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The twin-field quantum key distribution (TF-QKD) protocol and its variants provide promising solutions to
long-distance information-theoretic-secure communication, which can surpass the fundamental rate-loss bound
without quantum repeaters. Different from other variants, the discrete-phase-randomized TF-QKD variant only
needs to modulate weak coherent sources with random discrete phases, which avoids the necessity of modulating
continuously randomized phases and can be implemented with current technology. However, the discrete-phase-
randomized variant compromises the performance of TF-QKD under high channel losses and error rates. To
overcome this dilemma, we propose to adopt the advantage distillation method to improve the performance
of discrete-phase-randomized TF-QKD, and analyze its security in the asymptotic case. Without changing the
optical hardware of TF-QKD systems, the proposed scheme can improve the secret key rate under high channel
losses and error rates, and extend the tolerable channel loss as well.
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I. INTRODUCTION

Based on the laws of quantum physics, quantum key
distribution (QKD) [1] can provide two distant legitimate
peers, Alice and Bob, with information-theoretic secret keys,
in the presence of an eavesdropper, Eve. Due to the su-
periority of proven security, much effort has been devoted
to promote the secret key rate and tolerable channel loss
of practical QKD systems [2–7]. However, the performance
of these demonstrations is upper bounded by the funda-
mental repeaterless rate-loss bound [8,9], more precisely,
the Pirandola-Laurenza-Ottaviani-Banchi (PLOB) bound R �
−log2(1 − η) [9], where R is the secret key rate and η is
the overall channel transmittance between Alice and Bob.
Fortunately, twin-field QKD (TF-QKD) [10] unlocks the pos-
sibility of breaking the rate-loss bound without quantum
repeaters. Inspired by the original TF-QKD protocol, a series
of variants [11–26] have been proposed to rigorously improve
the security and performance, and some of them have been
demonstrated experimentally [27–35].

To ensure the security of TF-QKD, the weak coherent
sources (WCSs) prepared by Alice and Bob should be ran-
domly switched between the code mode and the test mode.
The events in the code mode constitute the raw key, and the
events in the test mode can be used to bound the channel pa-
rameters. The decoy-state method [36–38] is always adopted
in the test mode to estimate the channel parameters more
accurately. In the decoy-state scheme, the phases of WCSs
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should be continuously randomized in [0, 2π ), which can be
regarded as a classical mixture of photon-number states. How-
ever, the preparation of continuous-phase-randomized WCSs
is technically challenging. To bridge the gap between theory
and practice in phase randomization, the discrete-phase-
randomized WCSs, which modulate a finite number of phases
to approach an infinite number of phases, are alternatively
adopted in the decoy-state Bennett-Brassard 1984 (BB84)
QKD [39], measurement-device-independent QKD [40], and
TF-QKD [21–25]. Particularly, Ref. [21] modulates only two
phases in the code mode, and Ref. [22] modulates M phases.
The difference in the code mode leads to different implemen-
tations of TF-QKD and different formulas of phase error rate
and secret key rate.

Nevertheless, the discrete-phase-randomized WCSs, which
can be implemented with current technology, compromise
the performance of TF-QKD under high channel losses and
error rates. Fortunately, as one kind of universal methods,
advantage distillation (AD) [41] can obviously enhance the
secret key rate of QKD under high channel losses and er-
ror rates, which has been successfully applied to enhance
the performance of some QKD protocols [42–53]. In par-
ticular, Ref. [47] assumed that TF-QKD were implemented
with continuous-phase-randomized WCSs, the preparation
of which, however, is technically demanding by the state
of the art. Reference [48] empirically modulated many dis-
crete phases to approach the continuous-phase-randomized
WCSs, which lacks a rigorous security analysis nevertheless.
Intuitively, the effect of discrete-phase-randomized modula-
tion can be reduced by choosing an appropriate number of
phases. However, there are two major issues which need to
be carefully addressed: (1) how to rigorously determine the
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appropriate number of phases, and (2) the performance of
some TF-QKD variations [11,18,19,22] is directly affected by
the number of phases. Therefore, considering both the feasi-
bility and performance of implementation, it is necessary to
adopt the AD method to improve the performance of discrete-
phase-randomized TF-QKD. Simulation results show that the
AD method can improve the secret key rate of discrete-phase-
randomized TF-QKD under high channel losses and error
rates, and extend the tolerable channel loss as well. Further-
more, the proposed scheme only adds an extra step of dividing
raw key bits into blocks of a few bits so as to extract highly
correlated bits, which enjoys the same optical hardware as
the previous scheme and can be efficiently integrated into the
current discrete-phase-randomized TF-QKD systems.

