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Dynamical signatures of non-Markovianity in a dissipative-driven qubit
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We investigate signatures of non-Markovianity in the dynamics of a periodically driven qubit coupled to
a dissipative bosonic environment. We propagate the dynamics of the reduced density matrix of the qubit
by integrating the numerically exact hierarchical equations of motion. Non-Markovian features are quantified
by comparing on an equal footing the predictions from diverse and complementary approaches to quantum
dissipation. In particular, we analyze the distinguishability of quantum states, the decay of the volume accessible
to the qubit on the Hilbert space, the negativity of the canonical rates in the generalized Lindblad equation,
and the relaxation of the memory kernels in the Nakajima-Zwanzig generalized quantum master equation. We
study the effects of controlled driving on the coherent dynamics of the system. We show that a suitable external
field can offset the ergodic relaxation of time-correlation functions, increase distinguishability over time, and
strengthen non-Markovian effects witnessed by the canonical dissipation channels. We furthermore observe the
phenomenon of eternal non-Markovianity for sufficiently small system-bath coupling and we discuss how this
can be enhanced by modulating the frequency of the external drive. This work provides a broad theoretical
analysis of quantum dissipation in the framework of open quantum dynamics and quantum information.
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I. INTRODUCTION

To date, uncontrolled dissipation is a crucial issue limiting
both the reliability of quantum-information protocols and the
scalability of quantum-computing devices [1–4]. Improving
coherence lifetime is a task of the utmost importance in order
to enable quantum computers to tackle relevant and chal-
lenging numerical analyses, e.g., in the framework of drug
discovery [5], artificial intelligence [6], and the simulation of
many-body quantum systems [7,8].

From a theoretical standpoint, it is in the first place contro-
versial how to systematically define and measure dissipation
in quantum mechanics. It is in particular debated how this
ubiquitous physical process relates to the occurrence of mem-
ory effects, otherwise called signatures of non-Markovianity
(in contrast to Markovian memory-less processes) [9,10].

Memory effects in classical dynamics can be witnessed by
measuring the probability of a physical system of being in a
given state in the present, conditioned on its past history [11].
This probabilistic approach is applicable provided a series of
measurements is performed over time. While measurement
processes do not alter classical states, they do however af-
fect coherence in quantum systems. In particular, projective
measurements lead to the irreversible collapse of entangled
quantum states [12]. Hence, in order to minimize external
perturbations induced by measurement processes, alternative
methods have been proposed to quantify dissipation and non-
Markovianity in quantum mechanics.

*Present address: Frick Chemistry Laboratory, Princeton Univer-
sity, Princeton, NJ 08544, USA.

The trace-distance approach to quantum non-
Markovianity measures dissipation from the loss of
distinguishability over time between two maximally
distinguishable states of a quantum subsystem, due to
the interaction with an external environment [11,13,14].
In particular, one can prepare the subsystem in two
states maximizing an operator metric known as the trace
distance. Unitary dynamics conserve this distance, while
it decreases monotonically over time in the opposite limit
of strongly dissipative dynamics. It can, however, occur
that, even in the limit of an infinitely large dissipative
bath, the trace distance increases over time. Increasing
distinguishability has been related to the occurrence of
information backflow from the environment [11,15]. From
this perspective, it has been proposed to leverage non-
Markovianity itself as a resource for quantum information and
control [16–18].

The volume of states accessible by the qubit provides an-
other measure of dissipation induced by the environment [19].
It has been discussed in the literature that a drawback of this
method is its potential inability to accurately capture weak
dissipation occurring across a subset of channels in the Hilbert
space of the subsystem. This issue is, however, resolved by
analyzing the canonical rates, time-dependent coefficients
appearing in an exact time-local master equation in Lindblad
form [20–23]. The latter approach is capable of quantify-
ing memory effects occurring along each quantum channel.
Specifically, a generalized Lindblad equation, uniquely ex-
pressed in canonical form, involves a set of time-dependent
canonical dissipation rates, which are non-negative functions
of time under Markovian dynamics. Therefore, the negativity
of each rate serves as an indicator of non-Markovian behavior
within the corresponding channel. Eternal non-Markovianity
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arises whenever certain rates assume negative values at all
times [24,25].

The Nakajima-Zwanzig formalism is another rigorous,
first-principled approach to quantum dissipation [26–28]. The
method relies on expressing open quantum dynamics in terms
of an exact integro-differential equation of motion. An inte-
gral term featuring a memory kernel encapsulates complete
information on the interaction between the subsystem and
the environment. The kernel vanishes in the limit of unitary
dynamics, whereas it collapses to a Dirac delta function in
the opposite Markovian limit. As the timescale to relaxation
of the kernel is highly sensitive to environmental dissipation
and decoherence, it represents a natural measure of non-
Markovianity [29,30].

All aforementioned methods provide an interpretation of
dissipation from different perspectives, not necessarily in
agreement with each other [31–34] and, as discussed in
Refs. [35,36], they do not recover the classical definition of
Markovianity expressed by the Kolmogorov conditions. It is
still subject for debate whether a unique measure to dissi-
pation can be defined in the first place, or whether several
different approaches should be regarded as complementary to
each other.

The effects of dissipation on the long-time limits of open
dynamical systems can be inspected from the perspective
of ergodic theory. From a classical standpoint, environmen-
tal dissipation leads to the ergodic relaxation of the initial
distribution to its invariant thermal limit, fulfilling detailed
balance [37]. For quantum mechanical systems it has been
conjectured, within the eigenstate thermalization hypothesis,
that thermalization can ultimately occur if the asymptotic
limit of quantum operators is consistent with the microcanon-
ical ensemble [38,39]. Predicting the occurrence of chaos
and thermalization in quantum dynamics remains, however,
a hard and unresolved theoretical problem. Analyzing the
long-time behavior of open quantum dynamics becomes even
more challenging in presence of an external time-dependent
field. This scenario is particularly relevant from the perspec-
tive of quantum error correction (QEC), given that coupling
dissipative dynamics to an external drive is a well-known
and effective strategy to protect the dynamics of the system
from environmental decoherence [40–43]. In particular, loss
of coherence in a system of qubits occurs naturally due to the
uncontrolled coupling to an external environment. To counter-
balance the effects of environmental noise, a variety of QEC
techniques have been developed in the last decades [1,44–
46]. Among those, a successful family of approaches is based
on dynamical-decoupling techniques, protecting the dynamics
from environmental dissipation by means of controlled exter-
nal pulses [43,47–49].

Inspired by dynamical-decoupling strategies, in this work
we analyze how an external time-dependent drive affects
environmental dissipation in a spin-boson model externally
coupled to a periodic monochromatic field [50,51]. We prop-
agate the open quantum dynamics of the qubit by integrating
the hierarchical equations of motion (HEOM) [52,53]. This al-
lows us to obtain a numerically exact solution for the reduced
density matrix (RDM) of the qubit.

In Sec. IV A we study how the ergodic relaxation of a
complete set of time-correlation functions is affected by the

presence of the external drive. In Sec. IV B 1 we calculate
a witness of non-Markovianity based on the distinguishabil-
ity of quantum states, within the trace-distance formalism
[13]. From our numerical analysis it emerges that the onset
of environmental dissipation can be minimized provided the
quantum system is periodically driven at given resonant fre-
quencies [54,55]. After introducing in Sec. IV B 2 the analysis
of the volume of accessible states and related drawbacks, we
show in Sec. IV B 3 that controlled driving can be tuned to
measure the onset of stable and long-lived non-Markovian
effects. This analysis is developed within the framework of
an exact generalized Lindblad master equation. Despite its
efficacy, the study of the canonical rates is exclusively applica-
ble provided the map generating the open quantum dynamics
is invertible. This issue does not affect the measurement of
non-Markovian effects from the timescale to relaxation of the
kernels of the generalized quantum master equation (GQME)
in the Nakajima-Zwanzig formalism [26,27]. We study this
approach in Sec. IV B 4.

This work provides an extensive analysis of quantum non-
Markovianity, and paves the way towards the extended study
of dissipation in large-scale quantum-information systems.

