
PHYSICAL REVIEW A 109, 052435 (2024)

Quantum search in many-body interacting systems with long-range interactions
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Continuous-time quantum walks provide an alternative method for quantum search problems. Most earlier
studies confirmed that quadratic speedup exists in some synthetic Hamiltonians, but whether there is quadratic
speedup in real physical systems remains elusive. Here, we investigate three physical systems with long-range
atom-atom interaction which are possibly good candidates for realizing the quantum search, including one-
dimensional atom arrays either trapped in an optical lattice or coupled to a waveguide near the band edge or
dispersively coupled to a good cavity. We find that all three systems can provide a near-optimal quantum search
if there is no dissipation. However, if the dissipation is considered, only the latter two systems (i.e., waveguide-
QED and cavity-QED systems) can still have high success probabilities because they can significantly enhance
the atom-atom interaction even if they are far apart and the spectra gap can be much larger, which can reduce
the search time and the effects of dissipation significantly. Our studies here can provide helpful instructions for
realizing quantum search in real physical systems in the noisy intermediate-scale quantum era.
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I. INTRODUCTION

Spatial search, the problem of finding a marked node in
a graph, is one of the most widely used algorithms and
can be applied to search engines, combinatorial optimization
(path navigation, recommendation systems), new materials
and drug discovery, and many other mathematical problems
(including independent sets, satisfiability problem (SAT), dis-
similar elements, subgroup finding, local search, and weight
determination) [1,2]. For classical search algorithms, no short-
cut is known, and O(n) queries are typically required, where
n is the total number of elements. Quantum computation
promises computational speedup over certain types of prob-
lems by leveraging quantum properties such as quantum
superposition and entanglement [1]. Grover first proposed a
quantum search algorithm that requires only O(

√
n) oracle op-

erations [3–5], and this algorithm can be realized based on the
quantum circuit model, which has attracted extensive interest
[6–8]. In addition to solving search problems, the quantum
search algorithm also provides new insight into ground-state
preparation [9,10], high-energy-physics data processing [11],
optimization problems [12,13], and cryptography [14], as well
as solving NP-hard problems [15,16].

In addition to the quantum circuit model, quantum com-
putation can also be implemented via Hamiltonian evolution,
such as quantum adiabatic evolution [17–20] and quantum
random walks [21–27]. In 1998, Farhi and Gutmann proposed
a quantum search algorithm based on continuous-time Hamil-
tonian evolution, and they showed that quadratic speedup can
also be achieved in a complete graph (i.e., every vertex has
the same nonvanishing hopping rate as all other vertices) [28].
It was then shown that for a hypercube graph in which two
vertices are connected with equal strength if and only if they
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differ in a single bit, the quantum spatial search algorithm
based on Hamiltonian evolution can also provide a quadratic
speedup [29]. Based on a quantum analog of a discrete-
time random walk (DTRW), Shenvi et al. also showed that
optimal search can be achieved in a hypercube graph [30].
In contrast to the DTRW algorithm, Childs and Goldstone
proposed that spatial search can also be constructed via a
continuous-time quantum walk (CTQW); they showed that
for a periodic lattice with dimension d > 4 the marked node
can be found in the optimal O(

√
n) time, while O(

√
nlog

3
2 n)

running times are required for d = 4 [31]. However, for d <

4 they showed that quadratic speedup is impossible. After
that, many works showed that spatial search using a CTQW
is also optimal for other graph topologies, such as frac-
tal graphs [32], nonregular graphs [33], Erdös-Rényi graphs
[34], and various network systems [35–37]. In recent years,
the necessary and sufficient conditions that a graph must
fulfill for optimal quantum search have attracted intensive
studies [38–42].

In most of the previous studies, the quantum search al-
gorithms were designed for pure mathematical models in
which the hopping rate is usually assumed to be a distance-
independent constant and the dissipation of the system is
usually ignored. In 2014, Childs and Ge showed that if the
interaction strength decays as a quadratic power law with
distance, the optimal spatial search can still be obtained in
a dimension d = 2 system [43]. In 2021, Lewis et al. stud-
ied the spatial search on a closed one-dimensional (1D) spin
chain with long-range interactions, where the system Hamil-
tonian H0 = ∑

i< j Ji j (|i〉〈 j| + | j〉〈i|), with Ji j = | j − i|−α +
|n − ( j − i)|−α , and they showed that the optimal spatial
search exists when α < 1.5 but does not exist when α > 1.5
[44]. Although this type of interaction may, in principle,
be implemented in the linear ion-trap-chain system with a
single-band Mølmer-Sørensen scheme [45,46], its practical
realization is challenging.

