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We study entanglement activation in a generalized entanglement swapping process involving two Bell pairs
and generalized measurements. The conventional understanding posits entangled measurements as both nec-
essary and sufficient for establishing entanglement between distant parties. In this study, we reassess the role
of measurement operators in entanglement generation within a generalized entanglement swapping process.
We focus on maximally entangled two-qubit initial states and generalized measurements, investigating the
necessity and sufficiency conditions for entangled measurement operators. By utilizing two Bell pairs, (1, 2)
shared between Alice and Bob, and (3, 4) shared between Bob and Charlie, we demonstrate that while entangled
measurements are sufficient, they are not indispensable for establishing entanglement between spatially separated
observers. Through a sequential approach, if Bob performs an initial measurement which is not able to establish
entanglement then followed by another measurement after postprocessing the first measurement it is possible
to establish entanglement. We identify specific criteria for different measurement operators that enable the
potential for performing a second measurement to establish entanglement. Our findings highlight the feasibility
of generating entanglement between distant parties through a combination of measurements, shedding light on
entanglement distribution in quantum networks. Additionally, we showcase through illustrative examples how
successive measurements enhance entanglement compared to single measurements, underscoring the practical
benefits of our approach in enhancing entanglement. Moreover, our protocol extends beyond bipartite qubit states
to higher-dimensional maximally entangled states, emphasizing its versatility and applicability.
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I. INTRODUCTION

Shared entanglement is a valuable resource in quantum in-
formation theory, as it facilitates various quantum information
theoretic tasks such as teleportation [1], superdense coding
[2], among others. Distribution of entanglement in itself is a
highly nontrivial task.

Entanglement swapping [3,4] is one of the most well-
known protocols used to distribute entanglement over distant
nodes which have not interacted in the past. In its canonical
form, entanglement swapping comprises the following setup
and steps. Three spatially separated parties, namely, Alice
(A), Bob (B), and Charlie (C), share entangled states among
themselves such that Alice and Bob share an entangled pair
of qubits (1, 2). Bob and Charlie share another entangled pair
of qubits (3, 4). Qubits (2, 3) are in Bob’s possession. The
goal is to establish entanglement between Alice and Charlie
(1, 4). This is achieved by performing a measurement in Bell
basis on Bob’s pair of qubits (2, 3), which leads to Alice and
Charlie’s qubits (1, 4) being entangled.

In the original setting, the initially shared entangled states
were chosen to be maximally entangled states and the mea-
surement at Bob’s location was Bell basis measurement. This
can be altered to work in a more general scenario with
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nonmaximally entangled states as well as more general mea-
surement settings [5,6].

In operational terms, an operator is referred to as an insep-
arable operator if its Choi state is entangled while separable
operators are operators which take separable states to sepa-
rable states and its Choi state is a separable density matrix
[7–9]. Quantum measurements are a special class of operators.
The most general form of measurement is called a positive
operator-valued measure (POVM) [10–12]. A POVM M is
defined as a set of positive operators �n so that

∑
n �n = I

where I is the identity operator on the corresponding Hilbert
space. Measurements are characterized by various definitions.
In [13–21], it has been defined that a POVM element �n

is considered entangled if the partial transpose of the corre-
sponding operator, defined as �n

Tr(�n )
, fails to be positive. The

POVM element is said to be unentangled if the normalized
form �n

Tr(�n )
is a separable quantum mixed state. A POVM

measurement is called an entangled measurement if at least
one of the POVM elements is entangled. Similarly, a POVM
measurement is called unentangled measurement if each of
the POVM elements is unentangled. Here, the entanglement
of the measurement is characterized as an entanglement of the
detection devices or POVM entanglement. The entire mea-
surement set is classified into different categories based on
this definition [16,18]. In [16,18], the authors have classified
the set of measurements into different categories such as
entangled measurement, unentangled measurement, local op-
erations and classical communication (LOCC) measurement,
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and classical measurement where classical and LOCC mea-
surements do not have any capacity to produce the entangled
state from a separable state. Note that these measurements
have the inclusion relation: general measurement ⊃ unen-
tangled measurement ⊃ LOCC measurement ⊃ classical
measurement, where general measurement corresponds to the
set of all quantum measurements, including the entangled
measurements [16,18]. LOCC and classical measurements
belong to the class of separable operations in an operational
sense. It is important to note that, according to this definition,
not every unentangled measurement is considered a separable
operation, but the converse is true.

The standard entanglement swapping procedure has been
generalized to work with nonmaximally entangled states, and
projective measurements have found important applications in
quantum networks and nonlocality-related problems [22–27].
Recent studies have proposed elegant protocols leveraging
POVM measurements for entanglement distribution in quan-
tum networks [28,29]. The common understanding suggests
that entangled measurements are required for establishing en-
tanglement between distant parties [13,23].

In this work, we reevaluate the necessity and sufficiency
conditions for measurement operators to be entangled when
initial states are maximally entangled and measurements are
generalized measurements. We start with two Bell pairs:
(1, 2) shared between Alice and Bob, and (3, 4) shared be-
tween Bob and Charlie. A POVM measurement is applied to
qubits (2, 3), leading to the creation of a shared state in (1,
4) between the spatially separated observers. We demonstrate
that while an entangled measurement is sufficient, it is not
necessary for the measurement operators to be entangled to
establish an entangled state between A and C. By employing
a sequential approach where Bob conducts an initial mea-
surement, and if that does not establish the entanglement,
followed by another measurement, it is possible to achieve
entanglement. This sequential strategy, combined with appro-
priate postprocessing after the first measurement, enables the
establishment of entanglement between A and C. We identify
the specific criteria for different measurement operators that
enable the possibility of performing a second measurement to
establish entanglement. In cases where the first measurement
fails to establish entanglement, we delineate the protocol ac-
cordingly. We demonstrate that after the first measurement,
the 14|23 bipartition entanglement of the total system state
should be between 0 and 1, and the rank of the measurement
should be greater than one to enable a disturbance of the
(1,4) state by the second measurement. Additionally, we show
that a zero 14|23 bipartition entanglement resulting from a
measurement that is an inseparable operator is not feasible.
Our demonstration showcases the feasibility of generating
entanglement between A and C for different measurement
operators. Furthermore, an illustrative example underscores
how successive measurements yield more substantial entan-
glement compared to a single measurement. Specifically,
when employing one unentangled measurement incapable
of establishing entanglement, a second measurement in-
volving purely separable operation becomes effective. Our
approach is not limited to bipartite qubit states but can also
be generalized to higher-dimensional maximally entangled
states.

The remainder of the paper is structured as follows:
Section II outlines the protocol and presents the results. Fi-
nally, Sec. III provides concluding discussions and highlights
avenues for future research.

