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Quantum networks based on quantum key distribution ensure the security which is guaranteed by the
fundamental laws of quantum physics between multiple parties. The discrete-modulation (DM) continuous-
variable quantum key distribution (CV-QKD) protocols have the characteristics of simple implementation and
compatibility with classical digital communication, making them very suitable for deployment in large-scale
communication networks. However, the actual communication network has a huge communication capacity
and a large number of units. To solve this problem, we propose a multiple-quadrature-amplitude-modulation
(MQAM) DM protocol with a numerical method and complete the security analysis of the DM protocol in a
downstream-access network situation. By introducing an extra dimension of signal modulation, the high-order
modulated MQAM protocol greatly improves the number of supported units and the key rate of each unit. We
give the results of a 16 quadrature amplitude modulation CV-QKD protocol in a downstream-access network
which achieves 64 supported network units even in the case of high excess noise, which shows the application
prospects of high-order discrete-modulation CV-QKD in network security.
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I. INTRODUCTION

Quantum key distribution establishes secret key sharing
between separated parties in the presence of any eavesdrop-
per (Eve), with the strict security guaranteed by theoretical
physics [1–3]. It targets the vulnerability of classical cryptog-
raphy when attacked by a quantum computer. Beginning with
the Bennett-Brassard 1984 protocol [4], there have been many
achievements achieved in discrete-variable quantum key dis-
tribution (DV-QKD) through the discrete variables of physical
properties of a single photon [5–7].

Different from DV-QKD, continuous-variable quantum
key distribution (CV-QKD) relies on the quadratures of the
quantized electromagnetic field mapped into the phase space
of coherent states or squeezed states for carrying different
signals. Due to the simplicity and availability of CV-QKD,
there are plenty of remarkable achievements made on the basis
of Gaussian modulation [8], for instance, the integration of
well-established modern digital signal processing techniques
[9]. Theoretically, the security analysis constantly promotes
the upper bound of the key rate and elevates the security
against the loophole and eavesdropper [10–17]. Through
Gaussian-modulation CV-QKD, a lot of achievements have
been made in terms of quantum access networks. In the access
network applied to QKD [18–20], the achievements based
on upstream-access networks keep emerging [21–23]. The
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security analysis of downstream-access networks has im-
proved recently [24]. By Gaussian modulation, the theoretical
upper bound of the high key rate limited by channel capacity
can be reached. Because of the complex postprocess and error
correction procedure as well as strict precision requirements
for experimental equipment, the development is constrained
for the large-scale deployment of quantum secure communi-
cation networks.

In the process of implementing quantum network, its is
difficult to select the continuous amplitude for coherent states
due to the limited modulation and accuracy of detection. Dis-
crete modulation (DM) sets a finite alphabet as the sending
state candidate, with several selected coherent states usu-
ally contained instead of the coherent states with continuous
random amplitude in Gaussian modulation. Thus, discrete
modulation receives attention with discrete-alphabet encoding
schemes for coherent states [25–28]. The security analysis
of discrete modulation is also constantly improving [29–32].
Recently, the development of a numerical method for dis-
crete modulation has improved [33,34]. The security analysis
framework has been processed [35,36]. There are more realis-
tic issues considered in security analysis, such as untrusted
detector noise and finite-dimensional convex optimizations
[37,38]. Protocols with complex constellations are published,
and achieve a higher secret key rate [39–43]. Meanwhile,
some significant techniques have also been applied to dis-
crete modulation, such as machine learning and postselection
[44,45]. In terms of experiment, there are many attempts made
to realize discrete modulation in practice [46–50]. In quantum
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networks, DM CV-QKD is compatible with modern optical
communication devices and some well-developed technolo-
gies of classical access networks. The application of DM
CV-QKD plays a significant role in promoting the large-scale
deployment of secure quantum communication networks.

In this paper, we propose the security analysis of a
multiple-quadrature-amplitude-modulation (MQAM) constel-
lation protocol with a numerical method and realize DM
CV-QKD in a downstream-access network. Different from the
previous multiple phase shift keying protocol, the quadrature
amplitude is used to denote the signals instead of only phase,
which allows the protocol to carry more information through
extra dimensions. It leads to a substantial advancement of the
DM protocol modulation mode and a significant increase in
the number of supported optical network units. On this basis,
the security analysis is conducted in the downstream-access
network. Considering the practical quantum network envi-
ronment, an applicable trusted detector model is presented
to ensure that the key map for the region operator is con-
sistent with the key map for calculating error rate. Through
the numerical simulation performed in the downstream-access
network under the 16QAM protocol, the large number of
optical network units supported in the downstream-access net-
work is demonstrated. It illustrates the potential of high-order
discrete-modulation CV-QKD in the application of large-scale
quantum networks.

This paper is organized as follows. In Sec. II, we briefly in-
troduce the security analysis of discrete-modulation CV-QKD
and downstream-access networks with Gaussian modulation
CV-QKD. In Sec. III, the security analysis of the MQAM
discrete-modulation protocol is conducted, and the numerical
method of 16QAM for simulation is proposed. In Sec. IV, the
simulation results of the 16QAM protocol in the downstream-
access network are presented and discussed. In Sec. V, the
conclusion is drawn and prospects are outlined.