2469-9926/2024/109(5)/052435(10) 052435-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8935-3448
https://ror.org/0064kty71
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.052435&domain=pdf&date_stamp=2024-05-23
https://doi.org/10.1103/PhysRevA.109.052435


FAN XING, YAN WEI, AND ZEYANG LIAO PHYSICAL REVIEW A 109, 052435 (2024)

FIG. 1. Quantum search in three different physical systems:
(a) 1D cold-atom array trapped in an optical lattice with a mixture
of power-law interaction between atoms, (b) 1D atom array coupled
to a waveguide with an exponentially decaying interaction between
atoms, and (c) 1D atom array dispersively coupled to a cavity with
ideal long-range interactions between atoms. (d) Schematic diagram
of the quantum search algorithm where the system evolves from an
equal superposition state |s〉 to the target state |w〉 under the evolution
of search Hamiltonian Hs.

In this paper, we study the quantum search on three phys-
ical systems with different long-range interactions, and the
aim is to find a physical realization as close as possible to
the quantum search on the complete graph, which is known
to be optimal [31]. The three physical systems we investigate
include an atom chain either trapped in an optical lattice, cou-
pled to a 1D photonic waveguide near the photonic band edge,
or dispersively coupled to a high-quality cavity. The results
show that quadratic speedup with high success probability
can be approached in all three systems if the dissipation is
ignored. However, if the dissipation is considered, the success
probability in the first system is extremely low, while the
waveguide-QED and cavity-QED systems can still provide
relatively high success probabilities due to the significant en-
hancement of collective long-range atom-atom interaction and
the reduction of dissipation effects via vacuum engineering.
Our findings can provide helpful instructions for the experi-
mental realization of the quantum spatial search in the noisy
intermediate-scale quantum (NISQ) era [47].

This paper is organized as follows. In Sec. II we discuss
the three different physical models and the quantum search
algorithm based on CTQW. Then we numerically calculate the
quantum search on the three different physical systems and
show the condition for quadratic speedup over the classical
search without dissipation noises in Sec. III and with dissipa-
tion noises in Sec. IV. Finally, we summarize our results.

II. MODEL AND THEORY

A. Physical model

Here, we consider the quantum search in a 1D atom array
coupled to three photonic baths, i.e., a free-space optical
lattice and waveguide-QED and cavity-QED systems, as
shown in Fig. 1. We assume that all the atoms are identical
and have the same transition angular frequency ωa, and their
nearest-neighbor separation is d . The atom-atom interaction
can be long range in all three systems, but how the interactions

depend on the atom separation is quite different in these three
systems. In a photonic environment, the electric field at posi-
tion �r generated by a dipole �μ1 at position �r0 with oscillation
frequency ω is given by �E (�r) = ω2μ �G(�r, �r0, ω) · �μ1, where
μ is the permeability of the photonic bath and �G(�r, �r0, ωa) is
the dyadic Green’s function of the photonic environment [48].
When another dipole, �μ2, with the same oscillation frequency
is placed in position �r, the dipole-dipole coupling energy is
then given by �μ2 · �E (�r) = ω2μ�μ2 · �G(�r, �r0, ω) · �μ1. Thus, the
general expression for the effective atom-atom interaction in
an arbitrary photonic bath is then given by [49]

Vi j = Ji j + i�i j/2 = (
ω2

aμ/h̄
)
�μ∗

i · �G(�ri, �r j, ωa) · �μ j, (1)

where the real part Ji j is the coherent dipole-dipole interaction
and the imaginary part �i j is the incoherent collective dissipa-
tion rate mediated by the photonic baths. �μ∗

i is the transition
dipole moment of the ith atom at position �ri which is assumed
to be perpendicular to the atom arrays, and h̄ is the reduced
Planck constant. The effective atom-atom interactions and
the collective decays for the three cases are shown in Table I.
Before proceeding, we first introduce the definition of the so-
called long-range interaction used in the current work. Here,
“long range” is used to denote generic nonlocal couplings,
i.e., beyond on-site or nearest-neighbor couplings [50].

For an atom array trapped by a 1D optical lattice, the
atom-atom interaction is a mixture of power-law interaction,
i.e., Ji j = 3γ

4 [ − cos(kari j )
kari j

+ sin(kari j )
(kari j )2 + cos(kari j )

(kari j )3 ] and the collec-

tive decay �i j = 3γ

2 [ sin(kari j )
kari j

+ cos(kari j )
(kari j )2 − sin(kari j )

(kari j )3 ], where γ

is the spontaneous decay rate of a single atom in the free
space, ka = ωa/c (c is the speed of light), and ri j = |�ri −
�r j | [51,52]. When ri j � λa (λa is the wavelength related to
ωa), Ji j ∝ 1/ri j , �ii → γ , and �i j → 0 when i 
= j. If the
power-law interaction decays as 1/xα , it can be called strong
long-range interaction when α < d and weak long-range in-
teraction when α > d , where d is the dimension of the system
according to Ref. [50].