II. GENERALIZED PROTOCOL

We consider a generalized entanglement-swapping sce-
nario, where Alice and Bob share a Bell pair |φ+〉12 =

1√
2
(|00〉 + |11〉) denoted by (1,2). Similarly, Bob and Charlie

share another Bell pair |φ+〉34 = 1√
2
(|00〉 + |11〉) denoted by

(3,4). Here Alice, Bob, and Charlie are physically separated
from each other. The total system state is

|�〉 = |φ+〉12 ⊗ |φ+〉34, (1)

a pure state which is separable in 12|34 bipartition.
Now Bob’s first measurement M1 can be described by a
set of two-qubit positive-semidefinite elements {�n | n =
1, . . . , K, �n � 0,

∑
n �n = I4} where each POVM ele-

ment �n can be decomposed in the form

�n =
4∑

α=1

πnα|φnα〉〈φnα|, (2)

where |φnα〉, α = 1, 2, 3, 4, form a complete orthonormal
basis on C2 ⊗ C2, πnα � 0 for α = 1, 2, 3, 4. Here, K
represents the number of POVM elements in a POVM mea-
surement. If Bob performs a joint two-qubit generalized
quantum measurementM1 on (2,3) of the |�〉 state, then the
postmeasurement state of the nth outcome is

|�n〉 = 1√
pn

√
�n ⊗ I4|�〉, (3)

with probability pn where it is understood that �n is acting on
(2,3) pair and identity operator (I4) acting on (1,4) pair. The
probability of obtaining nth outcome is

pn = 〈�|�n ⊗ I4|�〉
= 1

4 Tr(�n). (4)

Using Eqs. (1) and (2) in (3) [5], one can get

|�n〉 = 1

2
√

pn

4∑
α=1

√
πnα|φnα〉23|φ∗

nα〉14, (5)

where |φ∗〉 denotes the complex conjugate of |φ〉 in the com-
putational basis. Note that after the measurement, the total
system state (5) remains pure.

Now after tracing out (2,3) qubits the postmeasurement
state between Alice and Charlie for nth outcome becomes

ρ14|n = 1

4pn

4∑
α=1

πnα|φ∗
nα〉〈φ∗

nα|14

= �∗
n

Tr(�n)
, (6)

where �∗
n = ∑4

α=1 πnα|φ∗
nα〉〈φ∗

nα|. We also determine the
postmeasurement state of (1,2) and (3,4) pairs; for details, see
Appendix A. Equation (6) illustrates how Bob’s measurement
fully determines the state of the pair (1, 4). This equation also

052437-2



ACTIVATION OF ENTANGLEMENT IN GENERALIZED … PHYSICAL REVIEW A 109, 052437 (2024)

highlights the direct relationship between the postmeasure-
ment state of the (1,4) pair and the POVM measurement
element. Conventional thought suggests that entanglement at
the (1,4) pair requires an entangled measurement. However,
we demonstrate that although an entangled POVM is suffi-
cient to obtain an entangled state at (1,4), it is not a necessary
condition

Our demonstration reveals that through a sequential ap-
proach, where Bob performs an initial measurementM1 and,
if necessary, follows it with another measurementM2, entan-
glement can be achieved. This sequential strategy, coupled
with appropriate postprocessing after the first measurement,
facilitates the establishment of entanglement between parties
A and C. Notably, the second measurement M2 does not
need to be an inseparable operation; a measurement that is
separable operation can also accomplish the task.

Now, we consider that Bob postprocesses each outcome
of the first measurement M1 and then performs a second
measurementM2 on the (2,3) qubits of the total system state
(5). Additionally, Bob classically communicates the outcomes
to Alice and Charlie during the measurement process.

We consider the second measurement M2 is also two
qubits generalized measurement (POVM) which can be spec-
ified by a collection of two qubits semidefinite operators Em

satisfying
∑

m=1 Em = I4 where each POVM element Em can
be decomposed in the previous form as

Em =
4∑

δ=1

μmδ|ψmδ〉〈ψmδ|, (7)

where |ψmδ〉, δ = 1, 2, 3, 4, form a complete orthonormal ba-
sis on C2 ⊗ C2, μmδ � 0 for δ = 1, 2, 3, 4.

The postmeasurement state of the four-qubit system, when
Bob’s outcomes for the successive measurements are the nth
element of the measurementM1 and the mth element ofM2,
is given by

|�nm〉 = 1√
snm

√
Em ⊗ I4|�n〉, (8)

where it is understood that Em is acting on (2,3) pair and I4

is acting on (1,4) pair of |�n〉 which is given by Eq. (5).
The probability of obtaining the |�nm〉 as the outcome state
is pnsnm.

Here, we denote by snm the probability of obtaining the mth
outcome of the second measurementM2 when it acts on the
nth outcome of the first measurementM1. Using Eqs. (4), (5),
and (7), we get

snm = 〈�n|Em ⊗ I4|�n〉

= 1

Tr(�n)

4∑
α,δ=1

πnαμmδ|〈ψmδ|φnα〉|2. (9)

Now using Eqs. (5) and (7), Eq. (8) can be written as

|�nm〉 = 1

2
√

pnsnm

4∑
α,δ=1

√
πnα

√
μmδ〈ψmδ|φnα〉|ψmδ〉23

⊗ |φnα〉14, (10)

where pn and snm are given by Eqs. (4) and (9), respectively.

After tracing out the (2,3) pair from the above Eq. (10), we
obtain the postmeasurement state between A and C for each
outcome, given by

ρ14|nm = 1

4pnsnm

4∑
α,β=1

4∑
δ=1

μmδ

√
πnα

√
πnβ

×〈φnα|ψmδ〉〈ψmδ|φnβ〉|φnα〉〈φnβ |, (11)

where |φnα(β )〉, α(β ) = 1, 2, 3, 4, are orthonormal basis of the
nth element �n of the first measurementM1.

As we are solely interested in the postmeasurement state
between A and C for successive measurements, we did not
assess the postmeasurement state of the (1,2) and (3,4) pairs
for the next round of measurement.

Next, to analyze the bipartition entanglement of postmea-
surement states for each outcome, we utilize the I concurrence
[30] for higher-dimensional pure quantum systems. Through-
out this work, when referring to bipartition entanglement, we
specifically mean the I concurrence. The bipartition entangle-
ment A|B is defined using the following expression:

CAvsB(ρAB) =
√

d

d − 1

[
1 − Tr

(
ρ2

A

)]
, (12)

where d is the dimension of ρA, which is reduced state of ρAB.
We have already observed that if �n of M1 is entangled,

then the corresponding postmeasurement state between A and
C is always entangled. Now, instead of an entangled measure-
ment, if �n is an unentangled measurement element operator,
is it possible to obtain an entangled state between A and C
if Bob conducts a second measurementM2 on the (2,3) pair
after postprocessing the first measurement? To address this
question, we propose two lemmas for arbitrary measurements:

Lemma 1. If the first measurement M1 is a projective or
rank-1 POVM (pure POVM) measurement, meaning each �n

element is rank 1 or projective, then any second measurement
M2 cannot disturb the postmeasurement state ofM1 between
Alice and Charlie, whether by entangling, disentangling, or
increasing the entanglement.

Proof. A POVMM is called as rank 1 when all its elements
are rank-1 operators. Suppose M1 is a projective or rank-1
POVM, implying each element �n of M1 measurement is
rank 1, such that for α = 1, �n = πn1|φn1〉〈φn1|. Then, ac-
cording to Eq. (5), |�n〉 can be expressed as

|�n〉 = 1√
�n

√
πn1|φn1〉23 ⊗ |φ∗

n1〉14. (13)

This state is separable in the 23|14 bipartition as it can be
represented as a simple tensor product in this partition. Now,
if Bob attempts a measurement on (2,3) of |�n〉 to disturb the
(1,4) pair, it will not be possible as |�n〉 is already separable
in the 23|14 bipartition after the first measurement. Therefore,
no further measurement can disturb the (1,4) pair of the |�n〉
state.

