
PHYSICAL REVIEW A 109, 052430 (2024)

Combinatorial optimization with quantum imaginary time evolution
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We use quantum imaginary-time evolution (QITE) to solve polynomial unconstrained binary optimization
(PUBO) problems. We show that a linear ansatz yields good results for a wide range of PUBO problems,
often outperforming standard classical methods, such as the Goemans-Williamson (GW) algorithm. We obtain
numerical results for the low-autocorrelation binary sequences (LABS) and weighted MaxCut combinatorial
optimization problems, thus extending an earlier demonstration of successful application of QITE on MaxCut for
unweighted graphs. We find the performance of QITE on the LABS problem with a separable ansatz comparable
to QAOA at level 10 for up to 18 vertices and do not see a significant advantage with an entangling ansatz. On
weighted MaxCut, QITE with a separable ansatz often outperforms the GW algorithm on graphs with up to 150
vertices.
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I. INTRODUCTION

Many important combinatorial optimization problems can
be mapped onto an Ising-type Hamiltonian. Solving a generic
Ising model is an NP-hard problem [1]. It would be interest-
ing to witness quantum algorithms outperform their classical
counterparts in such problems, but demonstrating their supe-
riority with noisy intermediate-scale quantum (NISQ) devices
has proved to be challenging. One of the quantum algo-
rithms extensively studied on NISQ hardware is the quantum
approximate optimization algorithm (QAOA) [2]. Another in-
teresting approach was recently proposed that performs better
on NISQ devices based on a quantum-enhanced classical op-
timization algorithm [3].

After mapping onto a Hamiltonian, the combinatorial opti-
mization problem reduces to finding the ground-state energy.
Various methods have been employed to compute the ground
state of a system, such as adiabatic evolution, quantum anneal-
ing, and quantum imaginary-time evolution (QITE). QITE has
been widely employed in the analysis of quantum many-body
systems, serving as a valuable technique for diverse purposes,
including computation of energy levels of multiparticle sys-
tems and generation of states at finite temperatures [4,5].
Given that evolution in imaginary time effectively reduces the
system to zero temperature [6], the ground state can be pre-
cisely prepared using QITE without the need for variational
optimization. Nevertheless, in practice, approximations are
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necessary due to limited computational resources, prompting
the need for an approach involving variational calculus.

The progression in imaginary time τ is executed through
the nonunitary operator U (τ ) = e−τH, where H denotes the
Hamiltonian of the system of interest. Starting with an initial
state featuring a nonzero overlap with the system’s ground
state, the evolved state converges towards the ground state as τ

approaches infinity. Access to excited states is also attainable
by selecting an appropriate initial state, one that is orthogonal
to the ground state. Simulating QITE on a quantum computer
is not straightforward because U (τ ) is a nonunitary operator.
Motta et al. [7] proposed a QITE algorithm that dispensed
with the need for classical optimization, distinguishing it from
QAOA and the variational quantum eigensolver (VQE) [2].
The approach found practical application in the quantum com-
putation of chemical energy levels on NISQ hardware [8–11]
and in the simulation of open quantum systems [12]. The
impact of noise on QITE in NISQ hardware was addressed in
[13] using error mitigation and randomized compiling. Error
mitigation was also addressed with a different method based
on deep reinforcement learning [14]. The reduction of quan-
tum circuit depth for QITE through a nonlocal approximation
was discussed in [15]. An efficient algorithm to reduce the
hardware requirements for QITE was presented in [16] using
causal cones that facilitated the simulation of finite systems
that surpassed the dimensions of the underlying quantum
hardware. The implementation of real- and imaginary-time
evolution using compressed quantum circuits on NISQ hard-
ware was demonstrated in [17].