II. DISSIPATIVE-DRIVEN DYNAMICS

In this work we study the dynamics of a fermionic two-
level subsystem (s) coupled to a bosonic environmental bath
(b) and to an external time-dependent drive. The total Hilbert
space H can be factorized in terms of the tensor product of the
subsystem and bath Hilbert spaces, i.e., H = Hs ⊗ Hb. The
Hamiltonian is decomposed onto three contributions, accord-
ing to

Ĥ (t ) = Ĥs(t ) ⊗ Îb + Îs ⊗ Ĥb + Ĥsb. (1)

Here, we denote by Ĥs(t ) the Hamiltonian of the qubit sub-
system, which is coupled to the bosonic bath Ĥb via the
cross term Ĥsb. Îs and Îb denote the identity operators of the
subsystem and the bath, respectively. The time evolution of
the total density matrix ρ̂0 is expressed via the time-ordered
exponential

ρ̂(t, τ ) = exp+

{
−i

∫ t

τ

dt ′Lt ′

}
ρ̂0 (2a)

= Û (t, τ )ρ̂0Û
†(t, τ ), (2b)

where Lt · = [Ĥ (t ), ·] denotes the Liouville superoperator,
the subscript + indicates positive time ordering in the expo-
nential superoperator, and

Û (t, τ ) = exp+

{
−i

∫ t

τ

dt ′Ĥ (t ′)
}

(3)

is the time-evolution operator. Here and in the following we
fix h̄ = 1.

The open dynamics of the subsystem are fully described
by the RDM ρ̂s(t, τ ) = trb{ρ̂(t, τ )}, where trb{·} denotes the
partial trace over the Hilbert space of the bath. The total trace
tr[·] is obtained by composing tr[·] = trs[trb{·}] = trb{trs[·]},
where trs[·] is the partial trace with respect to the subsystem.
We define ρ̂(t ) = ρ̂(t, 0) and similarly for the time evolution
of other operators and superoperators.
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In this work we consider an initially factorized total density
matrix of Feynman-Vernon type [56]

ρ̂(0) = ρ̂0 = 1
2 (viσ̂i + Îs) ⊗ ρ̂b = 1

2vμσ̂μ ⊗ ρ̂b, (4)

where

ρ̂b = 1

Zb
e−βĤb , Zb = trb{ e−βĤb} (5)

denotes the thermal density matrix for the uncoupled bath.
Throughout the paper we make use of Einstein’s summa-
tion convention, reserving latin letters i, j, k, · · · ∈ {x, y, z} for
sums over the indices of the three Pauli matrices σ̂i’s. We
instead utilize greek letters μ, ν, λ, · · · ∈ {0, x, y, z} to include
in the sum the identity operator of the qubit subsystem σ̂0 =
Îs. This quadruplet forms a basis for the Hilbert space of the
qubit. The coefficients vμ’s of the Bloch vector can be chosen
to be real without loss of generality. Finally, the normalization
condition tr{ρ̂(t )} = 1 holds by fixing v0 = 1.

We discuss in the following different formulations of the
open dynamics of the qubit, and the mutual relations between
those approaches.

The dynamics of the RDM can be written under broad
conditions in terms of the Nakajima-Zwanzig generalized
quantum master equation (GQME) [26,27]

d

dt
ρ̂s(t ) = −i[Ĥs(t ), ρ̂s(t )] −

∫ t

0
dτ kt,τ ρ̂s(τ ) (6a)

= �t ρ̂s(t ). (6b)

Here, kt,τ denotes the kernel superoperator,

�t• = −i[Ĥs(t ), ·] −
∫ t

0
dτ kt,τ ◦ 	τ	

−1
t • (7)

is the generator of the open dynamics of ρ̂s(t ), and 	t the
corresponding propagator

	t • = trb

{
exp+

{
−i

∫ t

0
dt ′ Lt ′

}
(• ⊗ ρ̂b)

}
. (8)

Equation 6 is solved by

ρ̂s(t ) = exp+

{∫ t

0
dt ′ �t ′

}
ρ̂s(0) = 	t ρ̂s(0). (9)

A derivation of Eq. (6) for time-correlation functions is
provided in Appendix B. In the Born-Markov approximation,
the memory kernel is replaced by a Dirac delta function
[i.e. kt,τ ∝ δ(t − τ )]. We will discuss in Sec. IV B 4 how
deviations from this limit can be utilized as a measure of
non-Markovian effects.

From Eqs. (6) and (7) it is evident that a time-local repre-
sentation of the dynamics is possible provided the propagator
	t is invertible, while the GQME (6b) is not affected by
this restriction. If 	−1

t exists at a given time t , it is possible
to construct a time-local master equation in canonical form
[20–23]

�t ρ̂s(t ) = −i[Ĥc(t ), ρ̂s(t )]

+ γi(t )[L̂i(t )ρ̂s(t )L̂†
i (t ) − 1

2 {L̂†
i (t )L̂i(t ), ρ̂s(t )}].

(10)

Equation 10 is expressed in terms of a uniquely defined set
of canonical rates γi(t )’s and an orthogonal basis of traceless
operators L̂i(t )’s, fulfilling

trs[L̂i(t )] = 0, trs[L̂i(t )L̂ j (t )] = 2δi j . (11)

Ĥc(t ) is the canonical (c) Hamiltonian generating the Her-
mitian part of the dynamics. A derivation of Eq. (10) is
given in Appendix C. According to the Gorini-Kossakowski-
Sudarshan theorem, the non-negativity of the rates γi(t ) is a
necessary and sufficient condition for the complete positiv-
ity of the dynamics [11,57]. In Sec. IV B 3 we will exploit
this feature to measure non-Markovianity in open quantum
dynamics with the only, albeit strong, restriction to invertible
dynamical maps.

The spin time-correlation functions (STCF)

Cμν (t ) = 1

2
tr

[
(σ̂μ ⊗ ρ̂b) exp−

{
i
∫ t

0
dt ′ Lt ′

}
σ̂ν

]
(12)

allow to naturally decompose the contributions of populations
and coherences in the dynamics, and to conveniently measure
the invertibility of the dynamical map. The time evolution of
Eq. (12) provides a description of the dynamics equivalent to
the RDM. In fact, we can rewrite

ρ̂s(t ) = 1
2 tr[ρ̂(t )σ̂ν]σ̂ν = 1

4 tr[(vμσ̂μ ⊗ ρ̂b)σ̂ν (t )]σ̂ν

= 1
2vμCμν (t )σ̂ν . (13)

An important property of the matrix of the STCF [with
components (12)] is that its transpose corresponds to the prop-
agator of the Bloch vector. This can be shown by expanding

ρ̂s(t ) = 1
2vμ(t )σ̂μ, (14)

and by making use of Eq. (8), to obtain

vμ(t ) = 1

2
trs[σ̂μ	t [σ̂ν]]vν

= 1

2
trs

[
(ρ̂b ⊗ σ̂ν )trb

{
exp−

{
i

h̄

∫ t

0
dt ′Lt ′

}
σ̂ν

}]
vν

= CT
μν (t )vν . (15)

The norm of the Bloch vector is conserved by the dynamics
of an isolated subsystem, while it decreases monotonically
for a strongly dissipative bath [11,13]. We will utilize these
geometric features to witness non-Markovian effects in the
later Sec. IV B 1.

Let us remark that the present formalism can be straightfor-
wardly generalized to a subsystem consisting of an arbitrary
number N of quantum levels. In particular, one can replace
the Pauli matrices with a set of N2 − 1 operators {�̂i}N2−1

i=1
generating the su(N ) algebra of the subsystem and obeying
the trace relations [58–60]

trs[�̂i�̂ j] = Nδi j, trs[�̂i] = 0. (16)

The �i’s, together with the N × N identity operator, constitute
a basis of the Hilbert space of the subsystem.