II. DISCRETE-PHASE-RANDOMIZED TF-QKD WITH AD

The procedure of discrete-phase-randomized TF-QKD
with AD runs as follows:

(1) State preparation. Alice (Bob) randomly chooses the
code mode or test mode for each trial.

(a) If the code mode is chosen, she (he) randomly selects
a key bit ka (kb) and a random number x (y) to prepare a
coherent state |√μei(kaπ+2πx/M )〉 (|√μei(kbπ+2πy/M )〉), where
ka, kb ∈ {0, 1}, x, y ∈ {0, 1, 2, . . . , M − 1}, μ denotes the in-
tensity of coherent states, and M, which is even, denotes the
number of discrete phases.

(b) If the test mode is chosen, she (he) randomly selects an
intensity ξa (ξb) and a random number x (y) to prepare a coher-
ent state |√ξaei2πx/M〉 (|√ξbei2πy/M〉), where ξa, ξb ∈ {μ, ν, ω}
denote the intensities of decoy states.

(2) Measurement. Alice and Bob transmit the prepared
quantum states to a third party Eve. An honest Eve interferes
the received states on a 50:50 beam splitter, directs the two
output pulses to two threshold detectors L and R, and an-
nounces the measurement results. Only the result of detector
L or R clicking is considered as a successful measurement.

(3) Announcement. After repeating the above steps many
times, Alice and Bob announce the corresponding modes for
those trials with successful measurements.

(a) For trials in the code mode, they announce their x and y.
If it is the matched trial x = y or opposite trial x = y ± M/2,
they keep ka and kb as a sifted key. If it is the opposite trial x =
y ± M/2, Bob flips his key bit kb. Moreover, if Eve announces
only detector R clicks, Bob flips his key bit kb.

(b) For trials in the test mode, they announce ξa, x, ξb, and
y, and only keep the matched trials x = y or opposite trials x =
y ± M/2 with the same intensity ξa = ξb to calculate gains.

(4) AD. For the sifted key bits, Alice and Bob per-
form AD to obtain highly correlated key bits. To be
specific, Alice and Bob split their sifted key into a se-
ries of b-bit blocks {x1, x2, . . . , xb} and {y1, y2, . . . , yb},
respectively. For each b-bit block {x1, x2, . . . , xb}, Alice
chooses a random bit c ∈ {0, 1}, performs the bitwise XOR

operation, and sends the result m = {m1, m2, . . . , mb} =
{x1 ⊕ c, x2 ⊕ c, . . . , xb ⊕ c} to Bob through an authenticated
classical channel. Upon receiving m, Bob calculates the result
of {m1 ⊕ y1, m2 ⊕ y2, . . . , mb ⊕ yb}. If and only if Bob gets
the result {0, 0, . . . , 0} or {1, 1, . . . , 1}, Alice and Bob keep

the first bit of their initial b-bit block, x1 and y1, as the pro-
cessed key.

(5) Postprocessing. They perform key reconciliation and
privacy amplification to get final secret keys.

The secret key rate of discrete-phase-randomized TF-QKD
with AD is given by

R̃d � max
b

min
λ0,λ1,λ2,λ3

1

b

2

M
Qμ ps

[
1 − (λ̃0 + λ̃1)H

(
λ̃0

λ̃0 + λ̃1

)

− (λ̃2 + λ̃3)H

(
λ̃2

λ̃2 + λ̃3

)
− f H (Ẽμ)

]
, (1)

and the details of all terms in Eq. (1) can be found in Sec. III.

III. SECURITY ANALYSIS

In this section, we first analyze the security of QKD with
AD based on the ideal single-photon sources, then extend
this security analysis into the scenarios of continuous-phase-
randomized TF-QKD with AD. Lastly, by relating Eve’s
behavior with the channel parameters, we discuss the security
of discrete-phase-randomized TF-QKD with AD.

