the which-path information.

Although the above path predictability and path distin-
guishability are both types of path information, there are
subtle differences between them. For the case of no path
detector, the particle does not change when it passes through
the path and finally hits the screen after being emitted from
the emitter, remaining

ρ =
∑

i j

ρi j |ψi〉 〈ψ j | .

However, in the case of path detectors, the emitter fires a
state ρ = ∑

i j ρi j |ψi〉 〈ψ j |, and when it passes through the
detector, it becomes entangled with the detector and becomes

ρsd =
n∑
i

n∑
j

ρi j |ψi〉 〈ψ j | ⊗ |di〉 〈d j | .

By tracing out the path-detector states in ρsd , one gets the
reduced density matrix for the quanton

ρs =
n∑
i

n∑
j

ρi j |ψi〉 〈ψ j | 〈di| |d j〉 ;

this will be the state that finally hits the screen.
The first case involves only operations on a single system,

while the second case involves two systems (state and path
detectors). The path information is different in different cases
(the path distinguishability is used in the case with detec-
tors, and the path predictability is used in the case without
detectors), and the corresponding coherence measure is also

different (ρs is measured when there are detectors, and ρ is
measured when there are no detectors). In both cases, the path
information and coherence are complementary, which also
satisfies Theorems 1 and 2 below.

C. Wave-particle-mixedness triality

Let’s review some of the requirements for wave-particle
duality in general [6–9]. Following [6–8], the quantification of
the quantum wave feature [we denote it W (ρ)] should satisfy
the following reasonable requirements:

(1) W (ρ) reaches its global minimum if the state ρ is
classical (i.e., diagonal in the computational basis).

(2) W (ρ) reaches its global maximum if the state ρ is pure
and a uniform superposition of the states in the computational
basis (i.e., 〈i| ρ |i〉 = 1/n for all i).

(3) W (ρ) is invariant under permutations of the diagonal
elements 〈i| ρ |i〉 of ρ.

(4) W (ρ) is convex.
In a dual fashion, the quantification of the quantum particle

feature [we denote it P(ρ)] should have the following proper-
ties [6,8]:

(1) P(ρ) reaches its global maximum if 〈i| ρ |i〉 = 1 for
some i.

(2) P(ρ) reaches its global minimum if 〈i| ρ |i〉 = 1/n for
all i.

(3) P(ρ) is invariant under permutations of the diagonal
elements 〈i| ρ |i〉 of ρ.

(4) P(ρ) is convex.
All the above mathematical requirements are motivated

by intuitive physical considerations [6–8], and all the wave
properties and particle properties should satisfy the above
conditions. (1) For a quantum state ρ, if it is classical, i.e.,
ρ = ∑

i pi |i〉 〈i|, such states are formally equivalent to the
set of free states of the coherence resource, C(ρ) = 0, based
on condition 1 in Sec. II A. (2) The pure state with uniform
superposition of the fixed basis is the maximum coherence
state, |ψ〉 = ∑

i
1√
n
|i〉, and C(|ψ〉) reaches its maximum. (3)

Any rearrangement of the main diagonal elements can be exe-
cuted through a permutation operation that can be practically
presented, so the positivity can be maintained. And the permu-
tation operation is theoretically to switch only the order of the
fixed basis without changing this basis, so it does not change
the coherence, wave, and particle quantitative feature of the
states. (4) Both wave and coherence are satisfied. Therefore,
this shows that using coherence to quantify a wave not only
perfectly works under a rigorous theoretical framework but is
also reliable experimentally.

Next, we introduce a very important triality relation, and
part of our results can be seen as a generalization of this
relation. Reference [36], which, to some extent, has inspired
our study, pointed out that coherence can be measured by the
uncertainty of states [41], and the path traversed by particles
can be quantified by the path certainty, that is, the certainty
of the measurement; in this way, wave-particle-mixedness is
proposed as follows:

P(ρ|	) + W (ρ|	) + M(ρ) = 1, (10)

where P(ρ|	) = 
n
i=1 〈i| ρ |i〉2 is the measurement certainty,

W (ρ|	) = 
i 	= j | 〈i| ρ |i〉 |2 represents the state uncertainty,
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and M(ρ) = 1 − trρ2 represents the mixedness of the parti-
cle, which is the uncertainty possessed by the particle itself
and can be associated with other physical quantifiers under
certain conditions.