For the atom-waveguide coupling system, the effective
atom-atom interaction in the case when the atomic transition
frequency is above the cutoff frequency of the waveguide is
given by Vi j = (�/2)eikari j , where � is the decay rate into
the waveguide mode [53–57]. The coherent part of the in-
teraction is also long range, but it periodically varies with
atom distance. If the atomic transition frequency is slightly
below the cutoff frequency ωc of the waveguide, the atom
is mainly coupled to the modes around the band edge due
to the Van Hove singularity of the density of states, and the
radiation dissipation can be almost completely suppressed
[58,59]. In this case, the effective atom-atom interaction is
given by Vi j = (�/2)e−κri j , which exponentially decays as the
atom separation increases with decay factor κ = √

ω2
c − ω2

a/c
[60,61]. Although it decreases exponentially with atom sepa-
ration, the effective coupling length depends on the detuning
� = ωc − ωa, which can still become effective long range if
the detuning is very small. For example, if κ is very small,
there is still a significant interaction between the first and
last atoms which is a long-range interaction according to
the definition of long range used in the current work. The
advantage of the case when the atomic transition is below the
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TABLE I. Coherent atom-atom interaction strengths and incoherent dissipation for different physical systems with long-range interaction.

Physical system Coherent interaction Collective dissipation

Free-space optical lattice Ji j = 3γ

4

[ − cos(kari j )
kari j

+ sin(kari j )

(kari j )2 + cos(kari j )

(kari j )3

]
�i j = 3γ

2

[ sin(kari j )
kari j

+ cos(kari j )

(kari j )2 − sin(kari j )

(kari j )3

]

Waveguide QED above the band gap Ji j = �

2 sin(kari j ) �i j → �

2 cos(kari j )

Waveguide QED within the band gap Ji j = �

2 e−κri j �i j → 0

Cavity QED with dispersive coupling Ji j = g2

�
�i j ≈ 3γ

2

[ sin(kari j )
kari j

+ cos(kari j )

(kari j )2 − sin(kari j )

(kari j )3

]

cutoff frequency is that the spontaneous decay can be almost
completely inhibited.

For the atom-cavity coupling system, we consider the case
in which multiple two-level atoms dispersively couple to a
common cavity mode which can produce effective infinite
long-range interaction between atoms JC

i j = g2/�, where g
is the atom-cavity coupling strength and � is the detuning
between the atomic transition frequency and the cavity fre-
quency [62]. It is clearly seen that the atom-atom interaction
in this case is effectively infinitely long range and does not
decrease with atom distance. Since the atomic transition fre-
quency is significantly detuned from the cavity mode, the
dissipation to the cavity mode is largely suppressed, but the
dissipation in other directions can still occur, and therefore,
the dissipation is about the same as that in the free space, as
shown in Table I [63].

B. Quantum search based on CTQW

Considering that there are n atoms with a single excitation
in the above systems, they can be mapped to a graph G with
n vertices, each representing a single excited atom. The basis
state | j〉 = |0 · · · 1 j · · · 0〉, with j = 1, 2, . . . , n denoting that
the jth atom is in the excited state while other atoms are in the
ground state. According to the continuous-time quantum walk
spatial search algorithm proposed by Childs and Goldstone
[31], we can construct the search Hamiltonian

Hs = H0 + ηHt . (2)

Here, H0 = ∑
i j Vi jσ

i
egσ

j
ge is the effective system (graph)

Hamiltonian in the interaction picture, and Vi j is the effec-
tive coupling strength given by Eq. (1); detailed expressions
of Vi j for the three different physical systems are shown in
Table I. σ i

eg = |e〉i〈g|, and σ
j

ge = |g〉 j〈e|, so H0 can be written
as H0 = ∑

i j Vi j |i〉〈 j|. Ht = |w〉〈w| is the target-state Hamil-
tonian, with w ∈ {1, . . . , n} denoting that the wth atom is
excited and other atoms are in the ground state and parameter
η denoting the relative strength of the two Hamiltonians. In
practical realizations, the target Hamiltonian is realized by
shifting the transition frequency of the wth atom by applying
an external control field. Here, we should mention the connec-
tion between our search Hamiltonian in Eq. (2) and the search
Hamiltonian used in previous research, i.e., Hs = βH0 + Ht ,
where H0 = ∑

i j |i〉〈 j| without dissipation [31]. In the case of
the complete graph without dissipation, i.e., Ji j is a constant
(e.g., Ji j = J0), it is readily seen that when η = J0/β, the
two Hamiltonians are actually equivalent and differ by only
a constant rescaling factor.