Hence, if �n is a projective or rank-1 entangled POVM
element operator, the postmeasurement state between A and
C will be entangled, but no subsequent measurement can
alter the entanglement in the (1,4) pair. Similarly, if �n is a
rank-1 unentangled POVM element or projective element, the
postmeasurement state between (1,4) will be separable, and no
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further sequential measurement on the (2,3) pair can entangle
the (1,4) pair. �

The above proof indicates that if Bob performs the first
measurement with a rank greater than one, there is a pos-
sibility to disturb the (1,4) pair using another round of
measurement on the (2,3) pair. This is because, from Eq. (5),
it can be understood that the 14|23 bipartition may exhibit
nonzero entanglement after Bob’s first measurement if its
rank is greater than one. Consequently, one might pursue
a subsequent measurement on the (2,3) pair to disturb the
(1,4) pair.

Lemma 2. After performing the first measurement M1

on the (2,3) pair of the initial state (1), if the bipartition
entanglement Cn|14vs23 of the four-qubit state |�n〉 [Eq. (5)]
exhibits nonzero entanglement for a given outcome, i.e., if
the 14|23 bipartition entanglement lies within the range 0 <

Cn|14vs23(|�n〉〈�n|) � 1, and the rank of the first measurement
element is greater than one, then the second measurementM2

has the potential to disturb the entanglement of the (1,4) pair.
Proof. In the first lemma, we have established that if

Cn|14vs23(|�n〉〈�n|) = 0, indicating zero entanglement in the
14|23 bipartition of the postmeasurement four-qubit state
[Eq. (5)], then no further measurement can disturb the entan-
glement of the (1,4) pair. Here, Cn|14vs23(|�n〉〈�n|) represents
the I concurrence in the 14|23 bipartition of Eq. (5). Using
Eq. (12), Cn|14vs23 can be expressed as

Cn|14vs23(|�n〉〈�n|) =
√

4

3

[
1 − Tr

(
ρ2

14|n
)]

=
√√√√4

3

[
1 −

∑4
α=1 π2

nα

(Tr�n)2

]
. (14)

To disturb the postmeasurement state of the (1,4) pair in
the next round measurementM2, a higher-rank measurement
(greater than rank 1)M1 is required, and the postmeasurement
state [Eq. (5)] must exhibit nonzero entanglement in the 14|23
bipartition. This condition is necessary for the disturbance of
the (1,4) pair in the second measurement.

In the initial state [Eq. (1)], when no measurement was
performed on the (2,3) pair, the 14|23 bipartition entangle-
ment was C14vs23(|�〉〈�|) = 1. However, after a particular
measurement on the (2,3) pair of Eq. (1), one may ob-
tain Cn|14vs23(|�n〉〈�n|) �= 0 or Cn|14vs23(|�n〉〈�n|) = 1 for an
outcome. This implies that the (2,3) pair is correlated with the
(1,4) pair nonmaximally or maximally, respectively. There-
fore, any suitable further measurement on the (2,3) pair of
|�n〉 [Eq. (5)] can disturb the (1,4) pair. We will provide some
examples later.

Thus far, we establish that for the second measurement
M2 to disturb the (1,4) pair in the postmeasurement state
|�n〉, two conditions must be met: First, the rank of the
first measurement M1 should exceed one, and second, |�n〉
should exhibit nonzero entanglement in the 14|23 bipartition
[Eq. (14)]. This prompts the following question: What are
the properties of measurements that can lead to entangled
states in (1,4) through successive measurements if the first
attempt fails? To address this inquiry, we present protocols
for different categories of measurements in the entanglement
swapping scenario.

Initially, in the initial state [Eq. (1)] 12|34 bipartition en-
tanglement is zero, i.e., C12vs34(|�〉〈�|) = 0 and in the 14|23
bipartition C14vs23(|�〉〈�|) = 1. To get (1,4) pair entangled
we need a measurement M1 that can produce nonzero en-
tanglement in 12|34 bipartition. So, until and unless Bob’s
first measurement M1 produces entanglement in the 12|34
bipartition we can not disturb the state between (1,4) pair
during the second measurement even if 14|23 bipartition
has nonzero entanglement. Therefore, Cn|12vs34(|�〉〈�|) > 0
is necessary for any type of measurement. However, this
condition alone is not sufficient to entangle the (1,4) pair.
There exist unentangled measurements capable of generating
nonzero entanglement in the 12|34 bipartition but unable to
establish entanglement between qubits A and C. As previously
established, if �n is an unentangled element operator, the
postmeasurement state between the (1,4) pair will also be
unentangled.

To get an entangled state between A and C, we have now
given the protocols for the full two-qubit measurements of
different measurement categories.

A. Inseparable operations

An inseparable operation is defined as follows: let a quan-
tum operation EA acting on a system ρA ∈ HA (Hilbert space),
the Choi state is defined as [31]

Choi(EA) = (IA1 ⊗ EA)|φ+〉〈φ+|A1A. (15)

Here, IA1 is the identity operator in HA1 with dimension
dim(HA1 ) = dim(HA) = d . The state |φ+〉 is a normalized
maximally entangled state in HA1 ⊗HA, given by |φ+〉 =

1√
d

∑d−1
i=0 |i〉A1 |i〉A where |i〉A1 and |i〉A are orthonormal bases

inHA1 andHA, respectively.
Consider a quantum operation MAB acting on a bipartite

state ρAB ∈ HA ⊗HB. One can relabel the bases ofHA ⊗HB

such that it becomesHdA×dB = HC . Now, the whole operation
can be viewed as a single-partite operation onHC , and one can
represent it as (IC1 ⊗MC )|φ+〉〈φ+|C1C , where |φ+〉C1C is the
maximally entangled state inHC1 ⊗HC .

Alternatively, one can form two pairs of maximally entan-
gled states of two qubits |φ+〉〈φ+|A1A and |φ+〉〈φ+|BB1 and
apply the quantum operation on their tensor product:

ρA1ABB1 = (IA1 ⊗MAB ⊗ IB1 )|φ+〉〈φ+|A1A ⊗ |φ+〉〈φ+|BB1 .

(16)

If the entanglement of the state ρA1ABB1 across the bipartition
A1A | BB1 is nonzero, then the operation is called an insepara-
ble operation; otherwise, it is a separable operation [32].

Both approaches are equivalent to define separable
and inseparable quantum operations, as |φ+〉〈φ+|A1A ⊗
|φ+〉〈φ+|BB1 = |φ+〉〈φ+|CC1 . We follow the definition in
Eq. (16) to differentiate the separable and inseparable oper-
ations throughout the work.

In our work, we consider two initial states |φ+〉, which are
maximally entangled two-qubit states. The entanglement of
the four-qubit postmeasurement state |�n〉 in the 12|34 bipar-
tition, i.e., Cn|12vs34(|�n〉〈�n|), is the inseparability condition
of the �n element of any arbitrary two-qubit generalized
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measurement from an operational point of view. We find out
the exact expression of inseparability criteria [32] for two-

qubit arbitrary measurement using the I-concurrence relation
[30] which is given by (for details see Appendix B)

Cn|12vs34(|�n〉〈�n|) =
√

4

3

[
1 − Tr

(
ρ2

12|n
)]

=

√√√√√√√4

3

⎡
⎢⎢⎣1 − 1

(Tr�n)2

4∑
α,β,

γ ,η=1

1∑
i, j,i′,k,
l,k′=0

√
πnα

√
πnβ

√
πnγ

√
πnηa∗

nα|i janβ|i′ ja∗
nβ|k′l anα|kl a∗

nγ |i′ janη|i ja∗
nη|kl anγ |k′l

⎤
⎥⎥⎦.

(17)

Now, we present protocols for performing two-qubit mea-
surements of different categories to obtain an entangled state
between (1,4) pair when the measurement is an inseparable
operation.