III. WAVE-PARTICLE RELATION

Next, we present the main results of this article. In
Sec. III A, we start our derivation from the basic case of pure
states and obtain a generalized neat wave-particle comple-
mentary relation for pure states. In Sec. III B, we try to extend
the complementary relation obtained in Sec. III A to the mixed
states, and we finally get a generalized wave-particle comple-
mentary relation.

A. Generalized wave-particle relation for pure states

Reviewing the relations proposed in the literature, all of
them are in a specific functional form; their special form en-
sures the complementarity of the wave and particle, and they
can be related to other physical quantifiers (relative entropy
and mutual information [21], measurement uncertainty and
quantum uncertainty [36], etc.). However, not all coherence
measures can find a perfect corresponding function to form
the duality relation, and these coherence measures have good
correlations with other physical quantifiers (such as fidelity
[40]). So we wonder whether there is a relation that can be
applied to all forms of coherence measures.

For formal unity, the coherence measures Cf we discuss
next are all normalized measure functions, i.e., Cf ∈ [0, 1];
this does not cause the loss of the generality of Cf .

Based on [38], all coherence measures Cf (|ψ〉) for pure
states |ψ〉 = (ψ1, ψ2, . . . , ψn)t can be transformed as func-
tions with respect to the main diagonal elements of the matrix,

Cf (|ψ〉) = f (|ψ1|2, |ψ2|2, . . . , |ψn|2). (11)

It is easy to verify that all functional forms f satisfy the
conditions regarding the quantification of the wave feature.

However, because the wave-particle duality relations that
have been proposed can be neatly complementary in the pure
state, out of intuition, we define

D f (|ψ〉) = 1 − Cf (|ψ〉)

= 1 − f (|ψ1|2, |ψ2|2, . . . , |ψn|2)
(12)

as a measure of the properties of the corresponding particle,
as well as path information.

Next, we will show that the function D f (|ψ〉) we have
defined is perfectly consistent with the requirements of
particle-feature quantification.

Theorem 1. For any given normalized coherence measure
Cf (|ψ〉) for pure state |ψ〉, there will always be corresponding
path information D f (|ψ〉), satisfying Cf (|ψ〉) + D f (|ψ〉) = 1.

Proof. From the definition of Eqs. (11) and (12), we can
prove the following.

(1) Consider a state |ψ〉 = (0, . . . , 1, . . . , 0)t with the form
of a unit vector in which the ith term is 1 and the remaining
term is 0. Based on Eq. (5), there is a permutation operation P1i

that satisfies P1i(1, 0, . . . , 0) = |ψ〉, so we obtain f (|ψ〉) = 0;
meanwhile, D f (|ψ〉) reaches its global maximum of 1.

(2) Set 〈i| |ψ〉 〈ψ | |i〉 = 1/n for all i; then |ψ〉 =∑n
i=1

1√
n
|i〉 is a maximally coherent state. At this time, the

coherence of state |ψ〉 reaches its maximum of 1, and the com-
plementary path information to it reaches its global minimum
of 0, D f (ψ ) = 0.

(3) From Eq. (6), D f (|ψ〉) is invariant under permutations
of the diagonal elements of |ψ〉 〈ψ |.

(4) It is easy to see that D f = 1 − f is convex because f is
concave. �

In summary, D f (|ψ〉), which we have defined, satisfies the
necessary conditions for the quantification of particle feature.

B. Generalized wave-particle relation

Now we extend the results we obtained to mixed states.
Unlike in the pure state, the complementarity relations in
the mixed state are mostly unneat; a third term is needed
to complement it, and this third term is not the same for
different analysis methods. In the interferometer with path
detectors, this third term is formulated as a measure of en-
tanglement [36], while in the interferometer without path
detectors, this third term is formulated as the mixedness of
the state [30,35,42]. This paper does not consider the case
with detectors, and in fact, the analysis of the case including
detectors is also pretty hard.

First, we analyze the path information for mixed states.
From [12,13,36], we know that the path information is only
related to the main diagonal elements of the state matrix,
and pure and mixed states with the same main diagonal el-
ements have the same path information. Therefore, for the
sake of formal unity, we define the path information D f (ρ)
of the mixed state ρ as the path information D f (|ρ〉 〈ρ|) of
the pure state |ρ〉 = ∑

i
√

ρii |i〉 with the same main diagonal
elements:

D f (ρ) = D f (|ρ〉) = 1 − f (ρ11, ρ22, . . . , ρnn). (13)

It is not hard to see that this is essentially a function that only
depends on the main diagonal elements.