The general prepare-and-measure QKD can be equiva-
lently translated into an entanglement-based scheme. For an
entanglement-based QKD scheme where Alice prepares the
quantum state 1√

2
(|00〉 + |11〉), she keeps the first qubit and

sends the second qubit to Bob through the quantum chan-
nel. Then Alice and Bob take inputs from 2 × 2-dimensional
Hilbert spaces HA ⊗ HB to apply the measurements of the
Z and X bases, where the Z basis consists of |0〉 and |1〉,
and the X basis consists of |+〉 = 1√

2
(|0〉 + |1〉) and |−〉 =

1√
2
(|0〉 − |1〉). Since the quantum channel can be totally con-

trolled by Eve, the eventual state shared between Alice and
Bob can be expressed as

σAB = λ0|	0〉〈	0| + λ1|	1〉〈	1|
+ λ2|	2〉〈	2| + λ3|	3〉〈	3|, (2)

where |	0〉 = 1√
2
(|00〉 + |11〉), |	1〉 = 1√

2
(|00〉 − |11〉),

|	2〉 = 1√
2
(|01〉 + |10〉), |	3〉 = 1√

2
(|01〉 − |10〉), and

λ0 + λ1 + λ2 + λ3 = 1. It is obvious that the error rates
in the Z and X bases, denoted as EZ and EX , are constrained
by λ2 + λ3 = EZ and λ1 + λ3 = EX , respectively. With
Lemma 7.1.1 in Ref. [41], the final secret key rate shared
between Alice and Bob can be concluded as

R � min
λ0,λ1,λ2,λ3

[
1 − (λ0 + λ1)H

(
λ0

λ0 + λ1

)

− (λ2 + λ3)H

(
λ2

λ2 + λ3

)
− H (λ2 + λ3)

]
, (3)

where H (x) = −x log2(x) − (1 − x) log2(1 − x) denotes the
binary Shannon entropy function.

To improve the performance of QKD, Alice and Bob can
perform the AD method [41] after the measurement step. The
purpose of AD is to identify subsets of highly correlated bits
so as to separate them from weakly correlated information. As
illustrated in step 4 in Sec. II, the successful probability of AD
for each b-bit block is ps = (λ0 + λ1)b + (λ2 + λ3)b, and the
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quantum state shared between Alice and Bob is

σ̃AB = λ̃0|	0〉〈	0| + λ̃1|	1〉〈	1|
+ λ̃2|	2〉〈	2| + λ̃3|	3〉〈	3|, (4)

where

λ̃0 = (λ0 + λ1)b + (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃1 = (λ0 + λ1)b − (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃2 = (λ2 + λ3)b + (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃3 = (λ2 + λ3)b − (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
. (5)

Inserting Eq. (6) into Lemma 7.1.1 in Ref. [41], the secret key
rate of QKD enhanced with AD can be given by

R̃ � max
b

min
λ0,λ1,λ2,λ3

1

b
ps

[
1 − (λ̃0 + λ̃1)H

(
λ̃0

λ̃0 + λ̃1

)

− (λ̃2 + λ̃3)H

(
λ̃2

λ̃2 + λ̃3

)
− H (λ̃2 + λ̃3)

]
. (6)

We emphasize that, in the case of b = 1, all sifted key bits
can pass the AD procedure with the successful probability
ps = 1, and consequently Eq. (6) is the same as Eq. (3), which
indicates that the AD method is not actually working. When
b � 2, only those b-bit blocks, which are completely the same
or different, can pass the AD procedure, and in this case the
AD method comes into play.

Due to the shortage of ideal single-photon sources with
current technology, WCSs are alternatively adopted in prac-
tical QKD systems, where the decoy-state method [36–38]
is combined to defeat the potential photon-number-splitting
attacks [54,55]. To adopt the decoy-state scheme, the phases
of WCSs should be perfectly and continuously randomized
in the [0, 2π ) range. In terms of TF-QKD, Alice and Bob
modulate their WCSs with continuously randomized phases
φa and φb, where φa, φb ∈ [0, 2π ). After the intensity and
phase announcement, their shared state, which has either the
same phase (φa = φb) or opposite phase (φa = φb ± π ) but
with the same intensity, can be given by

ρc = 1

2π

∫ 2π

0
dφa|

√
ξeiφa〉〈

√
ξeiφa | ⊗ |

√
ξeiφb〉〈

√
ξeiφb |

=
∞∑

k=0

Pξ (k)|k,±〉AB〈k,±|, (7)

where ξ ∈ {μ, ν, ω, . . .} denotes the mean intensity of WCSs,
Pξ (k) = e−2ξ (2ξ )k/k! denotes the probability of obtaining
the k-photon state |k,±〉AB = 1/

√
2kk!(a† ± b†)k|00〉AB, and

|k,+〉AB and |k,−〉AB denote the k-photon state with the same
and opposite phases. As shown in Eq. (7), the k-photon state,
which is independent of the intensity ξ , of different intensities
is identical and indistinguishable for Eve. This guarantees the
k-photon yields of different intensities ξi and ξ j are the same,
that is, Yk (ξi ) = Yk (ξ j ) = Yk .