1. Entangled measurements

If at least one element �n of measurement M1 is en-
tangled, then the measurement is termed as an entangled
measurement, which consistently yields nonzero entangle-
ment in the 12|34 bipartition, i.e., Cn|12vs34(|�n〉〈�n|) > 0
[Eq. (17)]. This occurs because when an entangled POVM
element �n is applied to the (2,3) pair of the initial state, the
resulting postmeasurement state between A and C is �∗

n

Tr(�n )
,

which remains entangled. Therefore, any entangled measure-
ment constitutes an inseparable operation, ensuring nonzero
entanglement in the 12|34 bipartition of the postmeasurement
state for at least one outcome.

If the first measurement is entangled, the postmeasurement
state between the (1,4) pair is always entangled. However,
whether a second measurement on (2,3) can disturb the en-
tanglement of the (1,4) pair depends on the 14|23 bipartition
entanglement [Eq. (14)] of the four-qubit postmeasurement
state resulting from the first measurement M1. So, there are
two types of entangled measurements for which two situations
may arise:

(a) Cn|14vs23(|�n〉〈�n|) = 0 . After the first entangled
measurement, if Cn|14vs23(|�n〉〈�n|) = 0 [Eq. (14)] for all
elements ofM1, then further second measurementM2 cannot
disturb the (1,4) pair anymore. For instance, if Bob conducts
a projective nonmaximally entangled basis measurement, or a
Bell basis measurement, or any rank-1 entangled POVM on
(2,3) of the initial state (1), then the resulting postmeasure-
ment state (6) between A and C will be an entangled state.
However, no further measurement on the (2,3) pair of Eq. (5)
can enhance, disentangle, or decrease the entanglement in the
(1,4) pair.

(b) Cn|14vs23(|�n〉〈�n|) > 0 . If the four-qubit postmea-
surement state has nonzero entanglement in the 14|23 biparti-
tion for at least one outcome, i.e., 0 < Cn|14vs23(|�n〉〈�n|) �
1 [Eq. (14)], after the first measurement M1, whose rank
is greater than one, then there would be a second measure-
ment that could disturb the (1,4) pair again. Thus, there
is a possibility to enhance, decrease, or disentangle the

entanglement of the (1,4) pair. Examples are provided in a
later section.

2. Unentangled measurements

An unentangled measurement is considered an inseparable
operation in an operational sense if Cn|12vs34 > 0 [as indicated
in Eq. (17)] for at least one element of a measurement. How-
ever, from the perspective of measurement entanglement, if
each element �n of measurementM1 is unentangled, mean-
ing that the corresponding operator defined as �n

Tr(�n )
is a

separable state [13,14,16,18,19], then the postmeasurement
state between A and C, i.e., the (1,4) pair, is always separable.
However, an unentangled measurement element with nonzero
entanglement in the 14|23 bipartition of the postmeasurement
state can still create entanglement between the (1,4) pair if
it conforms to nonzero entanglement in the 12|34 biparti-
tion and another suitable measurement M2 is done on the
(2,3) pair of the postprocessed four-qubit state. That means
subsequent measurement can disturb the (1,4) pair only if
the first measurement is an inseparable operation and retains
14|23 bipartition entanglement in the postmeasurement state.
Two different circumstances are observed based on the 14|23
bipartition entanglement of the postmeasurement state:

(a) Cn|14vs23(|�n〉〈�n|) = 0 . It is not possible to find
a measurement that can create nonzero entanglement
in the 12|34 bipartition of the postmeasurement state,
i.e., Cn|12vs34(|�n〉〈�n|) > 0, and Cn|14vs23(|�n〉〈�n|) = 0 for

an element. Cn|14vs23 =
√

4
3 [1 − Tr(ρ2

14|n)] = 0 implies that

Tr(ρ2
14|n) = 1, indicating that the postmeasurement states ρ14|n

must be pure, suggesting the presence of a projective or rank-1
POVM element. For an unentangled rank-1 POVM element or
an unentangled projective element, �n must be in the form of
a tensor product, thereby preventing the generation of nonzero
entanglement in the 12|34 bipartition of |�n〉.

(b) Cn|14vs23(|�n〉〈�n|) > 0 . If the first measurementM1

results in nonzero entanglement in the 12|34 bipartition of
the postmeasurement state [Eq. (5)] for one outcome [i.e.,
Cn|12vs34(|�n〉〈�n|) > 0], and a second measurementM2 acts
on the (2,3) pair successively, the final postmeasurement state
[Eq. (11)] between A and C will become entangled with a
suitable choice of measurements. We determine the entan-
glement criteria of the final postmeasurement state ρ14|nm

[Eq. (11)] between A and C in terms of measurement
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operators. We derive the exact expression of the negativity
[33] of the postmeasurement state of the (1,4) pair after the
sequential measurements in Appendix C. To evaluate the en-
tanglement of the final state ρ14|nm, we use the negativity
measure [33] to accommodate the arbitrariness of the mea-
surements. We do not utilize the concurrence measure due to
the difficulty in obtaining an expression for an arbitrary state
without further information about the state’s parameters.

When Bob performs an unentangled measurement M1,
which is unable to establish entanglement between the (1,4)
pair, the entanglement in the 14|23 bipartition is retained in
the postmeasurement state. A second measurement M2 can
then establish entanglement in the final postmeasurement state
ρ14|nm, if the negativity N (ρ14|nm) is greater than zero.

As an example, we consider a Bell measurement with white
noise as the first measurementM1. The POVM elements are
defined as

�1 = λ|φ+〉〈φ+| + 1 − λ

4
I4

= 3λ + 1

4
|φ+〉〈φ+| + 1 − λ

4

× (|φ−〉〈φ−| + |ψ+〉〈ψ+| + |ψ−〉〈ψ−|),
�2 = λ|φ−〉〈φ−| + 1 − λ

4
I4

= 3λ + 1

4
|φ−〉〈φ−| + 1 − λ

4

× (|φ+〉〈φ+| + |ψ+〉〈ψ+| + |ψ−〉〈ψ−|),
�3 = λ|ψ+〉〈ψ+| + 1 − λ

4
I4

= 3λ + 1

4
|ψ+〉〈ψ+| + 1 − λ

4

× (|φ−〉〈φ−| + |φ+〉〈φ+| + |ψ−〉〈ψ−|),
�4 = λ|ψ−〉〈ψ−| + 1 − λ

4
I4

= 3λ + 1

4
|ψ−〉〈ψ−| + 1 − λ

4

× (|φ−〉〈φ−| + |ψ+〉〈ψ+| + |φ+〉〈φ+|) (18)

for λ ∈ [0, 1]. The measurement is unentangled for 0 � λ �
1
3 and entangled for 1

3 < λ � 1. The rank of the each element
�n is four. Then from Eq. (4) we find that pn = 1

4 , all out-
comes are equally probable.

For the outcome n, the postmeasurement states between A
and C are obtained from Eq. (6); in particular,

ρ14|n = �n(λ) (19)

for n = 1, 2, 3, 4. The amount of negativity of ρ14|n for n ∈
{1, 2, 3, 4} is

N (ρ14|n) = 3λ − 1

2
. (20)

Note that the state ρ14|n is separable for 0 � λ � 1
3 and entan-

gled for 1
3 < λ � 1. Hence, it is reflected that the state ρ14|n is

entangled if and only if the measurement element is entangled.
So, the average negativity after completion of measurement

M1 between A and C is

Navg(ρ14|M1 ) =
4∑

n=1

pnN (ρ14|n) = 3λ − 1

2
. (21)

Now using Eq. (17), we obtain the concurrence of 12|34
bipartition of postmeasurement state |�n〉 [Eq. (5)] for each
POVM element which is given by

Cn|12vs34 =
√

1+ λ2 − √
1− λ

√
1+ 3λ + λ

√
1− λ

√
1+ 3λ√

2

(22)

∀ n ∈ {1, 2, . . . , 4}. From the above Eq. (22), we observe that
each element �n exhibits nonzero entanglement in the 12|34
bipartition of the postmeasurement state [Eq. (5)] for 0 < λ �
1. Even when each �n is unentangled for 0 � λ � 1

3 , it still
demonstrates nonzero entanglement in the 12|34 bipartition
of the four-qubit postmeasurement state [Eq. (5)], except at
λ = 0.