The QITE algorithm starts by representing the Hamiltonian
in local terms and employs Trotterization to implement U (τ ).
Subsequently, the nonunitary evolution for a short imaginary-
time interval is approximately implemented with a unitary
operator. This unitary operator is expressed in terms of Pauli
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spin operators, with coefficients determined from measure-
ments on quantum hardware. This approach was employed in
Ref. [18] to solve combinatorial optimization problems. For
the approximate unitary operator, a separable ansatz was used
that was linear in the Pauli operators, and therefore, its im-
plementation required no entanglement of qubits. The method
was applied to the MaxCut problem on thousands of randomly
selected unweighted graphs with up to 50 vertices. Results
compared favorably with the performance of classical algo-
rithms, such as the greedy [19–22] and Goemans-Williamson
(GW) [23] algorithms. The overlap of the final state of the
QITE algorithm with the ground state was also discussed as
a performance metric, which is a quantum feature not shared
by other classical algorithms. These results indicate that the
linear QITE method is efficient and quantum advantage due
to entanglement is likely to be found only for larger graphs
(N � 100) requiring deep quantum circuits which cannot cur-
rently be handled by NISQ hardware.

Given the demonstrated success of QITE based on a linear
ansatz for MaxCut problems on unweighted graphs [18], it
is crucial to assess its efficacy in more general polynomial
unconstrained binary optimization (PUBO) problems, which
are a more general class of problems containing the more pop-
ular quadratic unconstrained binary optimization problems.
This analysis is important for assessing the utility of NISQ
devices.

Here we extend the results of Ref. [18] to solve PUBO
problems using QITE. We concentrate on two problems:
(1) the MaxCut problem on weighted graphs and (2) the low-
autocorrelation binary sequences (LABS) problem. In both
cases we map the problem onto an Ising-type Hamiltonian.

In the MaxCut problem on weighted graphs, we tested
QITE with a separable linear ansatz on graphs with up to
150 vertices (qubits) and found that QITE often outperformed
the GW algorithm, attaining an average approximation ratio
(AR) of ∼0.98 for N > 100 vertices. Even as the energy gaps
between the ground and first excited states became small,
QITE was able to find a state with an energy equal to or lower
than that of GW. We point out that a variation for MaxCut,
performing better than VQE and QAOA, was developed in
Ref. [24] based on filtering operator and causal cones and was
demonstrated on three regular weighted graphs with up to 24
vertices. It should be noted that QITE with a separable ansatz
can be simulated efficiently classically. Our results indicate
that quantum advantage in combinatorial optimization prob-
lems will be hard to witness on NISQ devices.

In the LABS problem, complexity grows quickly for large
N . Optimal solutions are known only for N � 66, so LABS
is a promising candidate for quantum advantage because no
classical solutions currently exist [25]. The relevant regime
where classical heuristics produce poor solutions is N ≈ 200,
so the number of qubits required for a solution to a classically
intractable problem is on the order of hundreds of qubits.
In Ref. [25], the authors obtained a scaling advantage over
classical algorithms for a problem size of up to 40 qubits
using QAOA up to level p = 40, obtaining exact solutions.
We applied linear ansatz QITE and obtained a probability
of measuring the ground state P(GS) comparable to level
p = 10 QAOA results for relatively low circuit depth and
hardware requirements. We also investigated the performance

of an entangling quadratic ansatz with QITE but found no
significant advantage over the linear ansatz QITE for N < 10.

Our discussion is organized as follows. In Sec. II, we
discuss the QITE procedure and its hardware requirements.
In Sec. III, we define the weighted MaxCut problem and give
results for graphs of up to 150 vertices (qubits). In Sec. IV,
we define the LABS problem, discuss how we solve it with
QITE, and present results for a problem size of up to 28 qubits.
Finally, in Sec. V, we summarize our results and discuss
further research directions.

II. METHOD

In this section, we review the QITE procedure introduced
in Ref. [18] and discuss the hardware requirements of the
algorithm.

To implement QITE, we perform evolution in small
imaginary-time intervals τ . In the zero-temperature limit, the
ground state of the Hamiltonian H for any state |�〉 is given
by

|�〉 = lim
β→∞

e−βH|�〉
‖e−βH|�〉‖ (1)

as long as 〈�|�〉 	= 0. The Hamiltonian is defined on a graph
G ≡ (V, E ), where V (E ) is the set of vertices (edges). The
system consists of qubits lying on the vertices of the graph G.