In Sec. III we present in detail the model system studied in
this work, while in Sec. IV we develop an extensive numerical
analysis of quantum non-Markovian effects from multiple
perspectives.
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III. MODEL SYSTEM

A qubit bilinearly coupled to a bosonic field and to a
time-dependent pulse is modeled by a periodically driven
spin-boson model [51,61–63]. We consider here an external
drive exclusively coupled to the Hamiltonian of the sub-
system, leading to periodic oscillations in the population
difference. Specifically, the different terms of Eq. (1) are

Ĥs(t ) = 
σ̂x + [ε0 + εd cos(�t )]σ̂z, (17a)

Ĥb =
F∑

α=1

ωα â†
α âα, (17b)

Ĥsb = σ̂z ⊗
F∑

α=1

cα (â†
α + âα ). (17c)

The diagonal part of Ĥs(t ) includes a static bias ε0 and a time-
dependent term involving periodic oscillations at frequency �

and amplitude εd. The two quantum levels interact through
the coupling 
σ̂x, where 
 denotes the state-state coupling
constant. â†

α’s (âα’s) are the creation (destruction) operators of
the F bath modes, oscillating at frequencies ωα’s and coupled
to the population difference via the interaction defined by the
coefficients cα . In this work we consider an Ohmic spectral
density with a Drude cutoff [64]

J (ω) = η

π

ωcω

ω2
c + ω2

. (18)

η and ωc in Eq. (18) denote, respectively, the system-bath
coupling constant and the cutoff frequency of the bath modes.
Equation 18 corresponds to the continuous limit of its discrete
counterpart

JF (ω) =
F∑

α=1

c2
α

2mαωα

δ(ω − ωα ). (19)

The degrees of freedom of the bath can be rewritten in terms
of canonical configurations q̂α and momenta p̂α via the change
of coordinates

âα = 1√
2ωα

(√
mαωα q̂α + i

p̂α√
mα

)
, (20)

such that

Ĥb = 1

2

F∑
α=1

(
mαω2

α q̂2
α + p̂2

α

)
, (21a)

Ĥsb = σ̂z ⊗
F∑

α=1

c̃α q̂α, (21b)

where we made use of the canonical commutation relations
[q̂α, p̂α′ ] = iδαα′ .

IV. NUMERICAL ANALYSIS

A. Dynamics and stationary state

In this section we study the time evolution of the STCF
[defined in Eq. (12)], and their asymptotic behavior at long
times.

Given that the identity operator σ̂0 is invariant un-
der the action of the total propagator [Eq. (2)], Cμ0(t ) =

tr[ρ̂0σ̂μσ̂0(t )] = δμ0. The time evolution of the other nontriv-
ial correlations is shown in Fig. 1 for increasing values of the
frequency of the external drive from � = 0 [blue (dark)] to
� = 20 [yellow (light)]; the other system parameters are set
to β = 0.3, ε0 = 0, εd = 1, η = 1, and ωc = 1. Also, we fix
in the following mα = 1 for all α = 1, . . . , F . All the physical
constants are given here in units of the state-state coupling
constant 
, effectively set equal to 1 [65,66].

We calculate the dynamics STCF’s by integrating the nu-
merically exact hierarchical equations of motion (HEOM).
These are a set of coupled differential equations for the RDM
of the subsystem and additional auxiliary densities [53,67].
Although this hierarchy is in principle infinite, it can be safely
truncated to a finite tier for all the systems considered in
this work, to obtain a numerically exact solution of the open
dynamics of the qubit. The integration of the HEOM requires
to fix two numerical parameters, i.e., the number of Matsubara
modes K utilized in the high-temperature expansion of the
bath correlation function, and the highest tier L considered
in the hierarchy. All the results presented in the paper exhibit
a satisfactory convergence with K � 2 and L � 20.

We could ask ourselves whether any statement can be made
on the long-time dynamics of the STCF shown in Fig. 1.
From numerical observaions in a variety of systems and pa-
rameter regimes [68–71], we consistently observed that, for
a time-independent energy bias [ε(t ) = const], the quantum
generalization of the classical strong-mixing condition [37]

Cμν (t → +∞) = 〈σ̂μ〉0〈σ̂ν〉β (22)

holds at the long times. Here,

〈σ̂μ〉0 = 1
2 tr[σ̂μ ⊗ ρ̂b] = 1

2 trs[σ̂μ] = δμ0 (23)

denotes the average of the static spin operator over the ini-
tial distribution ρ̂0 = 1

2 Îs ⊗ ρ̂b, while 〈σ̂ν〉β is the average
of the time-evolved operator over the thermal density ma-
trix ρ̂β = e−βĤ/tr[ e−βĤ ]. Equation (22) is supported by the
long-time limit of the black curves shown in Fig. 1 (where
εd = 0). In fact, these agree satisfactorily with the predictions
of Eq. (22), shown as black stars at the final time in all panels.
The thermal averages have been calculated by making use
of the reaction-coordinate representation of the spin-boson
Hamiltonian [72,73]. The approach is exact for an arbitrary
quantum bath linearly coupled to the subsystem. Neverthe-
less, for our parameter regime it is possible to approximate
the quantum environment with its classical counterpart. As
discussed in Appendix B of Ref. [68], this allows us to replace
the trace over the reaction coordinate with a one-dimensional
phase-space integral. The good agreement between long-time
dynamics and statistics supports the validity of both the mix-
ing assumption for a time-independent Hamiltonian and of the
classical limit for the environmental bath (as expected here,
given that βωc < 1 [74,75]). A generalization of Eq. (22) in
presence of an external drive is

Cμν (t ) ∼ 〈σ̂μ〉0〈σ̂ν〉t,st, t 
 1. (24)

Here,

〈σ̂ν〉st,t = tr[ρ̂st (t )σ̂ν] (25)

is the average over the stationary out-of-equilibrium density
matrix ρ̂st (t ) which, according to the Floquet theorem, obeys
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FIG. 1. Dynamics of the spin time-correlation functions {Cμν(t )}μν [Eq. (12)], shown for increasing values of the frequency of the external
drive from � = 0 [blue (dark)] to � = 20 [yellow (light)]. The other parameters are set to β = 0.3, ε0 = 0, εd = 1, η = 1, and ωc = 1. The
dashed lines correspond to the dynamics of the time-independent case with εd = 0 (see discussion in Sec. IV A). The black stars shown on all
panels are the long-time benchmarks for the nondriven system in the assumption of ergodic dynamics.

the same periodicity of the driven Hamiltonian (1) [76,77].
Approximations of this stationary density have at least been
derived in certain limits, e.g., strong but nonvanishing drive
or small system-bath coupling [50,78]. For our model system
we can show a necessary condition for Eq. (24) to be valid in
presence of a time-dependent drive, i.e., that Ciν (t → ∞) = 0
for i �= 0, as expected from Eq. (23).

By inspecting Fig. 1, we note that, as we increase the fre-
quency � (from blue to red), the driven dynamics converge to
the time-independent limit, with εd = 0 (black dashed lines).
This “washout” effect can be understood by noticing that the
dynamics generated by Eqs. (1) and (17) depend on the drive
exclusively via the factor εd sin(�t )/� (see Appendix A for a
proof). This implies that � → +∞ and εd → 0 are equivalent
limits from a dynamical standpoint.

A convenient strategy for reducing dissipation in open
quantum dynamics is to maximize non-Markovian effects. In
fact, strongly dissipative processes tend to display Marko-
vian memoryless features. Non-Markovian effects are instead
associated to a weak-to-intermediate coupling between a
quantum subsystem and an external environment (see the later
discussion in Sec. IV B 4). In the following Sec. IV B

we discuss the efficacy of several approaches to quantum
non-Markovianity, and the involved interplay between envi-
ronmental dissipation and controlled drive.

B. Non-Markovianity

1. Trace distance

The trace-distance approach to quantum non-Markovianity
relies on the interpretation of dissipation as loss of distin-
guishability between quantum states over time [11,79]. In this
section we outline the fundamental aspects of this approach,
and we apply it to the present study of dissipative-driven
dynamics. Extended discussions and reviews on the method
can be found, e.g., in Refs. [11,80].