In order to determine whether the second measurement
M2 can disturb the postmeasurement state ρ14|n of the first
measurementM1 or not, we evaluate the concurrence of 14|23
bipartition of the postmeasurement state of each element �n.
Using Eq. (14) we obtain the concurrence of 14|23 bipartition
entanglement of the postmeasurement state for each element
�n as

Cn|14vs23 =
√

1 − λ2 (23)

which is nonzero for 0 � λ < 1 except at λ = 1. When λ = 1,
the measurement becomes a perfect Bell basis measurement,
which is a projective measurement. If a Bell measurement is
performed initially on the (2,3) pair, no subsequent measure-
ments can affect the postmeasurement state ρ14|n. However,
when the measurement parameter λ is between 0 � λ < 1,
a subsequent measurement can disturb the postmeasurement
state of the first measurement.

Now, after postprocessing each measurement outcome of
the first measurement [Eq. (18)], Bob performs another mea-
surement M2 on the (2,3) pair. We consider the second
measurement M2 to be a purely separable operation. The
POVM elements ofM2 are defined as

E1 = |ψ11〉〈ψ11| + |ψ12〉〈ψ12|,
E2 = |ψ21〉〈ψ21| + |ψ22〉〈ψ22|, (24)

where |ψ11〉 = |00〉, |ψ12〉 = |01〉, |ψ21〉 = |10〉, and |ψ22〉 =
|11〉. This measurement is a single-qubit measurement per-
formed on qubit 2 only, and does not affect qubit 3. Each
element Em is unentangled and does not have any capacity
to produce an entangled state as it is a purely separable
operation [32].

Then, from Eq. (9), we find that snm = 1
2 , which is the

probability of obtaining the mth outcome of the second mea-
surement M2 when it acts on the nth outcome of the first
measurement M1. The probability of obtaining the outcome
state ρ14|nm between A and C is pnsnm = 1

8 , where all out-
comes are equally probable. The postmeasurement states
between A and C are obtained following Eq. (11):

ρ14|11 = (1 + λ)

2
|ξ11〉〈ξ11| + (1 − λ)

2
|01〉〈01|, (25)
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FIG. 1. Variation of negativity with the measurement param-
eter λ for the average entanglement between A and C. Here
Navg(ρ14|M1M2 ) represents the average negativity established be-
tween A and C after the completion of two measurements M1 and
M2 in succession. Navg(ρ14|M1 ) represents the average negativity
between A and C after the completion ofM1 measurement.

where |ξ11〉 =
√

1+3λ+√
1−λ

2
√

1+λ
|00〉 +

√
1+3λ−√

1−λ

2
√

1+λ
|11〉. Similarly,

ρ14|nm for other values of n and m can be calculated easily by
following the similar method.

We get the amount of negativity of the state ρ14|nm which is
given by

N (ρ14|nm) = λ − 1 + √
1 − 2λ + 5λ2

2
∀ n ∈ {1, 2, 3, 4} and ∀ m ∈ {1, 2}. (26)

We observe that N (ρ14|nm) is nonzero for the entire range
of λ, except for λ = 0. On the other hand, after the first
measurement M1 alone, N (ρ14|n) is zero for 0 � λ � 1

3 as
the measurement is unentangled in that range, and nonzero
for 1

3 < λ � 1 as the measurement is entangled in that range.
However, two successive measurements establish entangle-
ment between A and C for the entire range of the measurement
parameter λ, except for λ = 0. Thus, successive measure-
ments open up the entanglement between A and C for the
entire range of λ.

For every outcome, the amount of negativity is the same.
The average negativity between A and C after the completion
of two measurementsM1 andM2 in succession is

Navg(ρ14|M1M2 ) =
4∑

n=1

2∑
m=1

pnsnmN (ρ14|nm)

= λ − 1 + √
1 − 2λ + 5λ2

2
. (27)

In Fig. 1, we have plotted the average entanglement [Eqs. (27)
and (21)] established between A and C with respect to the
measurement parameter λ after the completion of the suc-
cessive two measurementsM1 followed byM2 and after the
completion of the first measurementM1 in terms of negativity
measure. We make the following observations: (i) After the
first measurement M1 the average negativity Navg(ρ14|M1 )
established between A and C is zero in-between 0 � λ �

1
3 because the measurement is not entangled in that range.
(ii) Due to two successive measurements the average nega-
tivity Navg(ρ14|M1M2 ) is nonzero for the whole range of the
0 < λ � 1 and increasing with the λ where M2 is a sepa-
rable operation. (iii) The average negativity Navg(ρ14|M1M2 )
established between A and C after the two successive mea-
surements is greater than the first measurement for the whole
range of the λ.

An unentangled measurement M1 [Eq. (18)] within the
range 0 � λ � 1

3 , along with a purely separable operation
M2 [Eq. (24)], individually falls short in establishing entan-
glement between parties A and C. However, when executed
sequentially, withM1 followed byM2, entanglement between
A and C emerges across the entire range of λ, except for
λ = 0. Furthermore, this sequential approach yields a greater
amount of entanglement compared to a single measurement
M1, particularly in terms of the entanglement established
between A and C.

Meanwhile, an unentangled measurement, characterized
by Cn|12vs34 = 0 [Eq. (17)] for every outcome, proves in-
effective in fostering entanglement between A and C, as
previously elaborated. In the upcoming section, we delve
into the prospect of attaining entanglement between A and
C through a subsequent measurement following Bob’s purely
separable operation.

B. Separable operations

A measurement that operates as a separable operation is
incapable of transforming separable states into entangled ones
[7]. Therefore, if Bob initiates a measurement that constitutes
a separable operation, it will not induce entanglement in the
12|34 bipartition of the postmeasurement state, signifying
Cn|12vs34 = 0 [Eq. (17)] for each POVM element. This im-
plies that the postmeasurement states of the (1,2) and (3,4)
pairs must be pure for every outcome, as Cn|12vs34 = 0 im-
plies Tr(ρ2

12|n) = 1 and Tr(ρ2
34|n) = 1. Thus, in our scenario,

the postmeasurement states within the (1,2) and (3,4) pairs
remain pure.

Can a second measurement entangle the (1,4) pair after
Bob conducts a separable operation? We affirmatively address
this question.

A separable operation {�n} can be represented as

�n = An ⊗ Bn, (28)

where
∑

n �n = I and An, Bn are positive operators acting
on HA, HB Hilbert spaces, respectively. In our scenario, if
Bob conducts a separable operation on the (2,3) pair and the
operators An and Bn are rank 1 for each element, there will
be no second measurementM2 capable of disturbing the (1,4)
pair. This is because a rank-1 element on each qubit destroys
the initial entanglement of |φ+〉12 and |φ+〉34 states.