We initialize the system in the state |�[0]〉, which can be
arbitrarily chosen, as long as it has finite overlap with the
ground state of the system. Suppose that after s − 1 steps we
arrive at the state |�[s − 1]〉. In the sth step, we approximate
the evolution of |�[s − 1]〉 in (small) imaginary time τ by
the action of the unitary e−iτA[s], where A[s] is a Hermitian
operator. Thus, after s steps, we arrive at the state

|�[s]〉 = e−iτA[s]|�[s − 1]〉 =
s∏

s′=1

e−iτA[s′]|�[0]〉. (2)

For the unitary updates, we adopt the linear ansatz

A[s] =
∑
j∈V

a j[s]Yj . (3)

This unitary update is optimal when the coefficients a j[s] obey
the linear system of equations [18]

S · a = b, Si j[s] = 〈YiYj〉, b j[s] = − i

2
〈[H,Yj]〉, (4)

where all expectation values are evaluated with respect to the
state |�[s − 1]〉 obtained in the previous step.

We choose the initial state to be the tensor product of
eigenstates of X and Z ,

|�[0]〉 =
|V |⊗
j=1

|s j〉, |s j〉 ∈ {|0〉, |1〉, |+〉, |−〉}, (5)

where |±〉 = 1√
2
(|0〉 ± |1〉), introducing no entanglement.

Consequently, we have S = I, and therefore, a = b. Since all
unitary updates commute with each other, we may write the
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state after s steps as

|�[s]〉 = e−iτA[s]|�[0]〉, A[s] =
s∑

s′=1

A[s′]. (6)

We quantify the quality of the solution by measuring the
expectation value of the Hamiltonian and the probability of
measuring the ground state P(GS), given as

P(GS) =
∑
σ∈GS

P(σ ), P(σ ) = |〈σ|�[s]〉|2 . (7)

In terms of hardware requirements, at each QITE step we need
to measure only b, which requires N measurements due to ba-
sis rotations. In the results shown in the following sections, the
value of the small imaginary-time parameter τ is chosen by
increasing by steps of �β = τ

T , where T � τ , starting from
zero. At each increase, the cost function 〈H〉 is measured, and
the process is continued until the cost function (energy) starts
increasing. At that point, the previous τ value is selected. We
choose a maximum βmax and perform fewer than βmax/�β

measurements. Since the applications of e−ia j [s]Yj commute,
the circuit depth does not scale with the number of steps. The
number of measurements scales linearly with the number of
steps.

In the following results, we simulate the QITE algorithm
exactly using state vectors without noise. For linear QITE, all
unitary operations applied are single-qubit operations, so we
do not consider the entire Hilbert space, only separable states
of size 2N . For quadratic QITE, we consider the full Hilbert
space of size 2N because the unitary operations are entangling.
We perform simulations using PYTHON with standard NUMPY

and SCIPY libraries.

III. WEIGHTED MAXCUT

Here we define the weighted MaxCut problem and the
technique of imaginary-time-dependent (ITD) edges that we
use to improve convergence. We present results of graphs
with up to 150 vertices (qubits) and find that QITE sometimes
outperforms the classical GW algorithm [23].

Given a graph G = (V, E ) consisting of a set of vertices
V and edges E joining the vertices, the unweighted MaxCut
problem on G is the combinatorial optimization problem of
partitioning V into two disjoint sets such that the number of
edges with end points in each set C is maximized (C = Cmax).
It can be formulated as a Hamiltonian ground-state problem
by associating a qubit with every vertex in V and defining the
Hamiltonian

H =
∑

(i, j)∈E

ZiZ j, (8)

where Zi is the Pauli Z matrix acting on the ith qubit. The
ground state energy E0 of H is related to Cmax by

Cmax = |E | − E0

2
. (9)

For the weighted MaxCut problem, the edges (i, j) ∈ E of the
graph Gw have associated weights wi j , and the Hamiltonian is

modified as

Hw =
∑

(i, j)∈E

wi jZiZ j . (10)

The ground-state energy Ew
0 is related to the maximum cut

Cw
max as

Cw
max =

∑
(i, j)∈E wi j − Ew

0

2
. (11)

After s steps, QITE produces an approximation to Cw
max, given

by

Cw
QITE = 1

2

⎛
⎝ ∑

(i, j)∈E

wi j − 〈�[s]|Hw|�[s]〉
⎞
⎠. (12)

Evidently, Cw
QITE � Cw

max. We compare the cost function ob-
tained from QITE to the one obtained with the classical GW
algorithm [23]. Since for large graph sizes we cannot guar-
antee that GW produces Cw

max, we define the AR RA as the
cost function obtained by QITE divided by the cost function
produced by GW,

RA = Cw
QITE

Cw
GW

. (13)

As in [18], we use the method of ITD edges to improve
convergence. This is done by interpolating between a Hamil-
tonian that corresponds to a subgraph of Gw and H using an
ITD Hamiltonian Hw[s] given by

Hw[s] =
∑

(i, j)∈E

wi j[s]ZiZ j . (14)

A subgraph is selected for which the corresponding weights
vanish initially and then are increased with each step s until
wi j[s] → wi j for sufficiently many steps and Hw[s] → Hw.