The typical initial state of the system is an equal super-
position of one excitation state, i.e., |s〉 = 1√

n

∑n
j=1 | j〉. For

a quantum search algorithm, we require that the system can
evolve to the target state |w〉 with high fidelity at a certain time
under the Hamiltonian in Eq. (2). If the atom-atom interaction
is ideally long range and Ji j is a positive constant, it is not
difficult to prove that |s〉 is the eigenstate of the coherent part
of H0 with the largest eigenvalue. When η → ∞, |w〉 is the
eigenstate of Hs with the largest eigenvalue. At certain finite
values of η, neither the |s〉 nor |w〉 state, but their superpo-
sition, is the eigenstate of Hs. We need to find the optimal
value of η such that the relevant eigenstates have maximum
overlap with both the |s〉 and |w〉 states. Under this condition,
the system can oscillate between the |s〉 and |w〉 states, and at
certain time, the system can evolve from the initial state |s〉 to
the target state |w〉 with high fidelity.

The goal of the quantum search is to obtain the target state
|w〉 from the initial state |s〉 with maximum fidelity, and the
search procedure is as follows [31]. (1) Choose optimal η:
Select an appropriate range of η to calculate the eigenvalues
Ej and eigenstates |φ j〉 of the coherent part of Hs. Here, we
mainly care about the eigenstates |φ0〉 and |φ1〉 with the largest
and second-largest eigenvalues, i.e., E0 and E1. If η varies
from zero to infinity, |φ0〉 switches from |s〉 to |w〉, and at
a certain value of η the two eigenstates |φ0〉 and |φ1〉 cross,
and these two eigenstates can both have substantial overlap
on both |s〉 and |w〉. The crossover occurs under the condition
that �E = E0 − E1 is the minimum from which we can de-
termine the optimal parameter ηopt. Under this Hamiltonian,
the system can evolve from state |s〉 to the target state |w〉
with high fidelity at a time proportional to the inverse of the
energy gap �Tmin = π/�Emin. (2) To prove that the system
can, indeed, evolve to the target state with high fidelity, we
let the system evolve under the search Hamiltonian Hs =
H0 + ηoptHt from the initial state |s〉 for a time t , obtaining the
final state |ψ f 〉 = e−iHst |s〉. (3) Make a projection measure-
ment; the success probability of finding the target state |w〉
is F = |〈w|e−iHst |s〉|2. Define the time corresponding to the
maximum fidelity as the optimal search time Topt = tFmax and
compare this search time with �Tmin. (4) Vary the system size
n and repeat the above procedures to determine the search time
as a function of n. Finally, we fit the curves and see whether
there is a quadratic speedup or not.

III. QUANTUM SEARCH WITHOUT
DISSIPATION-NUMERICAL SIMULATION

In this section, we numerically study the optimal search
time for the three different interacting systems shown in
Fig. 1. We assume that in all three cases, atom separation is
d = λa, which is the wavelength corresponding to the atomic
transition frequency ωa. In the following calculations, we let

052435-3



FAN XING, YAN WEI, AND ZEYANG LIAO PHYSICAL REVIEW A 109, 052435 (2024)

FIG. 2. The optimal ηopt for the three different physical systems: (a) an optical lattice, (d) a waveguide-QED system with κ = 0.001, and
(g) a cavity-QED system. n = 256 for all three cases. Optimal search time and maximum fidelity for (b) and (c) mixed-power-law interaction
in the free-space optical lattice and pure power-law interaction for α = 0.5, 1.0, 1.2; (e) and (f) exponentially decaying interaction in the
waveguide-QED system; and (h) and (i) infinite long-range interaction in the cavity-QED system.

λa = 1 for simplicity. Thus, the distance between the ith and
jth atoms is given by ri j = |i − j|. We vary the atom number
from 100 to 1000 and calculate the search time for the three
interaction systems using both �Tmin and Topt, as well as
the maximum fidelity of finding the target state. To compare
our results with the previous research on the ideal complete
graph [31], we first ignore the dissipation of the system (i.e.,
H0 = ∑

i j Ji j |i〉〈 j|) in this section; the effects of dissipation
will be considered in the next section.

A. Atom array in an optical lattice:
Multiple-power-law interaction

The spatial search on a closed 1D spin chain whose Hamil-
tonian H0 = ∑

i< j Ji j (|i〉〈 j| + | j〉〈i|), with Ji j = | j − i|−α +
|n − ( j − i)|−α , has already been studied [44]. Here, we dis-
cuss a slightly different power-law interaction which may be
much easier to implement. As is known to us, an atom array in
the free space or trapped by an optical lattice can have dipole-
dipole interaction induced by the free-space vacuum, which is
a mixture of power laws, as shown in Table I [51,52]. When
kari j � 1, Ji j ∝ r−1

i j , while when kari j � 1, Ji j ∝ r−3
i j . Since

we mainly consider the case when the nearest-neighbor atom
separation is λa, the atom-atom interaction Ji j is dominated by
the first term proportional to r−1

i j . Different from the symmet-
ric Hamiltonian used in Ref. [44], there is no known analytical

solution for the multiple-power-law interaction Hamiltonian,
and here, we resort to numerical simulations.