Let us consider two copies of the qubit prepared in two
well-defined initial states, with RDM’s ρ̂ (1)

s (0) and ρ̂ (2)
s (0) and

corresponding Bloch vectors v(1)(0) and v(2)(0). A measure
of distinguishability between these states is given by the trace
distance

D(1,2)(t ) = 1
2

∥∥ρ̂ (1)
s (t ) − ρ̂ (2)

s (t )
∥∥, (26)

where ‖ · ‖ is the trace norm on Hs [81].
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Note that the trace distance of a Hermitian operator Â ∈ Hs

can be expressed in terms of the absolute sum of its eigen-
values di, that is, ‖Â‖ = ∑

i=1,2,3 |di| [11]. This, in particular,
implies that for a two-level subsystem the trace distance
coincides with half of the Euclidean distance between the
respective Bloch vectors:

D(1,2)(t ) = 1
2 |v(1)(t ) − v(2)(t )|. (27)

Equivalently, by making use of Eq. (15),

D(1,2)(t ) = 1

2

⎧⎪⎨
⎪⎩

∑
j=x,y,z

⎡
⎣ ∑

i=x,y,z

(
v

(1)
i − v

(2)
i

)
Ci j (t )

⎤
⎦

2
⎫⎪⎬
⎪⎭

1/2

.

(28)

Let us note that the correlations C0ν (t ), ν ∈ {0, x, y, z}, do
not contribute to the trace distance, and that all the terms
involved in Eq. (28) relax to zero at long times (as discussed in
Sec. IV A). This indicates that information on the initial state
is completely dissipated to the environment at long times. A
limitation of the trace distance is that the approach cannot cap-
ture non-Markovian effects due to correlation functions C0ν (t )
generating the nonunital part of the dynamics and leading to
nonzero stationary limits [24].

Divisible time-dependent dynamical processes act as con-
tractions of the trace distance, that is, Ḋ(1,2)(t ) � 0 for all v(1)

and v(2) [11,82]. Nondivisibility can instead be interpreted
as memory effects, given that time propagation on a finite-
time interval cannot be arbitrarily decomposed at intermediate
times. The present observations led Breuer, Laine, and Piilo
(BLP) to introduce as a witness of non-Markovianity the inte-
gral measure

NBLP = max
ρ̂

(1)
s ,ρ̂

(2)
s

∫
Ḋ(1,2) (t )>0

dt Ḋ(1,2)(t ). (29)

The maximization in Eq. (29) guarantees that NBLP is ex-
clusively a function of the dynamical map 	t describing the
open quantum dynamics, rather than of any specific couple
of initial densities. It has been proven in Ref. [83] that the
densities maximizing Eq. (29) are mutually orthogonal and
lie on the boundary of the Hilbert space of the subsystem Hs.
For the specific case of two-level systems, those densities are
represented by antipodal vectors of unit norm on the surface
of the Bloch sphere. We can hence rewrite Eq. (29) as

NBLP = max
|v|=1

∫
Ḋv (t )>0

dt Ḋv (t ), (30)

where

Dv (t ) =

⎧⎪⎨
⎪⎩

∑
j=x,y,z

⎡
⎣ ∑

i=x,y,z

viCi j (t )

⎤
⎦

2
⎫⎪⎬
⎪⎭

1/2

. (31)

The time evolution of the trace distance Dmax(t ) maximizing
Eq. (30) is shown in Figs. 2 and 3. Each figure corresponds
to a fixed value of the system-bath coupling (η = 0.1 and 1,
respectively). Results are given for two values of the inverse
temperature β = 0.3 and 1.6 in the upper and lower panels,
respectively. As in Fig. 1, the color scheme denotes increasing
values of the frequency of the external drive � from blue

FIG. 2. Main panels: time evolution of the maximal trace dis-
tance Dmax(t ) for the dissipative-driven qubit. Results are shown
for two values of the inverse temperature β = 0.3 and 1.6 and for
increasing values of the frequency of the drive from � = 0 [blue
(dark)] to � = 20 [yellow (light)]. The other parameters are set
to ε0 = 0, εd = 1, η = 0.1, and ωc = 1. Insets: time evolution of
the volume of accessible states, with the same color code and for
the same systems shown in the main panels (see the discussion in
Sec. IV B 2.)

(dark) for � = 0 up to yellow (light) for � = 20, with increas-
ing warmth. The other system parameters are set to ε0 = 0,
εd = 1, and ωc = 1.

By increasing the inverse temperature we observe an over-
all slower decay of the trace distance over time, as expected

FIG. 3. Similar to Fig. 2 but with larger system-bath coupling
constant η = 1.
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FIG. 4. Integral measure of non-Markovianity NBLP [Eq. (29)],
shown for four values of the inverse temperature β and for increasing
values of the frequency of the drive �. The other parameters are set to
ε0 = 0, εd = 1, η = 0.1, and ωc = 1. The maximization in Eq. (30)
has been performed with NMC = 106 Monte Carlo samples.

due to the decrease of thermal fluctuations of the environment
leading to faster loss of coherence in the qubit. Moreover,
the time evolution of Dmax(t ) appears to be highly sensitive
to modulations of the driving frequency �. To quantify the
dependence of the information flow on the driving frequency,
we show in Figs. 4 and 5 phase diagrams of NBLP as a function
of � for the same parameters of Figs. 2 and 3 and two addi-
tional values of β. The maximization in Eq. (30) is achieved
by uniform Monte Carlo (MC) sampling of antipodal Bloch
vectors on the surface of the Bloch sphere [84]. Satisfactory
convergence is achieved with number of NMC = 106 samples
for Fig. 4 and NMC = 105 samples for Fig. 5. Interestingly,
revivals of information are observed for all considered sys-
tems. This holds true also in the high-temperature regime
at β = 0.3, where the quantum environmental bath can be
approximated by its classical counterpart (see Sec. IV A). Our
analysis aligns with findings from other studies, witnessing
quantum revivals even in presence of a classical environment
[85,86].

In our results we detect peaks of NBLP for particular values
of the drive linked to resonant revivals of information [54].

FIG. 5. Similar to Fig. 4 but with η = 1 and NMC = 105.

This analysis indicates that, compared to the nondriven dy-
namics at � = 0, the inclusion of a periodic external field
can effectively mitigate dissipation of information to the envi-
ronment. Moreover, this study reinforces the well-established
significance of trace-distance approaches as valuable tools
within the framework of quantum control [87,88].

In the above discussion on NBLP we pointed out that max-
imally distinguishable states of a qubit lay on the surface on
the Bloch sphere. This class of states maximizes also another
scalar quantity, the volume underneath the surface of the
sphere. In the next section we discuss another approach to
non-Markovianity based on this concept.

2. Volume of accessible states

From the propagation of the Bloch vector in Eq. (15) we
identify the volume on the Bloch sphere

V (t ) = | det CT (t )| (32)

accessible to the qubit at a given time t [32,59,89,90]. Another
insightful expression for V (t ) follows from the first-order
expansion:

V (t + δt ) = | det[CT (t ) + δt ĊT (t )]| + O(δt2)

= |{I4 + δt trs[�(t )]}V (t )| + O(δt2), (33)

where we introduced the damping matrix [20]

�(t ) = ĊT (t )[CT (t )]−1 = d

dt
ln[CT (t )]. (34)

Equation (33) leads to the differential equation

d

dt
V (t ) = trs[�(t )]V (t ), (35)

solved by

V (t ) = V (0) exp

{∫ t

0
dt ′trs[�(t ′)]

}
. (36)

�(t ) is also the generator of the dynamics in the Bloch repre-
sentation. In fact, from Eq. (15),

v̇μ(t ) = �μν (t )vν (t ). (37)

Equivalently, given that

v̇μ(t ) = trs[�t [ρ̂s(t )]σ̂μ]

= 1
2 trs[�t [σ̂ν]σ̂μ]vν (t ), (38)

we identify

�μν (t ) = 1
2 trs[�t [σ̂ν]σ̂μ]. (39)