We restrict our focus to N-vertex weighted Newman-
Watts-Strogatz (NWS) graphs with k = 4 and p = 0.5, where
the weights are selected from the uniform random distribu-
tion (0,1]. We apply the QITE algorithm with a linear ansatz
with one ITD edge and measure the AR as the measured
energy from QITE divided by the lowest energy obtained
from GW. We also measure the probability of obtaining this
lowest-energy value as the probability of obtaining the ground
state P(GS). First, we perform QITE on graphs with 6 �
N � 30 vertices and measure the average number of random
subgraphs to obtain convergence [P(GS) > 0.995 overlap] to
the ground state. The algorithm is performed repeatedly with
different selections for the ITD edge and different random
initial states until all attempted graphs have converged to
the ground state. This procedure is shown in Fig. 1 for an
example eight-vertex graph. We compute this result for 25 and
50 QITE steps on weighted graphs and also 25 QITE steps
on unweighted graphs. We compute this as a function of the
number of graph vertices N , as shown in Fig. 2.

We observe similar results for 25 and 50 steps on weighted
graphs for N < 18, while the unweighted graphs require fewer
resources. For N > 18, the results for 25 and 50 QITE steps
begin to diverge, with almost twice the resources required at
N = 30. At this point, the energy gap between the ground state
and first excited state is on the order of 0.01.
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FIG. 1. Example eight-vertex NWS graph where we randomly
choose a random ITD edge and initial states |s j〉 for each qubit, then
apply the QITE algorithm with 25 steps. The first choice results in
convergence to an excited state where E = −5.331, while the second
choice results in convergence to the ground state where E = −5.634.

For larger graphs with N � 20, the state produced from
QITE sometimes converges to a state with lower energy than
the lowest energy obtained from GW. To account for this, we
compute the approximation ratio, the QITE energy divided
by the GW energy, for graphs with 6 < N < 150 vertices for
single selections of random subgraphs and initial states, as
shown in Fig. 3.

For 10 QITE steps, the average AR is less than 0.97 for
N > 10, indicating that 10 steps are not sufficient to solve
larger MaxCut problems. For 25 and 50 steps, we observe
that the AR initially decreases with graph size to a minimum
∼0.97 for N = 30 vertices, then increases for larger values of
N to a maximum value of ∼0.98 (0.975) for N = 120 vertices
at 50 (25) steps. We attribute the decrease to QITE performing
better on smaller N when GW produces the exact solution and
the increase to GW finding suboptimal solutions when QITE
produces a state with a finite overlap with a lower-energy
solution. To this end, we also plot the best AR for each number
of steps in Fig. 4, showing that certain instances of QITE
produce solutions superior to those of GW. For N > 10, 25,
and 50 vertices, QITE remains above 1, indicating that QITE

FIG. 2. QITE results for the weighted MaxCut problem showing
the average number of random subgraph choices required for N-qubit
graphs to obtain P(GS) > 0.995. Results are shown for 25 QITE
steps on unweighted (black dotted line) and weighted (blue dashed
line) graphs, as well as 50 QITE steps on weighted graphs (green
dash-dotted line). The bars denote one standard error over 250 trials.

FIG. 3. QITE results for the weighted MaxCut problem showing
the average approximation ratio, computed by dividing the energy
from QITE by the energy from GW, for single subgraph trials for
N-qubit weighted graphs. Results are shown for 10 (dotted purple
line), 25 (dashed blue line), and 50 (dash-dotted green line) QITE
steps, in addition to 25 steps for the unweighted (UW) case (solid
black line).

produces solutions that are better than those found by the GW
classical algorithm. For unweighted graphs, the average AR
remains in the range of 0.975–0.99 for all N , and the best AR
is >1.02 for N > 70.