We first calculate the eigenvalues and eigenvectors of the
search Hamiltonian in Eq. (2) as η varies from 0 to ∞. Taking
n = 256 and w = 20 as an example, the energy difference
�E between the largest and second-largest eigenvalues as
a function of η is shown in Fig. 2(a), from which we can
see that there is a minimum energy gap. The wave func-
tion overlaps between the two eigenstates (|φ0〉 and |φ1〉);
the initial state |s〉 and target state |w〉 are also shown in
Fig. 2(a). We can clearly see that when �E is the minimum,
the two largest eigenstates almost equally overlap with |s〉
and |w〉 states, which is the requirement for an optimal quan-
tum search with high success probability. From this, we can
determine that the optimal ηopt ≈ 1.17γ when n = 256 and
|w〉 = |20〉. Now, with different sizes of atom arrays, we first
determine the optimal ηopt for each n and then numerically
calculate the optimal search time Topt by evolving the system
under the search Hamiltonian in Eq. (2). The results are shown
by the green solid stars in Fig. 2(b). To compare the search
times on equal footing, we have multiplied the search time by
ηopt to eliminate the effect of ηopt. In addition to calculating
the search time using Hamiltonian evolution, we also evaluate
the search time by simply calculating �Tmin from the mini-
mum energy gap, and the results are shown by the green dots
in Fig. 2(b). We can clearly see that the search times calculated
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using these two methods coincide very well. By fitting the dots
(green solid line), we can find that ηopttopt = 0.75n0.690, which
is slightly slower than the quadratic acceleration of Grover’s
search algorithm but is faster than the classical search al-
gorithm. For comparison, we also show the results of pure
power-law interaction (i.e., Ji j ∝ r−α

i j ) with α = 0.5, 1.0, and
1.2. We can see that as α decreases, the search time also de-
creases and approaches the quadratic acceleration. The result
for α = 1 is very close to our free-space case, which confirms
that the first term in Ji j dominates when d = λa.

We also calculate the maximum fidelity of the evolving
final state with the target state, and the results are shown
in Fig. 2(c). For the multiple-power-law interaction in the
free-space case, the fidelity is between 80% and 90% when
the system size varies from 100 to 1000. This fidelity is
high enough for practical realization. In the pure power-law
case, when α decreases, the success probability of finding the
target node increases. Particularly, when α = 0.5, the fidelity
is close to unity. Again, the success probability when α = 1.0
is almost the same as that in our case.

B. Waveguide-QED system: Exponentially decaying interaction

It is known that the atom-atom interaction in the
waveguide-QED system can also be long range. When
the atom transition frequency is above the cutoff frequency
of the single-mode optical waveguide, the coherent atom-
atom interaction is given by Ji j = (�/2) sin(kari j ), and the
collective dissipation �i j = (�/2) cos(kari j ), both of which
are periodic functions of the atom separation (see Table I)
[53–57]. We find that under this Hamiltonian, the equal su-
perposition state |s〉 is not an eigenstate of H0, and the optimal
quantum search cannot be found.

Instead, we consider the case in which the atomic transition
frequency is slightly less than the cutoff frequency of the
single-mode optical waveguide where the atom-atom interac-
tion exponentially decays with the atom separation, i.e., Ji j =
(�/2)e−κri j with vanishing dissipation, which is presented
in the third row of Table I [60,61]. Here, in the numerical
simulations, we choose � = 20γ and three different values
of κ (i.e., κ = 0.005, 0.001, and 0.0001). We choose these
three different values of κ to demonstrate the search time
transitioning from the linear function of n to the approxi-
mate quadric function of n. The parameter κ depends on the
transition frequency of the atom and the cutoff frequency of
the waveguide, i.e., κ = √

ω2
c − ω2

a/c ≈ √
2ωa�ωca/c, where

�ωca = ωc − ωa is the energy difference between the cutoff
frequency and the atom transition frequency [60,61]. In prac-
tical realizations, we can control the detuning �ωca to tune the
value of κ . It should be noted that we set λa = 1 in the current
work, and therefore, κ = 0.001 is actually in units of 1/λa.
Then, we have �ωca ≈ κ2ωa/2. Supposing that λa = 1 µm,
the atomic transition frequency ωa = 6π × 1014 Hz. Obtain-
ing κ = 0.001 requires that the energy difference �ωca ≈
3π × 108 Hz. The energy difference �ω ≈ 75π × 108 Hz
results in κ = 0.005, and �ω ≈ 3π × 106 Hz yields κ =
0.0001.

In Fig. 2(d), we show the energy difference �E be-
tween the largest and second-largest eigenvalues of the search
Hamiltonian as a function of η when n = 256 and κ = 0.001.