It can be proven that for completely positive open quantum
dynamics the volume V (t ) decreases monotonically in time
[91,92]. This applies in particular to the BM limit discussed in
Sec. II. Therefore, similarly to Eq. (29), it has been proposed
in Ref. [19] as a witness of non-Markovianity the integral
measure

NV = 1

V (0)

∫
V̇ (t )>0

dt V̇ (t ). (40)

The time evolution of V (t ) is shown in the insets of Figs. 2 and
3. We note that the timescale to relaxation of V (t ) increases
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for larger inverse temperature β and for smaller system-bath
coupling η. This suggests that the relaxation of the volume
provides a simple and effective measure of decoherence,
sensitive to the strength of dissipation induced by the bath.
However, for all considered system parameters V (t ) decreases
monotonically in time, hence, NV = 0. This result appears
in contrast with the analysis of the trace distance, which, as
discussed in Sec. IV B 1, witnesses non-Markovian effects in
all the considered systems. A well-known issue of the volume
approach is that V (t ) accounts exclusively for the average
dissipation over all quantum channels, potentially leading
to an oversight of weak non-Markovian effects localized on
a subset of channels on the Hilbert space [20,32,93]. We
will extensively discuss this issue in Sec. IV B 3, within the
framework of the time-local master equation (10). Despite
the aforementioned limitations, the analysis V (t ) can still
offer valuable insight into the invertibility of open quantum
dynamics, a necessary condition to construct the time-local
canonical master equation (10). In particular, from the insets
of Fig. 2, we observe that, in the small coupling limit, the
monochromatic drive can extend invertibility to longer times
compared to the nondriven system with � = 0.

3. Canonical rates

Studying the dynamics of the canonical rates within the
time-local master equation (10) provides a rigorous method
for quantifying non-Markovianity in open quantum systems.
In particular, it can be shown that, in the BM limit of Eq. (6),
the operators L̂i become time independent, and the rates γi

converge to non-negative constants [94,95]. Beyond the BM
approximation, the rates remain non-negative functions of
time in case of completely positive divisible dynamics, as
proven by the Gorini-Kossakowski-Sudarshan theorem [57].
In light of these observations, it has been proposed to mea-
sure non-Markovian effects on each channel by studying the
negativity of the respective rate [20]. This analysis provides
in general deeper insight compared to the study of the volume
of accessible states [Eq. (32)] [20,96]. In fact, the exponent of
(36) can be rewritten as [20]

trs[�(t )] = −2
∑

i=1,2,3

γi(t ). (41)

In conjunction with (36), Eq. (41) tells us that V (t ) provides
information only on the average dissipation occurring on all
quantum channels. The analysis of all rates avoids instead
possible compensation effects, which can in particular impair
the detection of weak non-Markovian effects.

The knowledge of the full set of STCF for a given sys-
tem provides complete information required to calculate the
canonical dissipation rates. In fact, the γi(t )’s are the eigen-
values of the decoherence matrix ξ (t ), with components

ξi j (t ) = 1
4 trs[σ̂λσ̂i�t [σ̂λ]σ̂ j]

= 1
4 trs[σ̂λσ̂iσ̂ρ σ̂ j]�ρλ(t ), (42)

related to C(t ) via Eq. (34). A proof of Eq. (42) is shown in
Appendix D.

An important caveat of this approach is that a solution of
the rates at a given time t is possible only provided the matrix

FIG. 6. Time evolution of the canonical rates. Each column cor-
responds to a given value of the inverse temperature, β = 0.3 and
1.6 on the left and right columns, respectively. Results are shown for
increasing values of the driving frequency �, with the same color
scheme utilized in the previous figures. The other parameters are set
to ε0 = 1, εd = 1, η = 0.1, and ωc = 1.

C(t ) is invertible. However, for the systems considered in this
work, the determinant (32) vanishes at long times. This can be
inferred from the fact V (t ) depends only on terms {Ci j (t )}i j ,
for i, j � 1 which vanish at long times (see the discussion in
Sec. (IV A)). To account for this divergence, we calculated the
solution of the rates up to the lowest threshold time τth defined
such that V (τth ) = 10−3.

The time evolution of the three canonical rates for the
dissipative-driven qubit is given in Fig. 6, for increasing val-
ues of the driving frequency from � = 0 [blue (dark)] to
� = 20 [yellow (light)]. Each column corresponds to a fixed
value of the inverse temperature (β = 0.3 and 1.6, at left and
right, respectively). The other system parameters are fixed to
ε0 = 1, εd = 1, η = 0.1, and ωc = 1. We observe that at both
temperatures the lowest rate is negative at all times, and that
it relaxes to a nonzero long-time plateau. The negativity of at
least one quantum rate for all times is known in the literature
as eternal non-Markovianity [20,97,98]. Remarkably, we ob-
serve for γ1(t ) at β = 1.6 (upper-right panel) that driving can
increase the negativity of the rates at long times compared to
the nondriven case (shown as the dark blue curve for � = 0).

Similarly to the study of the trace distance, the present
analysis provides a well-defined criterion to measure the
strength of non-Markovian effects. Those serve as a useful
proxy for dissipation induced by the environment. By in-
creasing the system-bath coupling (to η � 1) the rates would
diverge, without displaying a stable non-Markovian negative
plateau as observed in Fig. 6. Let us highlight that the pos-
itivity of

∑
i=1,2,3 γi(t ) is the reason why non-Markovianity

cannot be detected from the analysis of the accessible volume
in Sec. IV B 2.

As pointed out above, a drawback of the canonical-rates
approach is that its applicability is restricted to invertible
dynamical maps. However, this limitation does not hinder the
study of the time-nonlocal GQME, a general first-principled
approach to quantum dissipation discussed in the next section.
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FIG. 7. (a) Diagonal component of the memory kernel (B6) and
corresponding timescale to relaxation τK [Eq. (44)]. (b) Time evo-
lution of the maximal trace distance Dmax(t ) and related integral
measure of non-Markovianity NBLP [Eq. (29)]. Results are shown
for increasing values of the system-bath coupling from black (dark)
(η = 0.1) to orange (light) (η = 2). The other parameters of the
system are fixed to β = 0.3, ε0 = 1, εd = 0, and ωc = 1.

4. Generalized quantum master equation

In the following we introduce a dynamical approach to
measure non-Markovian effects from the analysis of the
GQME. Equation 6a can be rewritten in terms of an integrod-
ifferential equation of motion for the STCF’s (12), given by

d

dt
C(t, τ ) = C(t, τ )X (t ) −

∫ t

τ

dτ ′C(τ ′, τ )K(t, τ ′). (43)

The time-dependent drift X (t ) and the memory-kernel matrix
K(t, τ ) in Eq. (43) are defined in Eqs. (B7) and (B6) of
Appendix B, respectively. In the same Appendix we provide a
derivation of Eq. (43), together with details on how to calcu-
late numerically the memory kernel from projection-free input
time-correlation functions. We consider here for simplicity the
case of nondriven dynamics by fixing εd = 0 in Eq. (17a).
In this case, Eq. (43) simplifies to Eq. (B17). Figure 7(a)
shows the time evolution of the μ = ν = x component of
the memory kernel, normalized by its initial value Kxx(t ) =
Kxx(t )/Kxx(0). Results are given for increasing values of the
system-bath coupling from black (dark) (η = 0.1) to orange
(light) (η = 2). The other parameters are fixed to β = 0.3,
ε0 = 1, and ωc = 1. We observe that the kernel relaxes to
zero faster for increasing values of η, converging towards
the BM limit. To quantify the deviation between the exact
dynamics and the Markovian approximation of the GQME
(see Appendix B 2), we measure a timescale to relaxation of
the kernel defined by

τK(δ) = max
μν

{
τ :

∫ τ

0 dt ′ |Kμν (0)|∫ +∞
0 dt ′ |Kμν (0)| = δ

}
, δ ∈ (0, 1). (44)

In our numerical results, we fix δ = 0.9, and redefine τK =
τK(0.9). As shown in the inset of Fig. 7(a), τK decreases
monotonically for increasing values of η. By interpolating
the decay of this curve for larger values of the coupling, it
is possible to assess a threshold value for the system-bath
coupling above which the BM equation provides a satisfactory
description of the dynamics (see Appendix B 2).