For some coherence measure C(ρ) which has a uniform
form in the pure and mixed states, we call it a well-defined
coherence measure. If the pure state is defined by a symmet-
ric concave function, we here regard this symmetric concave
function as a function of the elements of the matrix repre-
sented by a given basis without changing its form. That is,
Cl1 (ρ) = 1

d−1

∑
i 	= j |ρi j | for the coherence measure defined by

the l1 norm, where ρi j = 〈i|ρ| j〉 and the coherence measure
of pure states Cl1 (|ψ〉) = 1

d−1

∑
i 	= j |ψi||ψ j |. Well-defined co-

herence measures usually have special functional forms, and
each wave-particle duality is established based on these spe-
cial forms. However, like with fidelity, not all symmetric
concave functions necessarily meet the requirements of the
coherence measure; this is the part we are mainly interested
in. We will discuss wave-particle duality and, furthermore,
triality, with the addition of a third part, through a more
general form of coherence measures. At this point we can
construct a coherence measure suitable for mixed states using
the convex-roof structure of Cf (|ψ〉):

Cf (ρ) = min
p j ,|ψ j〉

∑
j

p jCf (|ψ j〉), (14)
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where ρ = ∑
j p j |ψ j〉 〈ψ j | is the minimization of all the

pure-state ensembles of ρ.
Therefore, we get the following theorem combining the

above analysis.
Theorem 2. For any mixed state ρ, D f (ρ) meets the basic

requirements of the particle-feature measurement and satisfies
Cf (ρ) + D f (ρ) � 1.

Proof. First, we prove that D f (ρ) meets the basic require-
ments of the particle-feature measurement, like in the proof of
Theorem 1.

(1) Considering the case ρss = 1 for 1 � s � n, the main
diagonal elements of the quantum state ρ have the following
form:

(ρ11, . . . , ρss, . . . , ρnn) = (0, . . . , 1, . . . , 0);

meanwhile, D f (ρ) = 1 − f (0, . . . , 1, . . . , 0) = 1 reaches its
global maximum.

(2) If the main diagonal elements of the quantum state
ρ are

(ρ11, ρ22, . . . , ρnn) = (1/n, 1/n, . . . , 1/n),

then D f (ρ) = 1 − f (1/n, 1/n, . . . , 1/n) = 1 reaches its
global minimum.

Conditions 3 and 4 are the same as in the proof of
Theorem 1.

Next, we show that Cf (ρ) and D f (ρ) satisfy the inequality
Cf (ρ) + D f (ρ) � 1. For any mixed state ρ, there are many
pure-state decompositions, and we choose one of them at will,

ρ =
∑

j

p j |ψ j〉 〈ψ j | .

We can deduce that

f (ρ11, ρ22, . . . , ρnn)

= f

⎛
⎝∑

j=1

p j

∣∣ψ ( j)
1

∣∣2
,
∑
j=1

p j

∣∣ψ ( j)
2

∣∣2
, . . . ,

∑
j=1

p j

∣∣ψ ( j)
n

∣∣2

⎞
⎠

= f

⎡
⎣∑

j=1

p j
(∣∣ψ ( j)

1

∣∣2
,
∣∣ψ ( j)

2

∣∣2
, . . . ,

∣∣ψ ( j)
n

∣∣2)⎤⎦
�

∑
j=1

pi f
(∣∣ψ ( j)

1

∣∣2
,
∣∣ψ ( j)

2

∣∣2
, . . . ,

∣∣ψ ( j)
n

∣∣2)

� min
p j ,|ψ j〉

∑
j

p jCf (|ψ j〉)

= Cf (ρ),

where |ψ j〉 = ∑
i ψ

( j)
i |i〉. So for a mixed state ρ, we get

D f (ρ) + Cf (ρ) � 1. �
Thus, we extend the complementarity in the pure state to

the mixed state. As we said earlier, for any given coherence
measure, we can identify the specific form of the comple-
mentary relationship using Theorem 2. Moreover, if we can
measure coherence by a physical quantity, we can also mea-
sure path information by that physical quantity; conversely,
we can also apply physical quantities associated with path
information to measure coherence (see Fig. 2).