From Fig. 2(d), we can see that there is a minimum energy
gap �E occurring at ηopt ≈ 2335γ , where the corresponding
eigenstates have significant overlaps with the initial state |s〉
and the target state |w〉 (|w〉 = |20〉 in our numerical calcu-
lations). We note that the optimal value of η here is much
larger than that used in the free-space optical lattice with the
same number of atoms. There are two main reasons why ηopt

is much larger here. First, due to the confinement of the photon
field, the interaction strength between the atom and the photon
can be much larger, which leads to a larger �. Second, when
κ is small, the atom-atom interaction decays slower than that
in the free space, which results in a much stronger atom-atom
interaction even if two atoms are far apart. Due to these two
factors, the energy scale of the system is much larger, which
requires a much larger ηopt to observe the crossover behavior,
and the minimum energy gap �E in this case is also 3 orders
of magnitude larger than that in the free-space optical lattice.
Actually, the large value of ηopt can also be predicted from
previous studies on the complete graph because the system
here can be well described by a complete graph when κ → 0.
It has been shown in the complete graph that the optimal
search is reached when β ≈ 1/n [31], which corresponds to
ηopt ≈ n�/2 in our case. Thus, the optimal value of η depends
on both the number of atoms and the atom-atom interaction
strength �. Here, we choose � = 20γ , and thus, ηopt ≈ 10nγ .
Indeed, for the case with n = 256, when κ is reduced from
0.001 to 0.0001, ηopt increases from 2335γ to 2520γ , which
is approaching the value of 2560γ in the complete graph.

After determining the optimal values of η for each n, we
numerically evolve the system under the search Hamiltonian
in Eq. (2) with three different values of κ . We can determine
the optimal search time as a function of the number of atoms
n, as shown in Fig. 2(e). Again, to compare the search times
on equal footing, here, we also multiply the search time by
ηopt. By fitting the curves, we find that when κ = 0.005, the
search time ηopttopt ∝ 0.08n is a linear function of the number
of sites. Thus, there is no quadratic speedup over the classical
search (ηoptt ∝ 0.5n), but the slope in our quantum search
here is about 6 times smaller, which indicates the speedup of
the search. However, when we decrease the value of κ , we
find that the search time also decreases. When κ = 0.001,
the search time ηopttopt ≈ 1.03n0.579, and when κ = 0.0001,
the search time ηopttopt ≈ 1.46n0.512, which is apparently
approaching the quadratic speedup and also very close to
the optimal quantum search time predicted in the complete
graph [topt ≈ (π/2)n1/2] [31]. The maximum fidelity (i.e., the
success probability) as a function of n is shown in Fig. 2(f),
from which we can see that the fidelities for all three cases are
very close to unity. Thus, quantum speedup is also possible if
the atom array is coupled to the waveguide near the photonic
band edge.

C. Cavity-QED system: Infinite long-range interaction

For an atom chain dispersively coupled to a cavity, the
atom-atom interaction induced by the common cavity mode
is ideally infinitely long range with Ji j = g2/�, which is a
constant for an arbitrary pair of atoms [62]. Thus, this sys-
tem is a possible physical realization of a quantum search
in a complete graph. Here, in the numerical simulation, we
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assume that Ji j = 10γ , which is experimentally achievable
[64]. To determine the optimal parameter η, we also calculate
the energy gap �E between the largest and second-largest
eigenvalues of the search Hamiltonian when η varies from 0
to ∞. Again, we find that there is also a minimum energy gap
when ηopt = 2540γ [for n = 256, |w〉 = |20〉; Fig. 2(g)]. We
can readily see that ηopt here is also very close to the value
(2560γ ) predicted by the previous studies on the complete
graph [31]. Similar to that in the waveguide-QED system, ηopt

here is also much larger than that in the free-space system due
to the much larger long-range atom-atom interactions. We also
find that the minimum energy gap is 3 orders of magnitude
larger than that in the free-space case, which can significantly
reduce the search time. Then we numerically evolve the sys-
tem and calculate the optimal search time �Tmin and Topt for
three different target states; the results are shown in Fig. 2(h).
The three target states include searching for a single node
|w〉 = |a〉 and superposition of two nodes |w〉 = 1√

2
(|a〉 +

|b〉) and three nodes |w〉 = 1√
3
(|a〉 + |b〉 + |c〉), with a = 20,

b = 40, and c = 60 as an example. From Fig. 2(h), we can
see that �Tmin and Topt coincide with each other, and there is
a clearly quadratic speedup for searching all three different
target states. For a single marked node, by fitting the curve
we can obtain ηopttopt ≈ 1.51n0.506, which is very close to
the theoretical predicted behavior [topt ≈ (π/2)n1/2] in the
complete graph [31]. We also see that ηopttopt = 1.04n0.509 and
ηopttopt = 0.84n0.510 for the cases with two and three marked
nodes, respectively. It turns out that searching a superposition
state is even faster than searching a single node because this
kind of target state has a larger overlap with the initial state.
For searching multiple nodes in a complete graph, it has been
shown that the search time is given by t = (π/2)