In Fig. 7(b) we show the time evolution of the maxi-
mal trace distance Dmax(t ), while the integral measure of
non-Markovianity NBLP [Eq. (29)] is displayed as a function
of η in the respective inset. A steady increase in informa-
tion revival occurs for intermediate system-bath coupling
0.5 � η � 1, at values corresponding to the transition from
the coherent to the incoherent regime for the spin-boson
model. By further increasing the coupling constant (η � 1)
we observe a monotonic decrease of information due to the
strong dissipative effects exerted by the environment. Both ap-
proaches discussed here tend converge towards a Markovian
behavior for strong coupling with the environment. Similarly
to the study carried out in Sec. IV B 1, examining the trace
distance offers a well-defined metric to quantify dissipation
in the system. Furthermore, the complementary GQME ap-
proach can be effectively utilized to construct a Markovian
approximation of the open dynamics in the strong-coupling
regime, where revivals of information become negligible or
vanish altogether.

V. CONCLUSIONS

In this paper we studied the open quantum dynamics of a
dissipative-driven qubit, from multiple perspectives and with
several approaches. We integrated the HEOM of the model to
propagate the RDM of the qubit over time across a wide range
of parameters. By decomposing the solution of the RDM onto
a complete set of correlation functions, we observed that the
nonunital part of the dynamics leads to the emergence of
nonequilibrium stationary states, involving the same period-
icity of the total Hamiltonian.

We calculated a witness of non-Markovianity by measur-
ing the time evolution of the trace distance between two
maximally distinguishable RDM’s. This approach provides a
dynamical measure of information flow between the qubit and
the external environment. By tuning the frequency of a pe-
riodic monochromatic field, we witnessed interplay between
dissipation and drive, leading to pronounced resonant peaks
in information backflow. This study highlights a valuable
approach for devising control approaches to alleviate loss of
coherence in dissipative quantum dynamics [99,100].

We noticed that for the model systems studied in this
work the analysis of the volume of accessible states fails to
witness weak signatures of non-Markovianity occurring on a
finite subset of quantum channels. This issue, as consistently
observed in other studies [20,32,93], is due to the fact that the
accessible volume only accounts for the average dissipation
occurring over all quantum channels, and can overlook weak
non-Markovian signatures. The contradiction is resolved by
decomposing the non-Hermitian part of the open quantum
dynamics onto the canonical channels, and by measuring non-
Markovian effects from the dissipation rates on each channel.
This numerical analysis allowed us to identify, for sufficiently
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small values of the system-bath coupling, stable signatures
of eternal non-Markovianity [20,25,97]. We observed that
sufficiently strong drive can enhance non-Markovian effects
compared to the nondriven dynamics. This relevant obser-
vation could be effectively leveraged to advance quantum
control strategies.

The time-nonlocal GQME is an exact equation of motion
for the RDM of an open quantum system. It provides an
interpretation of dissipation in terms of dynamical memory
effects, captured by fast-decaying memory kernels. In this
paper we introduced and studied a timescale to relaxation of
the kernel as a measure of non-Markovian effects. We showed
that, for our model system and parameter domain, dynamical
memory effects in the GQME decrease monotonically for
increasing values of the system-bath coupling. Hence, the
GQME formalism can be proficiently utilized as a numerical
tool to construct an effective Markovian approximation of
open quantum dynamics for a strongly dissipative bath.

Several questions tackled in this work are worth further
investigation in future research, from both theoretical and
technological perspectives.

It has been recently shown how features of eternal non-
Markovianity emerge in the dynamics of superconducting
qubits, a leading technology in the framework of quantum
computing [25]. It could be highly insightful to apply and ex-
tend the analysis of this work to those systems, while tackling
the challenging problem of improving coherence lifetime in
multiqubit gates [101].

In this work we focused on the dissipative effects induced
by the environment on a small quantum subsystem. A com-
plementary theoretical approach worth investigating involves
a somehow reversed perspective, i.e., the study of how a quan-
tum subsystem affects the dynamics of the environment in a
thermal state. This strategy could lead to meaningful insight,
in particular in the development of QEC protocols relying on
the design of engineered noise as a control resource [102].

The formalism of the time-local master equation is based
on the decomposition of the open quantum dynamics onto a
set of time-independent operators, associated to the canonical
dissipation channels in the Hilbert space. It could be insightful
to implement a dynamical and topological analysis of these
channels to identify dissipation-free subspaces in the spirit of
dynamical-decoupling techniques [103].

Among new perspectives for future research we mention
the utilization of variational tools from control theory to de-
sign quantum systems subjected to minimal dissipation and
stable coherence over long timescales [40,42,104]. Finally, it
can be highly insightful to connect the present analysis to the
process-tensor approach, as proposed in Refs. [35,36]. The
method provides a robust operational criterion for measur-
ing non-Markovian effects by examining the divisibility of
quantum processes. This strategy has proven effective in the
investigation of non-Markovian noise in quantum-information
devices, and in the development of successful error correction
techniques based on dynamical decoupling [105,106].

The data that support the findings of this study are available
from the author upon reasonable request.
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APPENDIX A: HIGH-FREQUENCY LIMIT

In this Appendix we determine a factorization of the propa-
gator in Eq. (3) which allows us to straightforwardly calculate
the � → +∞ limit of the dynamics.

First, let us remark that, due to the nondiagonal term 
σ̂x

in the total Hamiltonian Ĥ (t ), it is not possible to remove
the time ordering in the integration in Eq. (3). We can, how-
ever, factorize Û (t ) in two terms whose � → ∞ limit can be
straightforwardly calculated.

This is accomplished by introducing the rotating frame (R),
defined by the unitary transformation

ÛR(t ) = exp+

{
−iσ̂zεd

∫ t

0
dt ′ cos(�t ′)

}

= Îs cos

[
εd sin(�t )

�

]
− iσ̂z sin

[
εd sin(�t )

�

]
, (A1)

rotating a quantum state |ψ (t )〉 in phase with an external
drive. The rotated state |ψR(t )〉 = Û †

R(t ) |ψ (t )〉 obeys the
Schrödinger equation [107]

i
∂

∂t
|ψR(t )〉 = [ĤR(t ) − (σ̂z ⊗ Îb)εd cos(�t )] |ψR(t )〉 ,

(A2)
where

ĤR(t ) = Û †
R (t )Ĥ (t )ÛR(t )

= [ε0 + εd cos(�t )]σ̂z ⊗ Îb + Îs ⊗ Ĥb + Ĥsb

+ 


[
cos

(
2εd sin(�t )

�

)
σ̂x

− i sin

(
2εd sin(�t )

�

)
σ̂y

]
⊗ Îb. (A3)

Let us introduce now the propagator

V̂R(t ) = exp+

{
−i

∫ t

0
dt ′[ĤR(t ) − (σ̂z ⊗ Îb)εd cos(�t )

]}
,

(A4)

solving the Schrödinger equation (A2). Given that, for all
|ψ (0)〉,
|ψ (t )〉 = Û (t ) |ψ (0)〉 = ÛR(t ) |ψR(t )〉 = ÛR(t )V̂R(t ) |ψ (0)〉 ,

(A5)

it follows that

Û (t ) = ÛR(t )V̂R(t ). (A6)
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Equation (A6) allows us to calculate the strong-frequency
limit of the driven dynamics

lim
�→+∞

Û (t ) = lim
�→+∞

V̂R(t ) = lim
εd→0

Û (t ). (A7)

Equation (A7) proves the correspondence between the limits
� → +∞ and εd → 0 discussed throughout the paper (see,
e.g., Fig. 1).