FIG. 2. If a physical quantity has a functional relationship with
coherence, then Theorem 2 shows that the physical quantity also has
a functional relationship with the path information and particle, and
the two functions satisfy the duality relationship; the reverse is also
true.

IV. A GENERALIZED TRIALITY

In the following, we analyze why Cf (ρ) and D f (ρ) for
mixed states are not neatly complementary. Note that the
following analysis only applies to the absence of detectors,
as the resource theory of path distinguishability has not been
established. We define

M f (ρ) = f (ρ11, ρ22, . . . , ρnn) − min
p j ,|ψ j〉

∑
j

p jCf (|ψ j〉);

(15)
then we have

D f (ρ) + Cf (ρ) + M f (ρ) = 1,

which is exactly the triality that we are hoping for.
Recently, the resource theory of predictability was estab-

lished, and in discussing the relation among the resource
theories on predictability, coherence, and purity, the authors
pointed out that complementarity relations can be used as
purity measures [42]. Because purity and mixedness are two
opposite concepts, taking our defined complementarity

Cf (ρ) + D f (ρ) = Pf (ρ)

as a purity monotone, the complementary M f (ρ) is naturally
a quantity associated with mixedness.

Although M f is quite closely related to the mixedness,
given that it is acquired from a fixed basis, we are not sure
whether it is a significant measure of mixedness. This is
because the mixedness of quantum states is independent of
their eigenstates; from our definition of M f we can intuit that
it is related to a fixed basis. But in practical experiments and
theoretical analysis, we always have to fix a set of bases in
advance, so the following discussion of M f (ρ) is based on a
fixed basis. From the special form of function f , we can show
that M f satisfies some properties with a degree of mixedness.

Next, we show that M f (ρ) satisfies several basic properties
of mixedness and has a certain monotonicity.

Theorem 3. M f (ρ) meets the following properties:
(1) M f (ρ) reaches its global minimum if the state ρ =

|ψ〉 〈ψ | is a pure state.
(2) M f (ρ) reaches its global maximum if the state ρ = 1/n

is a maximum mixed state.
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(3) M f (ρ) is concave.
(4) M f (ρ) is monotonic for quantum states that satisfy the

condition σ = pρ + (1 − p)1/n.
(5) M f (ρ) is monotonic for quantum states that sat-

isfy the condition ρ1 = pρ + (1 − p)
(ρ), where 
(ρ) =∑n
i |i〉〈i|ρ|i〉〈i|.
(6) M f (ρ) is monotonic for two-dimensional quantum

states that satisfy the condition ρ2 = pρ + (1 − p){1/2 +
[ρ − 
(ρ)]}.

The first three terms in Theorem 3 are the basic properties
of the degree of mixedness, and properties 4, 5, and 6 indicate
that M f (ρ) has a certain monotonicity.

Proof. (1) Set ρ = |ψ〉 〈ψ | as a pure state; at this point,
quantum states do not have a degree of mixedness, and the
M f (ρ) that we defined will not exist, i.e., M f (|ψ〉 〈ψ |) =
0. The triality naturally transforms into the wave-particle
relationship.

(2) Set ρ = 1/n as the maximally mixed state; at this point
the quantum state ρ has the greatest mixedness. Obviously,
quantum state ρ has no coherence or path information be-
cause the maximally mixed state has no nonprimary diagonal
elements and the main diagonal elements are all 1/n, which
means that M f (ρ) reaches its maximum M f (ρ) = 1.

(3) For any decomposition of state ρ = ∑
i piρi, M f (ρ)

satisfies concavity,

M f

(∑
i

piρi

)
= 1 − Cf

(∑
i

piρi

)
− D f

(∑
i

piρi

)

� 1 −
∑

i

piCf (ρi ) −
∑

i

piD f (ρi )

=
∑

i

pi[1 − Cf (ρi ) − D f (ρi )]

=
∑

i

piM(ρi ), (16)

because Cf and D f are convex.
(4) For any given state ρ, we find the state satisfies

σ = pρ + (1 − p)1/n,

which is the common form of the mixed state. Obviously, the
mixedness of σ is higher than the mixedness of ρ.