√
n/k, where

k vertices are marked [65]. According to this prediction, the
search time is reduced by 1/

√
k when k nodes are marked

compared with the case when only one node is marked. In-
deed, our numerical results are consistent with this prediction.
The optimal search time for one node here is about 1.51n0.506.
Accordingly, the optimal search times for k = 2 and k = 3
are predicted to be about 1.06n0.506 and 0.86n0.506, which are
very close to our numerical results 1.04n0.509 and 0.84n0.510,
respectively. The maximum fidelities (or success probabili-
ties) for finding the target states for all three cases are close
to 100%, as shown in Fig. 2(i).

In both the waveguide-QED system with κ → 0 and the
cavity-QED system with infinite long-range interaction, ηopt

is required to be much larger than γ , which may pose a great
challenge for the experimental realization of the quantum
search algorithm in these two models. However, this require-
ment is not impossible. For example, in [66], researchers
demonstrated the tuning of the transition frequency by more
than 40 MHz in superconducting qubits, while its relaxation
time was about 10 kHz. Another possible candidate is the
Rydberg atom, whose Stark effect can be of the order of giga-
hertz, while its decay rate can be as low as kilohertz [67,68].

D. Boundary effects

In the previous sections, we assumed that the position of
the target is at w = 20. For a complete graph such as in the

FIG. 3. Changes in search time and fidelity when selecting dif-
ferent target states, taking n = 500 as an example for target states
w = 1, 50, 150, 250, 350, 450, 499. (a) and (c) Multiple-power-
law interactions in 1D optical lattices and (b) and (d) exponentially
decaying interactions in the waveguide-QED system.

cavity-QED system with infinite long-range interaction, the
position of the target does not affect the search time. However,
if the atom-atom interaction is not ideally infinite as in the
multiple-power-law interaction and exponentially decaying
interaction cases, the connectivity of each node is not the
same, and thus, the location of the marked node may affect the
search time. For example, the atoms close to the boundaries
(e.g., the leftmost and rightmost ones) are the least interacting
with the rest of the atoms, and the search time for these nodes
is expected to be longer. To demonstrate this boundary effect,
we calculate the search time and fidelity when different loca-
tions of nodes are selected in the cases of multiple-power-law
interactions in a 1D optical lattice and exponentially decaying
interactions in the waveguide-QED system within the band
gap. Taking n = 500 as an example, we compare the results
when w = 1, 50, 150, 250, 350, 450, and 499; the results are
shown in Fig. 3. From Figs. 3(a) and 3(b), we clearly see that
when the target node is close to the boundary, the search time
is longer, which is consistent with the expected prediction.
The corresponding search fidelities are shown in Figs. 3(c)
and 3(d), from which we can see that the fidelity does not
significantly depend on the location of the marked node.

IV. QUANTUM SEARCH WITH A NOISE EFFECT

In the previous section, we investigated the quantum search
in three different physical systems and showed that a near
quadratic speedup can be realized in all three cases without
considering the dissipation effects. However, in real physical
systems dissipations, including decay and dephasing, need to
be taken into account. Here, we consider the maximum fidelity
(i.e., success probability) of the quantum search under decay
and dephasing using two methods. The first one is based on
the master equation, which is given by

ρ̇s(t ) = −i[Hcoh, ρs(t )] + L[ρs(t )], (3)
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FIG. 4. Quantum search fidelity with dissipation effects. Free-space optical lattice with mixed-power-law interaction with (a) decay and
(b) different dephasing rates. Waveguide-QED system with exponentially decaying interactions (� = 20γ and κ = 0.001) with (c) collective
decay and (d) different dephasing rates. Cavity-QED system with ideal long-range interaction (Ji j = 10γ ) under (e) decay and (f) different
dephasing rates. Number of atoms n = 256.

where Hcoh = ∑
i< j Ji j (|i〉〈 j| + | j〉〈i|) + ηHt is the coher-

ent part of the search Hamiltonian and the dissipation is
captured by the Lindblad term L[ρs(t )]. For the decay
process, L[ρs(t )] = − 1