An example of a 20-vertex weighted graph where 50-step
QITE outperforms the GW classical algorithm is shown in
Fig. 5. The cuts chosen by both algorithms are indicated, in
addition to the cuts unique to QITE and GW. QITE chooses
a solution which is superior to the one produced by GW,
containing 3 cuts which differ from those in GW’s solution.
The difference in energy between QITE and GW is �E =
−0.0404.

QITE with a linear ansatz can be simulated efficiently clas-
sically, so the computation can be done for larger graph sizes

FIG. 4. QITE results for the weighted MaxCut problem showing
the best approximation ratio, computed by dividing the energy from
QITE by the energy from GW, for N-qubit weighted graphs. Results
are shown for 10 (dotted purple line), 25 (dashed blue line), and 50
QITE steps (dash-dotted green line), in addition to 25 steps for the
unweighted (UW) case (solid black line).
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FIG. 5. Example 20-vertex graph where 50-step QITE outper-
forms GW for the weighted MaxCut problem. The cuts common to
GW and QITE are solid lines highlighted in gray. The cuts unique to
QITE are dashed lines highlighted in blue, while the cuts unique to
GW are dotted lines highlighted in red.

than considered here without issue. Since here we chose one
ITD edge, it would be interesting to see if choosing more ITD
edges or choosing a different scheme would produce better
results on larger graphs. We are currently investigating this in
addition to the scaling of QITE on graphs with 500+ vertices.

IV. LABS

Here we discuss how we solve the LABS problem with
QITE using both a linear ansatz and a quadratic ansatz, present
results for problem sizes of up to 28 qubits, and compare them
with recent QAOA results [25].

The goal of the LABS problem is to minimize the “sidelobe
energy” for a system of N spins σi ∈ {+1,−1} with autocor-
relation Ak (σ):

Esidelobe(σ) =
N−1∑
k=1

A2
k (σ), Ak (σ) =

N−k∑
k=1

σiσi+k . (15)

This can be mapped to the ground-state problem of the quan-
tum Hamiltonian

HLABS = 2
N−3∑
i=1

N−i−1
2∑

t=1

N−i−t∑
k=1

ZiZi+t Zi+kZi+t+k

+
N−2∑
i=1

N−i
2∑

k=1

ZiZi+2k . (16)

The quality of a solution can be quantified by the overlap
with the ground state (7) and the ratio of the merit factor of
the measured state over the merit factor of the ground-state
solution,

RA = FQITE

FGS
, (17)

where the merit factor F is given as

F (|ψ〉) = N2

2〈H〉 =
∑

σ

P(σ )F (σ),

F (σ) = N2

2Esidelobe(σ)
(18)

and the overlap probabilities P(σ ) are defined in (7). As with
weighted MaxCut, we introduce imaginary-time dependence
to improve convergence to the ground state instead of an
excited state. Since QITE with a linear ansatz performs well
with a Hamiltonian with quadratic terms, we introduce an ITD
coefficient α[s] to the quartic terms of the Hamiltonian and
define the ITD Hamiltonian

HLABS[s] = 2α[s]
N−3∑
i=1

N−i−1
2∑

t=1

N−i−t∑
k=1

ZiZi+t Zi+kZi+t+k

+
N−2∑
i=1

N−i
2∑

k=1

ZiZi+2k, α[s] = a
⌊

s
a

⌋
nsteps

, (19)

where s are the integer time indices (s = 0, . . . , nsteps) and a
determines whether α[s] is piecewise or linear (a = 1) with
respect to s.

To improve the results further, we can add another time-
dependent parameter, β[s], that depends on the range of the
quartic interaction terms, slowly adding increasingly nonlocal
Hamiltonian parameters,

HLABS[s] = 2α[s]
∑
i,t,k

βitk[s]ZiZi+t Zi+kZi+t+k

+
∑
i,k

ZiZi+2k, (20)

where

βitk[s] =
{

b� s
b �

nsteps
, max(t, k, t + k, |t − k|) > Rmax,

1, otherwise.
(21)