From properties 2 and 3, we can get

M f (σ ) = M f [pρ + (1 − p)1/n]

� pM f (ρ) + (1 − p)M f (1/n)

� M f (ρ). (17)

(5) For a given state ρ, if the relationship

ρ1 = pρ + (1 − p)
(ρ)

is satisfied, then states 
ρ and ρ have the same principal
diagonal elements, so the path information for both states
is the same; meanwhile, 0 = Cf (
ρ) � Cf (ρ). This implies
that M f (
ρ) � M f (ρ). Correspondingly, we can get

M f (ρ1) = M f [pρ + (1 − p)
(ρ)]

� pM f (ρ) + (1 − p)M f (
ρ)

� M f (ρ). (18)

(6) For a given two-dimensional state ρ, ρ2 = pρ + (1 −
p)ρ ′, where ρ ′ = 1/2 + [ρ − 
(ρ)]. Then, we have

ρ ′
12 = ρ12, ρ11ρ22 � ρ ′

11ρ
′
22 = 1/4,

so the determinant of ρ ′ is greater than zero, which means that
ρ ′ is a positive-definite matrix, that is,

|ρ ′| = |ρ11
′ρ22

′ − (ρ12
′)2| � |ρ11ρ22 − (ρ12)2| � 0.

We suppose that it has the minimum that provides the coher-
ence measure of the given two-dimensional quantum state via
a decomposition ρ = q |ψ〉 〈ψ | + (1 − q) |φ〉 〈φ|, where

|ψ〉 〈ψ | =
(

ψ ψ12

ψ21 1 − ψ

)
,

|φ〉 〈φ| =
(

φ φ12

φ21 1 − φ

)
,

with |ψ12| = |ψ21| = √
ψ (1 − ψ ) and |φ12| = |φ21| =√

φ(1 − φ), which means that

Cf (ρ) = min
pn,|ψn〉

2∑
i=1

piCf (|ψi〉)

= qCf (|ψ〉) + (1 − q)Cf (|φ〉).

Then we set

ρ =
(

1 − ρ11 ρ12

ρ21 ρ11

)

and meet 1
2ρ + 1

2ρ = ρ ′ = 1/2 + [ρ − 
(ρ)], and there must
be a set of pure-state decompositions ρ = q |ψ〉 〈ψ | + (1 −
q) |φ〉 〈φ|, where

|ψ〉 〈ψ | =
(

1 − ψ ψ12

ψ21 ψ

)
,

|φ〉 〈φ| =
(

1 − φ φ12

φ21 φ

)
.

Then Cf (ρ) = qCf (|ψ〉) + (1 − q)Cf (|φ〉) because the differ-
ence between ρ and ρ is only that the order of the fixed
bases has changed; for example, ρ is expanded under the basis
{|0〉 , |1〉}, and then ρ is expanded under the basis {|1〉 , |0〉}.
So their decomposition structure should be consistent. Also,
from

Cf (ρ) = qCf (|ψ〉) + (1 − q)Cf (|φ〉)

= q f (|ψ |, |1 − ψ |) + (1 − q) f (|φ|, |1 − φ|)
= Cf (ρ),

we have that

Cf (ρ ′) = Cf
(

1
2ρ + 1

2ρ
)

� 1
2Cf (ρ) + 1

2Cf (ρ)

= Cf (ρ).

And we know 0 = D f (ρ ′) � D f (ρ), which implies that
M f (ρ ′) � M f (ρ). Correspondingly, we can get

M f (ρ2) = M f [pρ + (1 − p)ρ ′]

� pM f (ρ) + (1 − p)M f (ρ ′)

� M f (ρ). �

052439-6



GENERALIZED WAVE-PARTICLE-MIXEDNESS TRIALITY … PHYSICAL REVIEW A 109, 052439 (2024)

FIG. 3. The blue dashed line represents the pure-state decom-
position of ρ, and the red dashed line represents the pure-state
decomposition of ρ.

We here visualize the proof of monotonicity (6) in Theo-
rem 3 using the Bloch sphere. For a given state ρ, its XY -plane
symmetry point is ρ; visually, ρ and ρ have the same coher-
ence (ρ and ρ are an equal perpendicular distance to the Z
axis). For the pure-state decompositions of ρ, we can always
find the corresponding pure-state decompositions of ρ, and
these decompositions are symmetric with respect to the XY -
plane symmetry, as shown in the Fig. 3.