Consequently, the secret key rate of continuous-phase-
randomized TF-QKD with AD is

R̃c � max
b

min
λ0,λ1,λ2,λ3

1

b
Qμ ps

[
1 − (λ̃0 + λ̃1)H

(
λ̃0

λ̃0 + λ̃1

)

− (λ̃2 + λ̃3)H

(
λ̃2

λ̃2 + λ̃3

)
− f H (Ẽμ)

]
, (8)

which is subject to

λ2 + λ3 = Eμ, 0 � λ1 + λ3 � E
X
μ,

ps = (Eμ)b + (1 − Eμ)b, λ0 + λ1 + λ2 + λ3 = 1,

Ẽμ = (Eμ)b

(Eμ)b + (1 − Eμ)b
,

λ̃0 = (λ0 + λ1)b + (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃1 = (λ0 + λ1)b − (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃2 = (λ2 + λ3)b + (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃3 = (λ2 + λ3)b − (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
, (9)

where Qμ and Eμ denote the average gain and quantum bit

error rate of coherent states in the code mode, E
X
μ denotes the

upper bound of the information leakage EX
μ [19,22], f denotes

the inefficiency of key reconciliation, and the successful phase
sifting factor which approaches to zero in this case is tem-
porarily omitted. We emphasize that, if Alice and Bob adopt
an infinite number of decoy states, they can obtain the ex-
act values of EX

μ , which is EX
μ = [

∑∞
k=0 Pμ(2k)Y2k]/Qμ [19],

and the inequality in Eq. (9) will be reduced to the equality
λ1 + λ3 = EX

μ ; if they adopt a finite number of decoy states
(e.g., the widely used signal, decoy and vacuum states [56]),
E

X
μ can be upper bounded by 1 − Pμ(1)Y 1/Qμ, where Y 1

denotes the lower bound of Y1.
However, the preparation of continuous-phase-randomized

WCSs is technically demanding by the state of the art. To
address this issue, the discrete-phase-randomized source is
alternatively adopted in practical QKD systems [39]. Here, we
analyze the security of discrete-phase-randomized TF-QKD
with AD. The state in discrete-phase-randomized WCSs after
the intensity and phase announcement, which has either the
same phase (x = y) or opposite phase (x = y ± M/2) but with
the same intensity, can be expressed as a combination of
approximated photon number states, that is,

ρd = 1

M

M−1∑
x=0

∣∣√ξei 2πx
M

〉
A

〈√
ξei 2πx

M
∣∣ ⊗ ∣∣√ξei 2πy

M
〉
B

〈√
ξei 2πy

M
∣∣

=
M−1∑
k=0

Pξ
M (k)

∣∣λξ

k ,±
〉
AB

〈
λ

ξ

k ,±
∣∣, (10)

where M denotes the number of modulated discrete
phases, Pξ

M (k) = ∑∞
l=0[e−2ξ (2ξ )lM+k/(lM + k)!] denotes

the probability of obtaining the approximated k-photon state
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FIG. 1. Comparison of discrete-phase-randomized TF-QKD
with and without AD under ed = 1.5%. The solid black line denotes
the result of the PLOB bound [9], and the solid (dashed) colorful
curves from left to right denote the results of TF-QKD with (without)
AD when modulating 4, 6, 8, and 10 phases. The nonsmooth points
in the solid colorful curves indicate the change of optimal b in AD.
For details, see Fig. 2, which gives an example of optimal b when
modulating 10 phases in TF-QKD with AD.

|λξ

k ,±〉AB = [e−ξ /

√
Pξ

M (k)]
∑∞

l=0[(
√

2ξ )
lM+k

/
√

(lM + k)!

|lM + k,±〉AB], and |λξ

k ,+〉AB and |λξ

k ,−〉AB denote the
approximated k-photon state with the same and opposite
phases. Different from Eq. (7), the approximated k-photon
state |λξ

k ,±〉AB〈λξ

k ,±| in Eq. (10) depends on the intensity ξ ,
which provides some possibilities for Eve to distinguish the
signal and decoy states. Therefore, the approximated k-photon
yields of different intensities ξi and ξ j are different, that is,

Y ξi

k 	= Y
ξ j

k . To ensure the security of the decoy-state method
with discrete-phase-randomized sources, the difference of

FIG. 2. Results of the optimal b when modulating 10 phases in
TF-QKD with AD under ed = 1.5%.