We reference a LABS solution bank [26] when computing
the approximation ratio and the overlap with the ground state
P(GS), which is a quantum metric. Using Eq. (20), we per-
form the QITE algorithm with 40 steps on 50 random initial
states composed of |0〉 and |+〉 for 6 � N � 21. We first
compute the approximation ratio by dividing the resulting
QITE energy by the energy obtained from the solution bank.
The average and maximum ARs for the 50 initial states are
plotted in Fig. 6. The probability of measuring the ground
state P(GS) is given in Fig. 7. We plot the QITE results
alongside the P(GS) values for p = 10 QAOA obtained in
[25]. We find the average P(GS) of the linear ansatz QITE
comparable to the p = 10 QAOA, while the best-case P(GS)
consistently exceeds both values. In Ref. [25], LABS was
solved exactly with simulated noiseless QAOA for problem
sizes up to N = 40. However, the authors used QAOA levels
up to p = 40, which results in a gate depth on the order of 103

for problem size N = 18. This is challenging to execute on
NISQ devices or classical simulators. For comparison, linear
ansatz QITE requires shallow quantum circuits and readily
available classical computing resources.

Since the linear ansatz QITE does not give P(GS) = 1 as
in weighted MaxCut, we considered a higher-order quadratic
ansatz. The details of the formulation are as follows. For the
quadratic ansatz, we used one containing the linear terms in
addition to terms quadratic in Y :

Aquad[s] =
∑
j∈V

a0, j[s]Yj +
∑
i, j∈V

ai, j[s]YiYj . (22)
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FIG. 6. QITE results for the LABS problem showing the aver-
age approximation ratio (black circles) and best approximation ratio
(blue crosses) for 40 QITE steps using the linear ansatz for problem
size 6 � N � 28 for 100 different random initial states. The bars
denote one standard error.

It is convenient to define the vector consist-
ing of all operators appearing in Eq. (22), Y ≡
(Y1,Y2, . . . ,YN ,Y1Y2,Y1Y3, . . . ,Y1YN ,Y2Y3, . . . ), where the
quadratic terms contain all unique choices of pairs of vertices.
Evidently, this vector is of length N (N + 1)/2.

As in the linear ansatz case, the coefficients aI [s], where
I = {i, j}, obey the linear system of equations

S · a = b, (23)

where we defined

SIJ [s] = 〈YIYJ〉, bJ [s] = − i

2
〈[HLABS,YJ ]〉, (24)

FIG. 7. QITE results for the LABS problem showing the average
(black circles) and best (blue crosses) probabilities of measuring the
ground state P(GS) for problem size 6 � N � 18 for 40 QITE steps
using the linear ansatz. The results from [25] for p = 10 QAOA are
also shown (gray diamonds).

FIG. 8. Probability of measuring the ground state P(GS) after
40 QITE steps, shown for problem sizes 6 � N � 18 for the linear
ansatz and 5 � N � 9 for the quadratic ansatz. For the linear ansatz,
the average P(GS) is shown by black circles, and the best P(GS) is
shown by blue crosses. For the quadratic ansatz, the average P(GS)
is shown by gray diamonds.

where all expectation values are evaluated with respect to the
state |�[s − 1]〉 obtained in the previous step. If the initial
state is chosen to be the tensor product of eigenstates of X and
Z , then we have S = I, and therefore, a = b. The algorithm
then proceeds as in the linear ansatz case with updates of the
form

|�[s]〉 = e−iτAquad[s]|�[s − 1]〉. (25)

The quadratic ansatz gives a minor improvement in the P(GS)
over the linear ansatz, as shown in Fig. 8. Therefore, we
do not see a benefit to including higher-order terms in the
ansatz in the range of 5 < N < 10. It is conceivable that there
may be benefits at larger problems sizes beyond our current
resources to test. Additionally, the higher-order terms might
not provide a significant benefit because the LABS problem
has a separable ground-state solution.

In [25], the scaling advantage of QAOA over classical
solvers was found in the range of 28 � N � 40, which is
larger than the problem sizes we tested. Therefore, we need
to investigate the performance of linear and quadratic ansatz
QITE compared to QAOA and classical algorithms in this
range. The quadratic ansatz simulation requires significantly
more computational resources and precision than the linear
ansatz, but we are currently working on extending our results
to larger problem sizes.