Furthermore, for ease of understanding, we use a more
intuitive way to describe the mixedness measure M f (ρ) we
defined and the properties expressed in Theorem 3. In an
intuitive way, it is well known that two-dimensional states
correspond one to one to points on the Bloch sphere; the pure
state corresponds to a point on the sphere, and the mixed state
corresponds to a point inside the sphere, as shown in Fig. 4.
For a given state ρ, coherence measures are represented as
the perpendicular line from point ρ to the Z axis (free-state
set of coherence), and the path predictability is represented as
the perpendicular line from point ρ to the XY plane (free-
state set of path predictability) [42], which shows that the
coherence and path predictability are only relevant for non-
primary diagonal elements and primary diagonal elements.
Purity is expressed as the connection of point ρ to the center

FIG. 4. A diagram of Bloch’s sphere, where the set of free states
Fpredictability is represented as a blue plane (XY plane), the set of free
states Fcoherence is represented as a red line (Z axes), and the set of free
states Fpurity is represented as the center of the sphere.

of the sphere (free state of purity) [43], and conversely, the
mixedness is expressed as the shortest distance from point ρ

to the sphere. This is partly enough to help us understand the
triality.

For a given state ρ, we make three perpendicular lines to
each of the three following sets of free states: Fpurity(ρ) is
the free-state set of purity, Fcoherence is the free-state set of
coherence, and Fpredictability is the free-state set of path pre-
dictability. Since the resource theory of mixedness has not
been established, because the free-state set of mixedness is
a nonconvex set, we analyze mixedness through the resource
theory of purity. The set of free states for each is then defined
as follows:

Fpurity(ρ) = {1/n},

Fcoherence(ρ) =
{

ρ|ρ =
∑

i

|i〉 〈i|
}

,

and

Fpredictability(ρ) =
{
ρ|ρ = (1 − p)

1

n
+ p |ψd〉 〈ψd |

}
,

where |ψd〉 = 1√
d

∑
j eiφ j |x j〉; then the main diagonal el-

ements of states belonging to set Fpath are 1
n , and the

nonprincipal diagonal elements can be any value [42]. So the
points on all three lines satisfy the monotonicity of M f (ρ)
from conditions 4, 5, and 6 in Theorem 3.

Now we are able to illustrate that in the two-dimensional
case, M f (ρ) satisfies monotonicity for the points on the hor-
izontal lines, vertical lines, and diagonal lines that cross the
center of the sphere, as shown in Fig. 4. Moreover, for an
arbitrary point on the black dashed line ρ3, we can also show
that monotonicity is satisfied by applying the monotonicity in
Theorem 3, that is,

M f (ρ3) � M f (ρ2) � M f (ρ).

V. EXAMPLE

Next, we give two examples to illustrate our proposed
theorems.

For some well-defined measures of coherence, the prevail-
ing method to construct the wave-particle duality is to find
suitable path information based on its special form. How-
ever, this approach has the disadvantage of being effective
only for specific coherence measures, and it is difficult to
present a generalized form that characterizes the triality in-
volving a third quantity for mixed states. Differently, when
the measure of coherence for the mixed states is defined
by the convex-roof construction of an arbitrary symmetric
concave function, the theorems we have established provide
extensive and important, although not perfect, evidence for
adopting the third quantity we have proposed to characterize
the degree of mixedness of quantum states. The following is
an example of a coherence measure Cl1 (ρ) = 1

d−1

∑
i 	= j |ρi j |

defined by the l1 norm. The wave-particle duality satisfying
Cl1 (ρ) + Dl1 (ρ) � 1 through waves quantified by Cl1 is pre-
sented in [20]. What should be noted here is that the form
of Cl1 for the pure state is the form of a symmetric concave
function Cl1 (|ψ〉) = 1

d−1

∑
i 	= j |ψi||ψ j |, with |ψ〉 = ∑

i ψi |i〉.
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When defining the three measures as

C′
l1 (ρ) = 1

d − 1
min

pn,|ψn〉

∑
n

∑
i 	= j

∣∣ψ (n)
i

∣∣∣∣ψ (n)
j

∣∣,
Dl1 (ρ) = 1 − 1

d − 1

∑
i 	= j

√|ρii||ρ j j |,

and

Ml1 (ρ) = 1

d − 1

⎛
⎝∑

i 	= j

√|ρii||ρ j j | − min
pn,|ψn〉

∑
n

∑
i 	= j

∣∣ψ (n)
i

∣∣∣∣ψ (n)
j

∣∣
⎞
⎠,

we can get the triality relationship C′
l1

(ρ) + Dl1 (ρ) +
Ml1 (ρ) = 1 using Theorem 2. Thus, we can interpret the dual-
ity presented by several well-defined coherence measures by
extending it to triality through the general form of coherence
measures presented. Although we cannot give a complete
interpretation of the third part, Theorem 3 shows that it is
deeply related to the mixedness of quantum states.