However, if An and Bn are rank-2 elements, it may be
possible to retain entanglement in the postmeasurement states
of the (1,2) and (3,4) pairs. In such a case, during the next
round of measurement, there may be an opportunity to entan-
gle the (1,4) pair by selecting a suitable measurement after
postprocessing the first measurement M1. Here, the second
measurement M2 should be an inseparable operation, i.e., it
should have Cn|12vs34 > 0 [Eq. (17)] for at least one element.
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It is important to note that to achieve an entangled state in the
(1,4) pair using two successive measurements, Eq. (C11) must
be nonzero for an outcome

Let us delve into the evaluation of theAn and Bn elements
that preserve the entanglement in the (1,2) and (3,4) pairs
following the first measurementM1, thus allowing the poten-
tial entanglement of the (1,4) pair through a suitable second
measurement.

Suppose a single-qubit measurement element An acts on
qubit 2 of the initial state |�〉12 = |φ+〉12 = 1√

2
(|00〉 + |11〉).

Similarly, Bn acts on qubit 3 of the initial state |�〉34 =
|φ+〉34. We assess the postmeasurement state for An while
retaining the arbitrary nature of the measurement. The same
methodology applies to Bn also.

The An element can be decomposed as An =∑2
α=1 τnα|ϕnα〉〈ϕnα| where |ϕnα〉, α = 1, 2, form a complete

orthonormal basis on C2, and τnα � 0 for α = 1, 2. IfAn acts
on qubit 2 of |φ+〉12, then the postmeasurement state becomes

|� ′〉n = I2 ⊗
√
An|�〉12

=
1∑

i, j=0

2∑
α=1

ai j
√

τnα〈ϕnα| j〉|i〉1 ⊗ |ϕnα〉2 (29)

which remains a pure state.
From Eq. (29), it is evident that when the measurement

element is a rank-1 POVM or projective, the postmeasurement
state is always separable. However, when the measurement
element’s rank is greater than one, there is a possibility that
the postmeasurement state remains entangled. By consider-
ing arbitrary orthonormal bases for each element, |ϕn1〉 =
cos θn

2 |0〉 + eiφn sin θn
2 |1〉 and |ϕn2〉 = sin θn

2 |0〉 − eiφn cos θn
2 |1〉

on C2, we evaluate the I concurrence [30] of the postmeasure-
ment state of each outcome using Eq. (12):

Cn(|� ′〉n〈� ′|) = 2
√

τn1τn2

τn1 + τn2
, (30)

where we assume |�〉12 = |φ+〉, a Bell state. Equation (30)
reveals that any rank-2 measurement element retains the en-
tanglement in the (1,2) and (3,4) pairs. Therefore, in the
second round of measurement, if Bob conducts an inseparable
operation on the (2,3) pair after postprocessing the first mea-
surementM1, there is a possibility of obtaining an entangled
state in the (1,4) pair. However, it is crucial to note that
the second measurement should be an inseparable operation,
ensuring that the condition Cn|12vs34 > 0 for an outcome [as
stated in Eq. (17)] is met.

It is noteworthy that our protocols are not only applicable
for two rounds of successive measurements, but one can pro-
ceed further for n rounds by following the same procedure
until the (1,4) pair becomes entangled. After each round of
measurement, the entanglement between the 14|23 bipartition
of the four-qubit postmeasurement state must be nonzero, for
an outcome, in order for the next round of measurement to
disturb the (1,4) pair, after postprocessing the previous round
measurements. We already know that a measurement will be
successful in establishing entanglement in the (1,4) pair if it
can create entanglement between the 12|34 bipartition of the
total system state.

Our protocol is also applicable when starting with two
copies of d × d maximally entangled states, instead of two-
qubit maximally entangled states. Yokoyama et al. [13] have
shown that by considering the d × d maximally entangled
states, the postmeasurement state in the (1,4) pair will be

�∗
n

Tr(�n )
if a generalized POVM element �n is done on the

(2,3) pair. The proof can be easily carried out by follow-
ing our results and considering that every POVM element
can be decomposed into d2 complete orthonormal basis on
Cd ⊗ Cd and πnα � 0 for all n. To calculate Cn|14vs23 for each
POVM element using Eq. (14), one must follow the same
procedure, but with the sum running from α = 1 to α = d2

for d × d maximally entangled states. Similarly, in the case
of Eq. (17), one must sum for i, j, l, k, i′, k′ = 0, . . . , d − 1
and for α, β, γ , η = 1, . . . , d2. Here, Lemmas 1 and 2 are
also applicable in this scenario. Therefore, our protocol is
also valid in this scenario, if one starts with d × d maximally
entangled states. However, in this scenario, one must deal with
bound entangled states and positive partial transpose (PPT)
measurements [20,34–36], among other considerations.

III. CONCLUSIONS

In this study, we explore entanglement activation in a gen-
eralized entanglement swapping process involving two Bell
pairs and generalized measurements. Conventional wisdom
suggests that entangled measurements are required to estab-
lish entanglement between distant parties.

Our work reassesses the necessity and sufficiency condi-
tions for measurement operators to be entangled within the
framework of entanglement activation in a generalized en-
tanglement swapping process. We begin with two Bell pairs:
(1, 2) shared between Alice and Bob, and (3, 4) shared
between Bob and Charlie. A quantum measurement, char-
acterized by positive operator-valued measure (POVM), is
applied to qubits (2, 3), resulting in the creation of a shared
state in (1, 4) between the spatially separated observers.

Our findings demonstrate that while an entangled measure-
ment is sufficient, it is not mandatory for the measurement
operators to be entangled to establish an entangled state be-
tween A and C. We introduce a sequential approach where
Bob conducts an initial measurement, followed by another
measurement if the initial one fails to establish the entangle-
ment. This sequential strategy, in conjunction with appropriate
postprocessing after the initial measurement, facilitates the
establishment of entanglement between A and C. Our inves-
tigation offers unique insights into the role of measurement
operators in entanglement generation.

Our findings have identified specific criteria for different
measurement operators that enable the potential for perform-
ing a second measurement to establish entanglement. We have
delineated protocols for cases where the first measurement
fails to establish entanglement, showcasing the feasibility of
generating entanglement between distant parties through a
combination of measurements. We have found out the exact
expression inseparability condition of an arbitrary two-qubit
measurement.

Furthermore, our demonstration has underscored the sig-
nificance of the 14|23 bipartition entanglement of the total
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system state, highlighting the role of the measurement’s rank
in facilitating a disturbance of the (1,4) state by the second
measurement. We establish that following the first measure-
ment, the 14|23 bipartition entanglement of the total system
state must fall within the range of 0 to 1, with the measure-
ment’s rank exceeding one to enable such disturbance of the
(1,4) state by the second measurement. Moreover, we have
demonstrated that achieving a zero 14|23 bipartition entan-
glement due to an inseparable operator in the measurement is
unattainable.

We initiated our analysis with an illustration involving
a measurement in the Bell basis affected by white noise,
revealing its inability to establish entanglement within the
range 0 � λ � 1

3 due to its lack of entanglement in this inter-
val. However, through the implementation of two consecutive
measurements, we observed that the average entanglement
remains nonzero across the entire range of 0 < λ � 1, pro-
gressively increasing with λ, where the second measurement
is executed as a separable operation. Notably, the average
entanglement achieved between parties A and C following the
two successive measurements surpasses that of the initial mea-
surement across the entire λ range. Our analysis elucidates
how successive measurements outperform single measure-
ments, offering practical benefits of entanglement distribution
in quantum networks.

Moreover, our approach’s versatility extends beyond bipar-
tite qubit states to higher-dimensional maximally entangled
states, highlighting its applicability across various quantum
scenarios.