FIG. 3. Comparison of discrete-phase-randomized TF-QKD
with and without AD under ed = 11%. The solid black line denotes
the result of the PLOB bound [9], and the solid (dashed) colorful
curves from left to right denote the results of TF-QKD with (without)
AD when modulating 4, 6, 8 and 10 phases. The non-smooth points
in the solid colorful curves indicate the change of optimal b in AD.

the approximated k-photon yields of different intensities is

characterized by |Y ξi

k − Y
ξ j

k | �
√

1 − F 2
ξiξ j ,k

, where Fξiξ j ,k =
|〈λξi

k ,+ | λ
ξ j

k ,+〉| = |〈λξi

k ,− | λ
ξ j

k ,−〉| represents the fidelity

between |λξi

k ,±〉AB and |λξ j

k ,±〉AB [22,39]. Correspondingly,
the upper bound of EX

μ in the discrete-phase-randomized case
should be estimated by the following routines [22],

ĒX
μ = max

Y ξ

k

[
M/2−1∑

k=0

Pμ
M (2k)Y μ

2k

]/
Qμ

s.t.

Qξ =
M−1∑
k=0

Pξ
M (k)Y ξ

k ,

FIG. 4. Results of the optimal b when modulating 10 phases in
TF-QKD with AD under ed = 11%.
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TABLE I. Secret key rate of discrete-phase-randomized TF-QKD with and without AD under ed = 1.5%.

Protocols M = 4 M = 6 M = 8 M = 10

Without AD 8.39 × 10−9 @ 55 dB 3.67 × 10−10 @ 88 dB 1.79 × 10−9 @ 96 dB 1.01 × 10−9 @ 100 dB
With AD 1.68 × 10−8 @ 55 dB 3.25 × 10−9 @ 88 dB 3.02 × 10−9 @ 96 dB 2.36 × 10−9 @ 100 dB

M/2−1∑
k=0

Pμ
M (2k)Y μ

2k � Qμ/2,

∣∣Y ξi

k −Y
ξ j

k

∣∣ �
√

1−F 2
ξiξ j ,k

,

0 � Y ξ

k � 1. (11)

With the estimated E
X
μ , the secret key rate of discrete-phase-

randomized TF-QKD with AD can be given by

R̃d � max
b

min
λ0,λ1,λ2,λ3

1

b

2

M
Qμ ps

[
1 − (λ̃0 + λ̃1)H

(
λ̃0

λ̃0 + λ̃1

)

− (λ̃2 + λ̃3)H

(
λ̃2

λ̃2 + λ̃3

)
− f H (Ẽμ)

]
, (12)

subject to

Eμ = λ2 + λ3, 0 � λ1 + λ3 � E
X
μ,

ps = (Eμ)b + (1 − Eμ)b, λ0 + λ1 + λ2 + λ3 = 1,

Ẽμ = (Eμ)b

(Eμ)b + (1 − Eμ)b
,

λ̃0 = (λ0 + λ1)b + (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃1 = (λ0 + λ1)b − (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃2 = (λ2 + λ3)b + (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃3 = (λ2 + λ3)b − (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
, (13)

where the 2/M factor denotes the successful phase sifting
probability, and the meanings of the rest of the variables are
the same as in Eq. (8). Here, we simply consider security
against collective attacks in the asymptotic scenario. To
extend the analysis to security against coherent attacks in the
finite-key regime, one can refer to Refs. [57–59].

IV. SIMULATIONS

To investigate the performance of discrete-phase-
randomized TF-QKD with AD, we assume that the detection
efficiency ηd of single-photon detectors is 20%, the dark count
rate d of single-photon detectors is 10−8, the inefficiency f
of key reconciliation is 1.1, and the size b of every split
block in AD is reasonably optimized in the [1,4] range. The
calculation models for Qμ and Eμ are

Qμ = (1 − d )(1 − e−2ημ + 2de−2ημ), (14)

and

Eμ = (1 − d )(ed − ed e−2ημ + de−2ημ)/Qμ, (15)

where ed denotes the intrinsic misalignment error rate, and η

denotes the overall transmission efficiency between Alice and
Bob, which includes the optical channel loss and the detection
efficiency of single-photon detectors. In the simulation, we
adopt the widely used three-intensity decoy-state scheme [56],
where the intensities of signal and decoy states, denoted as μ

and ν, are chosen by the coarse-grained exhaustive search, and
the intensity of the vacuum state, denoted as ω, is set to be 0.