APPENDIX B: GQME FOR DISSIPATIVE-DRIVEN
DYNAMICS

1. Derivation

The Nakajima-Zwanzig GQME has affirmed itself as a
powerful theoretical tool within the framework of open quan-
tum systems and nonadiabatic dynamics [26,27,66,108,109].
Thus far, the approach has been extensively utilized to an-
alyze and interpret non-Markovian effects in model systems
described by time-independent Hamiltonians. The formalism
can be straightforwardly extended to the case of dissipative-
driven dynamics, where the Hamiltonian involves an explicit
dependence on time. In this Appendix we provide a derivation
of the approach in this general case. The following derivation
applies specifically to a two-level subsystem, although it can
be extended with no limitations to an arbitrary number N of
quantum levels (see the concluding remark of Sec. II). We fol-
low here the derivation originally presented in Ref. [110], with
the main difference that in our case we define projection op-
erators in the spin basis. The present approach is particularly
well suited to tackle the analysis of the spin-spin correlation
functions in a variety of models in quantum nonadiabatic
dynamics.

Let us consider a time-independent projection superopera-
tor P = P2, acting on the total Hilbert space of system and
environment. Its complementary is defined by Q = 1 − P ,
where 1 is the identity superoperator.

We aim to derive a non-Markovian equation of motion for
the open quantum dynamics of correlation functions of the
subsystem. To do so, we start by decomposing the equation of
motion of the two propagators onto the two directions of
projection:

d

dt
exp−

{
i
∫ t

t0

dt ′Lt ′

}
=i exp−

{
i
∫ t

t0

dt ′Lt ′

}
PLt

+ i exp−

{
i
∫ t

t0

dt ′Lt ′

}
QLt .

(B1)

We can now make use of the Dyson identity [66]

exp−

{∫ t

t0

dt ′Bt ′

}

= exp−

{
−

∫ t

t0

dt ′At ′

}
−

∫ t

t0

dτ exp−

{
−

∫ τ

t0

dt ′At ′

}

× (Aτ + Bτ ) exp−

{∫ t

τ

dt ′Bt ′

}
, (B2)

defined for two generic superoperators At and Bt .

By replacing At = −iLt and Bt = iQLt , we obtain

exp−

{
i
∫ t

t0

dt ′Lt ′

}

= exp−

{
i
∫ t

t0

dt ′QLt ′

}
+ i

∫ t

t0

dτ exp−

{
i
∫ τ

t0

dt ′Lt ′

}

× PLτ exp−

{
i
∫ t

τ

dt ′QLt ′

}
, (B3)

which can be replaced onto the right-hand side of Eq. (B1) to
find [111]

d

dt
exp−

{
i
∫ t

t0

dt ′Lt ′

}

= i exp−

{
i
∫ t

t0

dt ′Lt ′

}
PLt

+ i exp−

{
i
∫ t

t0

dt ′QLt ′

}
QLt

−
∫ t

t0

dτ exp−

{
i
∫ τ

t0

dt Lt ′

}

× PLτ exp−

{
i
∫ t

τ

dt ′QLt ′

}
QLt . (B4)

To construct an equation of motion for the STCF equa-
tion (12), we consider a Redfield-type projection superoper-
ator [111] spanning the full Hilbert space of the subsystem.
This is written in Liouville space [112] as

P = |σ̂λ〉〉〈〈ρ̂0σ̂λ|. (B5)

After multiplying Eq. (B4) from left and right by 〈〈ρ̂0σ̂μ|
and |σ̂ν〉〉, respectively, we obtain the GQME equation (43),
involving the memory kernel

Kμν (t, τ ) = 〈〈ρ̂0σ̂μ|Lτ exp−

{
i
∫ t

τ

dt ′QLt ′

}
QLt |σ̂ν〉〉

= 〈〈ρ̂0σ̂μ|LτQ exp−

{
i
∫ t

τ

dt ′QLt ′

}
QLt |σ̂ν〉〉,

(B6)

and drift matrix
Xμν (t ) = i〈〈ρ̂0σ̂μ|Lt |σ̂ν〉〉. (B7)

The present choice of projection operators allows for a
convenient simplification in the structure of the open quantum
dynamics. In fact, the matrix elements of the complicated
projected dynamics in the second term of the right-hand side
of (B4) vanish identically:

i〈〈ρ̂0σ̂μ| exp−

{
i
∫ t

t0

dt ′QLt ′

}
QLt |σ̂ν〉〉

= i〈〈ρ̂0σ̂μ|Q exp−

{
i
∫ t

t0

dt ′Lt ′Q
}
QLt |σ̂ν〉〉

= i〈〈ρ̂0σ̂μ| exp−

{
i
∫ t

t0

dt ′Lt ′Q
}
QLt |σ̂ν〉〉

− i〈〈ρ̂0σ̂μ|σ̂λ〉〉〈〈ρ̂0σ̂λ| exp−

{
i
∫ t

t0

dt ′Lt ′Q
}
QLt |σ̂ν〉〉

= 0, (B8)
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where we made use of the orthogonality of the scalar product
〈〈ρ̂0σ̂μ|σ̂ν〉〉 = tr[ρ̂0σ̂μσ̂ν] = δμν .

The memory kernel in (B6) depends on the projected dy-
namics, which is hard to simulate numerically, both exactly
and with approximated quasiclassical approaches [69]. To
circumvent this issue, we follow an established strategy orig-
inally introduced in Ref. [113]. In particular, we construct a
recursive relation for the memory kernel by inserting again
the Dyson identity equation (B3) onto (B6):

Kμν (t, τ ) = 〈〈ρ̂0σ̂μ|LτQ exp−

{
i
∫ t

τ

dt ′Lt ′

}
QLt |σ̂ν〉〉

− i
∫ t

τ

dτ ′〈〈ρ̂0σ̂μ|LτQ exp−

{
i
∫ τ ′

τ

dt ′Lt ′

}
|σ̂λ〉〉

× 〈〈ρ̂0σ̂λ|Lτ ′ exp−

{
i
∫ t

τ ′
dt ′QLt ′

}
QLt |σ̂ν〉〉,

(B9)

written in matrix form as

K(t, τ ) = K(1)(t, τ ) +
∫ t

τ

dτ ′K(3)(τ ′, τ )K(t, τ ′), (B10)

where we introduced the two auxiliary kernels

K(1)
μν (t, τ ) = 〈〈ρ̂0σ̂μ|LτQ exp−

{
i
∫ t

τ

dt ′Lt ′

}
QLt |σ̂ν〉〉,

(B11a)

K(3)
μν (t, τ ) = −i〈〈ρ̂0σ̂μ|LτQ exp−

{
i
∫ t

τ

dt ′Lt ′

}
|σ̂ν〉〉.

(B11b)

Equations (B10) and (B11) allow us to conveniently calculate
the solution of kernel (B11) via projection-free input correla-
tion functions.

In particular, by expanding the projectors in Eq. (B11) we
obtain the relations

K(1)(t, τ ) = d2

dt dτ
C(t, τ ) + X (τ )

d

dt
C(t, τ )

− d

dτ
C(t, τ )X (t ) − X (τ )C(t, τ )X (t ),

(B12a)

K(3)(t, τ ) = d

dτ
C(t, τ ) + X (τ )C(t, τ ). (B12b)

By comparing Eqs. (B12a) and (B12b), we find a relation
between the two auxiliary kernels

K(1)(t, τ ) = d

dt
K(3)(t, τ ) − K(3)(t, τ )X (t ). (B13)

Therefore, to obtain with projection-free input the full ker-
nel (B6) it suffices to calculate directly only K(3)(t, τ ) via
Eq. (12), and then to make use of the identities (B13)
and (B10).