In conclusion, expanding the protocol to include non-
maximally entangled states would enhance its applicability,
while extending it to cover a broader range of scenarios
holds promise for further advancements in the field. We
have additionally addressed this matter by considering pure

nonmaximally entangled states (cos θ |00〉 + sin θ |11〉) as ini-
tial states for the qubit pairs (1,2) and (3,4). This state
exhibits entanglement for 0 < θ < π

2 , reaching maximum en-
tanglement at θ = π

4 with a concurrence of 2 cos θ sin θ . We
have then performed sequential measurements using Bell ba-
sis with white noise as the first POVM measurement (18),
followed by a second measurement (24). After the first mea-
surement, the entanglement of the output state in the (1,4) pair
depends on both θ and λ. However, we did not observe a state
that remains entangled across the entire range of λ for a fixed
value of θ . Conversely, the sequential application of these two
measurements results in the (1,4) pair being entangled across
the entire range of λ for 0 < θ < π

2 . Therefore, our protocol
is also applicable in scenarios involving pure nonmaximally
entangled states for entanglement distribution. Despite the
challenges in obtaining a compact expression for the postmea-
surement state in (1,4) pair under arbitrary measurements with
nonmaximally entangled initial states, our findings suggest
promising avenues for future research.

Future research efforts should prioritize refining entangle-
ment activation protocols, exploring innovative measurement
strategies, and broadening the protocol’s applicability to di-
verse scenarios, including nonlocality activation [25,37] and
network nonlocality [38,39]. By addressing these research
directions, we can deepen our understanding of entanglement
generation and distribution, leading to advancements in quan-
tum communication and computation.

ACKNOWLEDGMENTS

The authors express gratitude to Prof. S. Bandyopadhyay
for fruitful discussions. P.B. acknowledges S. Halder for help-
ful discussions.

APPENDIX A: POST-MEASUREMENT STATE OF (1,2) AND (3,4) PAIRS

To get the postmeasurement state of (1,2) and (3,4) for nth outcome, we rewrite Eq. (5) in computational basis form.
Every orthonormal basis |φnα〉 can be written in the following computational basis form |φnα〉 = ∑1

i, j=0 anα|i j |i j〉 where∑1
i, j=0 |anα|i j |2 = 1 and anα|i j ∈ C:

|�n〉 = 1

2
√

pn

4∑
α=1

1∑
i, j,k,l=0

√
πnαa∗

nα|i janα|kl |i j〉14|kl〉23. (A1)

The density of state of Eq. (A1) is

ρ1234|n = |�n〉〈�n|

= 1

4pn

4∑
α,β=1

1∑
i, j,k,l,
i′, j′,

k′,l ′=0

√
πnα

√
πnβa∗

nα|i janα|kl anβ|i′ j′a
∗
nβ|k′l ′ |i j〉〈i′ j′|14 ⊗ |kl〉〈k′l ′|23. (A2)

From the orthogonality condition of the orthonormal basis, we get

〈φnβ |φnα〉 =
1∑

i, j,k,l=0

a∗
nβ|kl anα|i j〈kl|i j〉

= δβα (A3)
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which reduces to
1∑

i, j=0

a∗
nβ|i janα|i j = δβα. (A4)

Tracing out the three and four qubits from Eq. (A2) gives j = j′ and l = l ′. So, we get the postmeasurement state of nth
outcome between (1,2) pair which is given by

ρ12|n = 1

4pn

4∑
α,β=1

1∑
i, j,k,l,
i′,k′=0

√
πnα

√
πnβa∗

nα|i janα|kl anβ|i′ ja
∗
nβ|k′l |ik〉〈i′k′|12

= 1

Tr(�n)

4∑
α,β=1

1∑
i, j,k,l,
i′,k′=0

√
πnα

√
πnβa∗

nα|i janα|kl anβ|i′ ja
∗
nβ|k′l |ik〉〈i′k′|12. (A5)

Similarly, tracing out one and two qubits from Eq. (A2) gives i = i′ and k = k′. The postmeasurement state of (3,4) pair of nth
outcome is

ρ34|n = 1

Tr(�n)

4∑
α,β=1

1∑
i, j,k,l,
j′,l ′=0

√
πnα

√
πnβa∗

nα|i janα|kl anβ|i j′a
∗
nβ|kl ′ |l j〉〈l ′ j′|34. (A6)

From Eqs. (A5) and (A6) one can easily compute the postmeasurement states of nth outcome between different pairs (1,2) and
(3,4), respectively, after theM1 POVM measurement.

APPENDIX B: INSEPARABLE QUANTUM OPERATION CONDITION OF AN ARBITRARY TWO-QUBIT MEASUREMENT

Amount of entanglement in 12|34 bipartition of the postmeasurement state for nth outcome is given by

Cn|12vs34(|�n〉〈�n|) =
√

4

3

[
1 − Tr

(
ρ2

12|n
)]

. (B1)

Now, from Eq. (A5) we get that

ρ12|n = 1

4pn

4∑
α,β=1

1∑
i, j,k,l,
i′,k′=0

√
πnα

√
πnβa∗

nα|i janα|kl anβ|i′ ja
∗
nβ|k′l |ik〉〈i′k′|12

= 1

Tr(�n)

4∑
α,β=1

1∑
i, j,k,l,
i′,k′=0

√
πnα

√
πnβa∗

nα|i janα|kl anβ|i′ ja
∗
nβ|k′l |ik〉〈i′k′|12. (B2)

So, ρ2
12|n can be written as

ρ2
12|n = 1

(Tr�n)2

4∑
α,β,

γ ,η=1

1∑
i, j,i′,k,
l,k′,p,q,
p′,q′=0

√
πnα

√
πnβ

√
πnγ

√
πnηa∗

nα|i janβ|i′ ja
∗
nβ|k′l anα|kl a

∗
nγ |p janη|p′ ja

∗
nη|q′l anγ |ql |ik〉〈i′k′|pq〉〈p′q′|. (B3)

Equation (B3) can be simplified as

ρ2
12|n = 1

(Tr�n)2

4∑
α,β,

γ ,η=1

1∑
i, j,i′,k,

l,k′,
p′,q′=0

√
πnα

√
πnβ

√
πnγ

√
πnηa∗

nα|i janβ|i′ ja
∗
nβ|k′l anα|kl a

∗
nγ |i′ janη|p′ ja

∗
nη|q′l anγ |k′l |ik〉〈p′q′| (B4)

as p = i′ and k′ = q.
So, Tr(ρ2

12|n) is given by

Tr
(
ρ2

12|n
) = 1

(Tr�n)2

4∑
α,β,

γ ,η=1

1∑
i, j,i′,k,
l,k′=0

√
πnα

√
πnβ

√
πnγ

√
πnηa∗

nα|i janβ|i′ ja
∗
nβ|k′l anα|kl a

∗
nγ |i′ janη|i ja

∗
nη|kl anγ |k′l (B5)

as i = p′ and k = q′.

052437-10



ACTIVATION OF ENTANGLEMENT IN GENERALIZED … PHYSICAL REVIEW A 109, 052437 (2024)

The entanglement in the 12|34 bipartition of the postmeasurement state when the �n element of any arbitrary two-qubit
measurement is performed on the (2,3) pair can be represented using Eq. (B5):

Cn|12vs34(|�n)〉〈�n|) =

√√√√√√√4

3

⎡
⎢⎢⎣1 − 1

(Tr�n)2

4∑
α,β,

γ ,η=1

1∑
i, j,i′,k,
l,k′=0

√
πnα

√
πnβ

√
πnγ

√
πnηa∗

nα|i janβ|i′ ja∗
nβ|k′l anα|kl a∗

nγ |i′ janη|i ja∗
nη|kl anγ |k′l

⎤
⎥⎥⎦.