When the misalignment error rate is relatively small, e.g.,
ed = 1.5%, we compare the performance of discrete-phase-
randomized TF-QKD with and without AD when modulating
different number of phases (M = 4, 6, 8, 10), and the cor-
responding results are shown in Fig. 1. It can be seen that
the AD method can enhance the performance of discrete-
phase-randomized TF-QKD in varying degrees, particularly
expand the range of breaking the PLOB bound [9] when M =
6, 8, 10. On the other hand, modulating 10 phases in TF-QKD
can almost achieve the maximum channel loss, and further
numerical simulation demonstrates that modulating 12 and
14 phases cannot tolerate much more obvious channel loss,
which indicates that there is no need to empirically modulate
more phases in TF-QKD to approach the continuous-phase-
randomized sources. At the same time, we plot the trend
of optimal b when modulating 10 phases in TF-QKD with
AD in Fig. 2. When the channel loss is less than 99 dB,
the optimal b is equal to 1, which indicates that all sifted
key bits between Alice and Bob can pass the AD procedure,
and consequently the secret key rate of TF-QKD with AD is
equal to that of without AD. When the channel loss is greater
than 99 dB, the optimal b is larger than or equal to 2, which

TABLE II. Secret key rate of discrete-phase-randomized TF-QKD with and without AD under ed = 11%.

Protocols M = 4 M = 6 M = 8 M = 10

Without AD 2.37 × 10−8 @ 45 dB 2.09 × 10−10 @ 80 dB 7.40 × 10−10 @ 85 dB 6.46 × 10−10 @ 85 dB
With AD 4.55 × 10−7 @ 45 dB 1.35 × 10−8 @ 80 dB 1.34 × 10−8 @ 85 dB 1.19 × 10−8 @ 85 dB
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TABLE III. Tolerable channel loss of discrete-phase-randomized
TF-QKD with and without AD under ed = 1.5%.

Protocols M = 4 M = 6 M = 8 M = 10

Without AD 55 dB 88 dB 96 dB 100 dB
With AD 57 dB 92 dB 102 dB 108 dB

means the AD method does play its role. Intuitively, with the
increase of transmission loss which will introduce more noises
to Alice and Bob’s sifted key, the correlation of their sifted
key becomes weaker. To identify highly correlated bits so as
to separate them from weakly correlated bits, the optimal b
becomes larger in the high loss regime.

To further investigate the tolerance of error rates, we com-
pare the performance of discrete-phase-randomized TF-QKD
with and without AD under ed = 11%, and the correspond-
ing results are shown in Fig. 3. It can be seen that the AD
method improves the performance of discrete TF-QKD more
significantly when the misalignment error rate ed becomes
large. Specifically, when modulating 10 phases in TF-QKD,
the AD method begins to show its superiority at the channel
loss of 48 dB where the optimal b is equal to 2 (as exhibited
in Fig. 4). Moreover, as illustrated in Figs. 1 and 3, the proper
increase of M raises the tolerable channel loss, but reduces
the successful sifting probability. Therefore, to achieve the
optimal performance of discrete-phase-randomized TF-QKD
with AD, the number of modulated phases should be adjusted
dynamically according to the channel loss. Lastly, we list the
secret key rate and tolerable channel loss of discrete-phase-
randomized TF-QKD with and without AD in Tables I and II
and Tables III and IV, respectively, which clearly demonstrate
the superiority of the AD method.

TABLE IV. Tolerable channel loss of discrete-phase-randomized
TF-QKD with and without AD under ed = 11%.

Protocols M = 4 M = 6 M = 8 M = 10

Without AD 45 dB 80 dB 85 dB 85 dB
With AD 52 dB 88 dB 97 dB 100 dB

V. CONCLUSION

In conclusion, we propose a protocol of discrete-phase-
randomized TF-QKD with AD, and investigate its perfor-
mance in the asymptotic case. Simulation results demonstrate
that, by splitting the sifted key into blocks of only b bits
(say, b = 2, 3, 4) to identify highly correlated key bits, the
performance of discrete-phase-randomized TF-QKD can be
greatly enhanced under high channel losses and error rates.
Furthermore, our simulation results indicate that, to achieve
the optimal performance of discrete-phase-randomized TF-
QKD with AD, the number of modulated phases should be
adjusted dynamically according to the channel loss. In future
research, it would be interesting to apply the AD method to
improve the performance of other TF-QKD variations [21,23–
26]. We expect our work can provide a valuable reference for
researchers to design practical TF-QKD systems.
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