2

∑
i j �i j[σ+

i σ−
j ρs(t ) + ρs(t )σ+

i σ−
j −

2σ−
j ρs(t )σ+

i ], and for the dephasing process L[ρs(t )] =
− γph

2

∑
j[σ

z
j σ

z
j ρs(t ) + ρs(t )σ z

j σ
z
j − 2σ z

j ρs(t )σ z
j ], with γph be-

ing the dephasing rate. The second method is to evolve
the system under the effective search Hamiltonian Hs =∑

i j (Ji j + i�i j/2))|i〉〈 j| + ηHt , where the collective decay
process has been included via the i�i j/2 terms (see Table I).
For the dephasing process, we can model the system by adding
random local field fluctuations to the diagonal elements of the
system Hamiltonian. These local fluctuations are not static
and randomly fluctuate with time. For each time step of the
evolution, we randomly generate a small fluctuation for each
qubit; these fluctuations are sampled from a Gaussian dis-
tribution whose mean is zero, and the standard deviation is
set by the dephasing rate γph [44]. By running the quantum
search many times (e.g., 500 times in our simulation), the
results can be obtained by averaging over all the outputs. We
compare the results using these two methods and find that they
are consistent with each other (see Fig. 5 in the Appendix).
This indicates the validity of using the effective Hamilto-
nian. Since the method based on the master equation is very
time-consuming, here, we mainly use the method based on
the effective Hamiltonian to evaluate the performance of our
quantum search when n > 100.

The results are shown in Fig. 4, where the first row com-
pares the search fidelity with and without the decay process
and the second row shows the search fidelity under differ-
ent dephasing rates. In Figs. 4(a), 4(c), and 4(e), the solid
black line represents the case without decay, and the dotted

red line represents the case considering decay. For the free-
space optical lattice, the decay rate has a significant impact
on the search fidelity; the maximum fidelity becomes very
small when the decay is considered [Fig. 4(a)]. In contrast,
the fidelities in the waveguide-QED system and the cavity-
QED system with decay are almost the same as those without
decay [Figs. 4(c) and 4(e)]. The main reason is that the en-
ergy gaps in these two systems are very large due to the
enhanced atom-atom interaction and the time required for
the quantum search is very short, which can significantly
suppress the effect of dissipation. Similar phenomena also
occur with dephasing. In Figs. 4(b), 4(d), and 4(f), we com-
pare the search fidelity for three different dephasing rates
(γph = 0, 1γ , and 10γ ). We clearly see that dephasing can
also significantly reduce the search fidelity in the free-space
optical lattice system, while it has little effect in the other two
systems. Thus, both the atom chain dispersively coupled to
the cavity and the waveguide-QED system within the band
gap are better candidate systems for realizing the optimal
quantum search due to the enhanced long-range atom-atom
interactions.

V. SUMMARY

We investigated the quantum spatial search problem in
three different physical systems, i.e., an atom array trapped in
an optical lattice, an atom array coupled to a 1D waveguide
within the band gap, and atom arrays dispersively coupled
to a good cavity. We found that close to quadratic speedup
in the quantum search can be achieved in all three systems
when there are no dissipations. However, when there are dissi-
pations, including decay and dephasing, the waveguide-QED
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FIG. 5. The search fidelity with dissipation effects calculated using the master-equation method and effective Hamiltonian method with
collective decay (top row) and with pure dephasing γph = 1γ (bottom row) for (a) and (b) the optical lattice, (c) and (d) the waveguide-QED
system, and (e) and (f) the cavity-QED system. Other parameters are n = 30 and w = 8.

and cavity-QED systems with enhanced collective interac-
tion can still provide quadratic speedup with high success
probability, while the success probability in the atom array
trapped in an optical lattice is extremely low. These results
indicate that the waveguide-QED and cavity-QED systems
with long-range atom-atom interaction are better systems for
demonstrating the optimal quantum search if the noise effect
is considered. This is because the atom-atom interactions in
the waveguide-QED and cavity-QED systems can be much
larger than those in the free-space case even if two atoms
are far apart in space. The enhanced collective long-range
atom-atom interaction can result in a much larger spectral gap,
which can significantly reduce the search time and suppress
the effects of dissipation. Our results here can provide help-
ful instructions for realizing quantum search in real physical
systems in the NISQ era.
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APPENDIX: TWO METHODS FOR CALCULATING
THE DISSIPATION EFFECTS

The dissipation effects, including the decay and dephasing
processes, can be accounted for either by the Lindblad-form
master equation or the effective Hamiltonian methods, as il-
lustrated in Sec. IV. Here, we compare the results of these
two methods.

We take the number of atoms to be n = 30 and the tar-
get state to be w = 8 as an example. The results for the
search fidelity using both the master-equation and the effective
Hamiltonian methods are shown in Fig. 5, where the top row
presents the results with decay while the bottom row presents
the results with dephasing. We clearly see that the fidelities
obtained with these two methods are almost the same for both
the decay and dephasing processes. These results confirm the
validity of the method using the effective Hamiltonian. Since
the method using the master equation is very time-consuming
and we can calculate only the cases with tens of atoms, we
mainly use the method based on the effective Hamiltonian to
calculate the performance of our search algorithm, especially
when the number of atoms is greater than 100.
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