(B6)

APPENDIX C: NEGATIVITY OF THE POSTMEASUREMENT STATE AFTER SEQUENTIAL MEASUREMENTS

Negativity of a bipartite state ρAB is defined as [33]

N (ρAB) = ‖ρTB
AB‖ − 1

2
(C1)

with ‖ρTB
AB‖ = Tr

√
(ρTB

AB)†ρ
TB
AB where TB denote the partial transpose with respect to the subsystem B. We evaluate the entangle-

ment of ρ14|nm [Eq. (11)].
Every orthonormal basis |φnα〉 and |ψmδ〉 of different POVM elements can be written in the following computational

basis form: |φnα〉 = ∑1
i1, j1=0 anα|i1 j1 |i1 j1〉 and |ψmδ〉 = ∑1

l1,k1=0 bmδ|l1k1 |l1k1〉 where
∑1

i1, j1=0 |anα|i1 j1 |2 = 1, anα|i1 j1 ∈ C and∑1
l1,k1=0 |bmδ|l1k1 |2 = 1, bmδ|l1k1 ∈ C. So, using the above computational basis form, Eq. (11) can be rewritten as

ρ14|nm = 1

4pnsnm

4∑
α,β,ζ=1

1∑
i1,...,4,

j1,...,4=0

1∑
k1,...,2,

l1,...,2=0

μmζ

√
πnα

√
πnβa∗

nα|i1 j1 bmζ |k1l1 b∗
mζ |k2l2 anβ|i2 j2 anα|i3 j3 a∗

nβ|i4 j4 |i3 j3〉〈i4 j4|, (C2)

where pn = ∑4
α=1

πnα

4 and snm = 1
pn

∑4
α,δ=1

∑1
i, j=0 πnαμmδ|anα|i jb∗

mδ|i j |2.
The square root of any Hermitian, positive-semidefinite matrix U is given by [40]

√
U = U + √

det(U )I√
Tr(U ) + 2

√
det(U )

. (C3)

Let a matrix U be defined as U = (ρTB
14|nm)†ρ

TB
14|nm, where TB denotes the partial transpose with respect to qubit 4. Using Eq. (C2),

U can be written as

U = (
ρ

TB
14|nm

)†
ρ

TB
14|nm

= 1

16p2
ns2

nm

4∑
α,β,ζ ,

γ ,η,δ=1

1∑
i1,...,8,

j1,...,8=0

1∑
k1,...,4,

l1,...,4=0

μmζ

√
πnα

√
πnβanα|i1 j1 b∗

mζ |k1l1 bmζ |k2l2 a∗
nβ|i2 j2 a∗

nα|i3 j3 anβ|i4 j4

×μmδ
√

πnγ
√

πnηa∗
nγ |i5 j5 bmδ|k3l3 b∗

mδ|k4l4 anη|i6 j6 anβ|i3 j7 a∗
nη|i8 j4 |i4 j3〉〈i8 j7|. (C4)

We denote X = Tr(U ) and Y = det U which are given by

X = Tr(U )

= 1

16p2
ns2

nm

4∑
α,β,ζ ,

γ ,η,δ=1

1∑
i1,...,8,

j1,...,8=0

1∑
k1,....4,

l1,...,4=0

μmζ

√
πnα

√
πnβanα|i1 j1 b∗

mζ |k1l1 bmζ |k2l2 a∗
nβ|i2 j2 a∗

nα|i3 j3 anβ|i4 j4

×μmδ
√

πnγ
√

πnηa∗
nγ |i5 j5 bmδ|k3l3 b∗

mδ|k4l4 anη|i6 j6 anβ|i3 j3 a∗
nη|i4 j4 (C5)

and

Y = det U =
4∑

e, f ,g,h=1

εe f ghτ1eτ2 f τ3gτ4h, (C6)

where εe f gh is Levi-Civita symbol. The row elements of the matrix (ρTB
14|nm)†ρ

TB
14|nm can be denoted as τ1e, τ2 f , τ3g, τ4h for

e, f , g, h ∈ 1, 2, 3, 4, where the first, second, third, and fourth rows, respectively. Using these elements, by setting i4 = 0 and
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j3 = 0 in Eq. (C4), we obtain

τ1e = 1

16p2
ns2

nm

4∑
α,β,ζ ,

γ ,η,δ=1

1∑
i1,...,8,

j1,...,8=0

1∑
k1,...,4,

l1,...,4=0

μmζ

√
πnα

√
πnβanα|i1 j1 b∗

mζ |k1l1 bmζ |k2l2 a∗
nβ|i2 j2 a∗

nα|i30anβ|0 j4

×μmδ
√

πnγ
√

πnηa∗
nγ |i5 j5 bmδ|k3l3 b∗

mδ|k4l4 anη|i6 j6 anβ|i3 j7 a∗
nη||i8 j4 . (C7)

Similarly, by setting i4 = 0 and j3 = 1 in Eq. (C4), we get

τ2 f = 1

16p2
ns2

nm

4∑
α,β,ζ ,

γ ,η,δ=1

1∑
i1,...,8,

j1,...,8=0

1∑
k1,...,4,

l1,...,4=0

μmζ

√
πnα

√
πnβanα|i1 j1 b∗

mζ |k1l1 bmζ |k2l2 a∗
nβ|i2 j2 a∗

nα|i31anβ|0 j4

×μmδ
√

πnγ
√

πnηa∗
nγ |i5 j5 bmδ|k3l3 b∗

mδ|k4l4 anη|i6 j6 anβ|i3 j7 a∗
nη||i8 j4 , (C8)

and by setting i4 = 1 and j3 = 0 in Eq. (C4) we get

τ3g = 1

16p2
ns2

nm

4∑
α,β,ζ ,

γ ,η,δ=1

1∑
i1,....8,

j1,...,8=0

1∑
k1,...,4,

l1,...,4=0

μmζ

√
πnα

√
πnβanα|i1 j1 b∗

mζ |k1l1 bmζ |k2l2 a∗
nβ|i2 j2 a∗

nα|i30anβ|1 j4

×μmδ
√

πnγ
√

πnηa∗
nγ |i5 j5 bmδ|k3l3 b∗

mδ|k4l4 anη|i6 j6 anβ|i3 j7 a∗
nη||i8 j4 , (C9)

lastly, setting i4 = 1 and j3 = 1 in Eq. (C4) we get

τ4h = 1

16p2
ns2

nm

4∑
α,β,ζ ,

γ ,η,δ=1

1∑
i1,...,8,

j1,...,8=0

1∑
k1,...,4,

l1,...,4=0

μmζ

√
πnα

√
πnβanα|i1 j1 b∗

mζ |k1l1 bmζ |k2l2 a∗
nβ|i2 j2 a∗

nα|i31anβ|1 j4

×μmδ
√

πnγ
√

πnηa∗
nγ |i5 j5 bmδ|k3l3 b∗

mδ|k4l4 anη|i6 j6 anβ|i3 j7 a∗
nη||i8 j4 . (C10)

So, the negativity of the final postmeasurement state ρ14|nm [Eq. (11)] is

N (ρ14|nm) = Tr
√

U − 1

2

= X + 4
√

Y

2
√

X + 2
√

Y
− 1

2
, (C11)

where X and Y are given above in Eqs. (C5) and (C6), respectively. We get a relation between the negativity of the postmeasure-
ment state and the measurement parameters of two successive measurements.
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