2. Markovian approximation

The memory kernel K(t ) encapsulates complete informa-
tion on the dynamical effects of the environment on the
subsystem. Hence, one could ask at which extent the kernel

relates to the other measures of non-Markovianity discussed
in this work. To tackle this question, we consider the Born-
Markov (BM) approximation of Eq. (43) [114], corresponding
to the assumption of memoryless dynamics K(t, τ ) ∝ δ(t −
τ ). This leads to the time-local master equation

d

dt
CBM(t, τ ) = CBM(t, τ )MBM(t, τ ), (B14a)

MBM(t, τ ) = X (t ) −
∫ t

τ

dτ ′K(t, τ ′), (B14b)

which is solved by

CBM(t, τ ) = [	BM(t, τ )I4]T , (B15a)

	BM(t, τ ) = exp+

{∫ t

τ

dt ′MT
BM(t ′, τ )

}
, (B15b)

where we noticed that the initial value CBM(0, 0) is equal
to the 4 × 4 identity matrix I4. Note that the BM propaga-
tor 	BM(t, τ ), being a time-ordered exponential, is divisible
[115], i.e.,

	BM(t, 0) = 	BM(t, τ )	BM(τ, 0), 0 � τ � t . (B16)

This indicates that the BM approximation of the GQME is
consistent with the correspondence between Markovianity
and divisibility of the dynamical map, laying at the foundation
of all the approaches to quantum dissipation discussed in this
work [11,31,96].
For a nondriven time-independent Hamiltonian, Eq. (43) sim-
plifies to

d

dt
C(t ) = C(t )X −

∫ t

0
dτ ′C(τ ′)K(t − τ ′), (B17)

with corresponding BM approximation
d

dt
CBM(t ) = CBM(t )MBM, (B18a)

MBM = X −
∫ +∞

0
dτ ′K(τ ′), (B18b)

generating divisible dynamics. One can prove that Eq. (B18)
preserves the same long-time limits of the exact dynamics,
Eq. (B17) (see Appendix B of Ref. [69] for further details).
This supports the relevance and physical significance of the
present Markovian approximation of the GQME.

APPENDIX C: CANONICAL FORM OF THE TIME-LOCAL
MASTER EQUATION

Studying the dynamics of open quantum systems via the
time-local master equation (10) provides a rigorous and well-
defined strategy to witness the occurrence of non-Markovian
effects. In this Appendix we present a detailed derivation of
this master equation, following Refs. [20,21,93].

First of all, we observe that the linearity of the generator
�t [Eq. (6)] implies that, if the propagator 	t is invertible,
two sets of operators {Âμ(t )}μ and {B̂μ(t )}μ exist such that

�t ρ̂s(t ) = Âμ(t )ρ̂s(t )B̂†
μ(t ). (C1)

By expanding

Âμ(t ) = σ̂νaνμ(t ), B̂μ(t ) = σ̂νbνμ(t ), (C2)
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we rewrite Eq. (C1) as

�t ρ̂s(t ) = aνμ(t )σ̂ν ρ̂s(t )b∗
λμ(t )σ̂λ = ξνλ(t )σ̂ν ρ̂s(t )σ̂λ, (C3)

where we introduced the decoherence matrix ξ (t ), with
components ξνλ(t ) = aνμ(t )b∗

λμ(t ) [see also Eq. (42) for an
alternative expression]. Given that ρ̂s(t ) and �t ρ̂s(t ) are Her-
mitian operators, ξ (t ) is a Hermitian matrix at all times. In
fact,

[�t ρ̂s(t )]† = ξ ∗
νλ(t )σ̂λρ̂s(t )σ̂ν = ξ ∗

λν (t )σ̂ν ρ̂s(t )σ̂λ, (C4)

and, by comparing Eqs. (C3) and (C4), it follows that ξνλ(t ) =
ξ ∗
λν (t ). To identify in Eq. (C3) the Hermitian part of the open

dynamics, we expand

�t ρ̂s(t ) = ξ00(t )ρ̂s(t ) + ξi0(t )σ̂iρ̂s(t ) + ξ0 j (t )ρ̂s(t )σ̂ j

+ ξi j (t )σ̂iρ̂s(t )σ̂ j, (C5)

and, by defining

ĥc(t ) = 1
2ξ00(t )Îs + ξi0(t )σ̂i, (C6)

we recast Eq. (C5) as

�t ρ̂s(t ) = ĥc(t )ρ̂s(t ) + ρ̂s(t )ĥ†
c (t ) + ξi j (t )σ̂iρ̂s(t )σ̂ j . (C7)

By taking the trace of Eq. (C7) and making use of the trace
preservation of the density matrix (trs[�t ρ̂s(t )] = 0), we ob-
tain

ĥc(t ) + ĥ†
c (t ) = −ξi j (t )σ̂ j σ̂i. (C8)

The Hermitian operator

Ĥc(t ) = i

2
[ĥc(t ) − ĥ†

c (t )] (C9)

generates the unitary part of the dynamics in Eq. (C7):

�t ρ̂s(t ) = −i[Ĥc(t ), ρ̂s(t )]

+ ξi j (t )[σ̂iρ̂s(t )σ̂ j − 1
2 {σ̂ j σ̂i, ρ̂s(t )}]. (C10)

The negativity of the eigenvalues of ξ (t ) provides a mea-
sure of the discrepancy from the Markovian limit of the
dynamics. In particular, we can decompose ξ (t ) in terms
of its real eigenvalues γi(t ) and corresponding orthonormal
eigenvectors u(i)(t ) according to

ξi j (t ) = u(k)
i (t )γk (t )

[
u(k)

j (t )
]∗ = Uik (t )γk (t )U†

ik (t ), (C11)

where Ui j (t ) = u( j)
i (t ). The time-dependent operators

L̂i(t ) = Ui j (t )σ̂ j (C12)

allow us to rewrite Eq. (C10) as

�t ρ̂s(t ) = −i[Ĥc(t ), ρ̂s(t )]

+ (U†
ki(t )ξi j (t )U jl (t ))L̂k (t )ρ̂s(t )L̂†

l (t )

− 1
2 (U†

li(t )ξi j (t )U jk (t )){L̂†
k (t )L̂l (t ), ρ̂s(t )}, (C13)

which corresponds to Eq. (10), given that [U†(t )ξ (t )U (t )]i j =
δi jγ j (t ).

APPENDIX D: DECOMPOSITION OF SUPEROPERATORS
OF THE SUBSYSTEM

In this Appendix we include the derivation of Eq. (42),
an identity relating the canonical rates to the damping ma-
trix (34). The following proof corresponds to Lemma 2.2
Ref. [57].

Lemma. Let us denote by {π̂μ}μ a complete orthonormal
set (COS) of operators on Hs. For Ô : Hs → Hs, the family
of superoperators {Gμν}μν defined by

Ô �→ GμνÔ = π̂μÔπ̂†
ν (D1)

is a COS in L(Hs), the linear space of superoperators acting
on Hs.

Proof. First of all, we notice that

π̂†
μÔπ̂μ = Îstrs[Ô]. (D2)

In fact, being the left-hand side of Eq. (D2) invariant under a
change of COS,

we can replace {π̂μ}μ with {Êab = |a〉 〈b|}a,b=0,1, and ex-
pand

Ê†
abÔÊab = |b〉 〈a|Ô|a〉 〈b| = Îstr[Ô]. (D3)

L(Hs) is a unitary space with inner product

〈A,B〉 = trs[(Aτ̂μ)†(Bτ̂μ)], A,B ∈ L(Hs), (D4)

also independent on any specific choice of COS {τ̂μ}μ. We
can now prove that {Gμν}μν is a COS in L(Hs). In fact, via
Eq. (D2),

〈Gαβ,Gμν〉 = trs[(Gαβ τ̂λ)†(Gμντ̂λ)]

= trs[(π̂ατ̂λπ̂
†
β )†(π̂μτ̂λπ̂

†
ν )]

= trs[π̂β (τ̂ †
λ π̂†

απ̂μτ̂λ)π̂†
ν ]

= trs[π̂
†
απ̂μ]trs[π̂β π̂†

ν ] = δαμδβν. �

The above result implies that the generator �t can be decom-
posed on the basis {Gμν}μν according to

�t • = 〈�t ,Gνλ〉Gνλ • . (D5)

Equation 42 follows by applying Eq. (D5) to ρ̂s(t ), expressing
both the scalar product and the superoperators Gμν in terms of
the COS 1√

2
{σ̂μ}μ, and by comparing with Eq. (C3).
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[96] D. Chruściński and S. Maniscalco, Degree of non-
Markovianity of quantum evolution, Phys. Rev. Lett.
112, 120404 (2014).
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