In this regime, introducing entanglement into the algo-
rithm does not provide a significant result, as expected, as
the results from linear ansatz QITE are comparable to both
quadratic ansatz QITE and p = 10 QAOA. We are currently
investigating larger problem sizes and higher-order PUBO
problems to search for a case where introducing entangle-
ment at a NISQ-era circuit depth provides a substantial
benefit.
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V. CONCLUSION

The QITE algorithm effectively cools a system to zero
temperature, at which the system settles to its ground state,
reaching the lowest-energy level of its Hamiltonian. By en-
coding combinatorial optimization problems in terms of a
quantum Hamiltonian, one can solve these problems by find-
ing the ground state of the Hamiltonian corresponding to the
optimal solution. QITE allows for a flexible ansatz which can
be chosen to be separable or entangling. Although solutions of
combinatorial optimization problems involve separable states,
quantum algorithms, such as QAOA, introduce entangling
operations to solve these problems.

In this work, we investigated the performance of QITE on
PUBO problems, concentrating on the weighted MaxCut and
LABS combinatorial optimization problems. Our method was
a generalization of the approach introduced in Ref. [18] that
was successfully applied to unweighted MaxCut. In general,
we expected an increased difficulty in PUBO cases due to
smaller gaps between the ground- and first-excited-state ener-
gies. We compared the performance of QITE on NWS graphs
with up to 150 vertices with the commonly used classical
algorithm GW, which is widely believed to offer the best per-
formance guarantee. We found that QITE with a linear ansatz
and ITD edges often outperforms the classical GW algorithm
on weighted MaxCut instances after a sufficient number of
steps, yielding an average AR of ∼0.98 for N > 100 vertices.
Our separable ansatz can be simulated efficiently classically.
In Ref. [27], the performance of noiseless QAOA was as-
sessed on MaxCut problems with up to 17 vertices, and it was
observed that level p = 5 was required for results to be com-
parable with GW. Especially for larger graphs, this is outside
of the range of NISQ devices. In Ref. [28], it was estimated
that graph sizes of several hundreds to thousands of vertices
are required for quantum advantage over classical solvers on
the MaxCut problem. Our results indicate that much larger
graphs need to be considered in order to observe quantum
advantage. Given the attendant increase in the depth of the
quantum circuit, a quantum computation may not be suitable
on NISQ devices. It is important to analyze the applicability of
our method further to better assess the utility of NISQ devices.

We also analyzed the performance of QITE on the LABS
problem. This is a PUBO problem, as the quantum Hamilto-
nian encoding the LABS problem includes quartic terms in
the Pauli Z matrix. We tested the performance of QITE with
a separable linear ansatz and a randomly chosen separable

initial state. We compared the results to known solutions of
the problem from a solution bank and calculated the AR and
probability of measuring the ground state P(GS). Although,
in general, we did not obtain convergence to the ground state,
we found that the average P(GS) of the linear ansatz QITE
with 40 steps was comparable to p = 10 QAOA [25]. More
importantly, the best-case P(GS) for each problem size was
consistently higher than the QAOA results, indicating that an
appropriate choice of initial state gives a high probability of
solving the LABS problem.

Expecting improvement and possibly quantum advantage
to be found using an entangling ansatz containing higher-
order terms, we considered an entangling ansatz with both
linear and quadratic terms. Comparing it to the separable
linear ansatz, we found that the entangling ansatz gave a
P(GS) which was no more than 10% higher than the result
from the linear ansatz for problem sizes up to N = 9. Thus,
the entangling quadratic ansatz did not perform significantly
better than the separable linear ansatz in the problem-size
range we tested, indicating that we might need to explore
larger problem sizes to see a significant advantage due to
quantum entanglement.

Obtaining quantum advantage in combinatorial optimiza-
tion problems appears to require larger problem sizes than
those that can be handled by NISQ devices or, perhaps, more
complicated PUBO problems than the ones studied here. The
PUBO problems are of particular interest for QITE since
these problems become classically intractable at smaller prob-
lem sizes, which are better suited for NISQ devices. Both
research directions, i.e., searching for a combinatorial opti-
mization problem where an entangling ansatz outperforms the
linear ansatz significantly even at sufficiently small problem
sizes implementable on NISQ devices and simulating a large
enough problem among those considered here where an entan-
gling ansatz outperforms the linear ansatz, are currently being
pursued.
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