Next, we introduce how a triality relation can be estab-
lished via a coherence measure derived from the convex-roof
construction of another symmetric concave function. Fidelity,
an important physical quantity, plays a vital role in quan-
tum information theory; however, as mentioned above, the
coherence measure defined by fidelity does not have a good
form, and the coherence measure can only be established in
the mixed state using the method of convex-roof construction
[40]. The coherence measure defined by fidelity is

CF (|ψ〉) = min
σ∈I

√
1 − F (|ψ〉 , σ ),

where F (ρ, σ ) = (Tr
√√

ρσ
√

ρ)2. If we set |ψ〉 = ∑
i ψi |i〉,

we find that CF (|ψ〉) =
√

1 − |ψi|2, so according to Eqs. (13),
(14), and (15), we set the following measures:

CF (ρ) = min
pn,|ψn〉

∑
n

pn

√
1 − ∣∣ψ (n)

i

∣∣2
,

DF (ρ) = 1 −
√

1 − |ρii|,
and

MF (ρ) =
√

1 − |ρii| − min
pn,|ψn〉

∑
n

pn

√
1 − ∣∣ψ (n)

i

∣∣2
.

It is easy to verify that DF can be used as a predictability
measure [42], and for interferometers with or without detec-
tors, the wave-particle relationships CF (ρ) + DF (ρ) � 1 and
CF (ρs) + DF (ρs) � 1 hold. Here, ρs represents the quantum
state after the detector. In addition, for an interferometer with-
out detectors, we can also establish that the triality relation
CF (ρ) + DF (ρ) + MF (ρ) = 1, where MF is a representation
of mixedness, satisfies the properties in Theorem 3.

Thus, we have shown using two examples that a wave-
particle-mixedness triality can be established for any form of
coherence measure. D f established in this way can also be
used as a measure of predictable resources; the third term,
which is closely related to mixedness, can be regarded as a
representation of mixedness. The triality relation we proposed
in this paper still requires some supplementary interpretation
of the third quantity, but its wide application is possible.

VI. CONCLUSION

We ended up with a generalized wave-particle-mixedness
triality which is applicable to any form of coherence measure
and path information. We started with the pure-state case for
any form of coherence measure by transforming the given
coherence measure into a functional form related to the main
diagonal elements; the corresponding path information was
found in a functional form, and we proved that the defined
path information meets the requirement of particle-feature
quantification. Then we extended this form to the mixed-state
case and established a generalized wave-particle-mixedness
triality. Although the characterization of mixedness defined
by us is not a complete measure of mixedness, it meets some
basic requirements for mixedness measurement and has a
certain monotonicity for some states that satisfy certain rela-
tionships. From the perspective of resource theory, the form of
the path information D f proposed in Theorem 2 can be used
as a measure of predictability [42]. The triality we established
also links resource theories such as coherence, predictability,
purity, and mixedness.

Another use of the proposed theorem is as a coherence
measure that is associated with other physical quantifiers; we
can establish the relationship between the physical quantifier
and the wave feature, and the relation between the physical
quantifier and the particle feature can be established through
our method now. Conversely, the same is true for path infor-
mation associated with other physical quantities.

Finally, we gave two examples of how we can use our
theorem to establish a triality relation for a given coherence
measure, whether the coherence measure is well defined or
not, and we declare that the theorem we proposed is appli-
cable to all coherence measure that can be transformed into
symmetric concave functions in the pure state.

At the same time, we look forward to applying this method
to other analytical methods and building new triality relations,
such as a general triality relationship for an interferometer
with detectors. We look forward to applying our theorem to
other concrete coherence measures and analyzing whether the
third term has more complete properties, such as the recently
proposed coherence measure based on Fisher information
[44].
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