II. BASIS OF DISCRETE-MODULATION CV-QKD
AND ACCESS NETWORKS

A. Discrete-modulation CV-QKD

In this section, quadrature phase shift keying (QPSK) is
exemplified to introduce the basic protocol and method of se-
curity analysis of discrete-modulation CV-QKD. As shown in
Fig. 1, the sender Alice randomly selects a coherent state from
the alphabet {|α〉, |iα〉, |−α〉, |−iα〉} with a uniform proba-
bility as the signal state. Then the prepared state is sent to
Bob through the quantum channel. After the state is received,
Bob performs a heterodyne measurement of the received state,
with the measurement result y ∈ R obtained. After n rounds,
Alice and Bob select a small proportion of the data for param-
eter estimation. After passing the parameter estimation sifting,
Bob maps the remaining measurement results according to the
following rules as the raw sequence for secret key generation:

z =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if θ ∈ [− 1
4π, 1

4π
)

1 if θ ∈ [
1
4π, 3

4π
)

2 if θ ∈ [
3
4π, 5

4π
)

3 if θ ∈ [
5
4π, 7

4π
) . (1)

FIG. 1. Schematic diagram of the constellation for QPSK pro-
tocol. Alice randomly selects a sending state from alphabet
{|α〉, |iα〉, |−α〉, |−iα〉} for each round. Then Bob maps the mea-
surement outcomes basis on the corresponding region delineated by
dotted lines.

Finally, Alice and Bob extract the secret key rate from the
raw sequence by a suitable error correction and a suitable
postprocessing method.

In the equivalent EB model, the bipartite state prepared by
Alice can be expressed as

|ψ〉AA′ =
x∑ √

px|x〉A|αx〉A′ , (2)

where x represents the orthogonal basis of register A. Then
Alice sends the state |αx〉A′ to the channel and keeps the
register A. Alice will take a positive operator-valued measure
(POVM) measurement to register A with the basis MA =
{Mx

A = |x〉〈x|} and obtain her raw discrete sequence X . The
probability of each measurement result is equal to the prob-
ability px of each prepared Einstein-Podolsky-Rosen state.
The state |αx〉A′ which was sent to Bob through the channel
map εA′→B, becomes the state of system B. Then we get the
quantum state between Alice and Bob:

ρAB = (idA ⊗ εA′→B)(|ψ〉〈ψ |AA′ ), (3)

where idA is the identity channel on register A. Bob makes a
POVM Gy for system B to obtain state ρB, after receiving the
state which passed through the channel map. Next, we will
simply introduce the calculation method of the key rate for
DM CV-QKD. First, in the scenario of reverse reconciliation
and collective attack, the Devetak-Winter formula can be ex-
pressed as follows:

R∞ = min
ρAB∈S

D{G(ρAB) ‖ Z[G(ρAB)]} − ppassδEC (4)

where D(ρ ‖ σ ) is the quantum relative entropy defined as
Tr(ρlog2ρ) − Tr(ρlog2σ ), δEC is the entropy which is used
for error correction, ppass is the shift probability for secure key
generation, G is a completely positive and trace nonincreasing
map for postprocessing, Z is a pinching quantum channel that
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reads out the result of the key map, and S denotes all feasible
probability density operators in experimental observations.

For the first part of Eq. (4), the minimum of relative entropy
D{G(ρAB) ‖ Z[G(ρAB)]} is needed with all the feasible region
S. We use semidefinite programming (SDP) tools to solve
this convex optimization problem. This convex optimization
problem is described as follows:

minimize D{G(ρAB) ‖ Z[G(ρAB)]
subject to
Tr[ρAB(|x〉〈x|A ⊗ F̂Q)] = px〈F̂Q〉x,

Tr[ρAB(|x〉〈x|A ⊗ F̂P )] = px〈F̂P〉x,

Tr[ρAB(|x〉〈x|A ⊗ ŜQ)] = px〈ŜQ〉x,

Tr[ρAB(|x〉〈x|A ⊗ ŜP )] = px〈ŜP〉x,

TrB[ρAB] =
n∑

i, j=0

√
pi p j〈α j |αi〉|i〉〈 j|A,

Tr[ρAB] = 1,

ρAB � 0,

(5)

where x denotes which state Alice sent from the alphabet,
F̂Q and F̂P are the first-moment operators of q and p or-
thogonal components respectively, and ŜQ and ŜP are the
second-moment operators of q and p orthogonal components
respectively. The result of partial trace TrB[ρAB] is the state
ρA of system A, due to the assumption that Eve is unable
to access system A. x ∈ [0, n], where n is the number of
constellation points minus 1 and n = 3 in the QPSK situation.
This equation describes the minimization of relative entropy
while satisfying all the constraints mentioned below.

The definition of postprocessing map G is G(σ ) = KσK†.
The Kraus operator K is given by

K =
n∑

z=0

|z〉R⊗IA ⊗ (
√

Rz )B (6)

where the register R keeps the result of the key map, and Rz is
the region operator which is related to the region partition of
Bob’s key map. The pinching quantum channel is given by

Z (σ ) =
n∑

j=0

(| j〉〈 j|R ⊗ IA)σ (| j〉〈 j|R ⊗ IA). (7)

For the last part of Eq. (4), ppass is the probability of signal
passing postselection. δEC represents the entropy that will be
leaked during the error correction step and is definite in the
reverse-reconciliation scenario:

δEC = H (Z ) − βI (X ; Z )

= (1 − β )H (Z ) + βH (Z|X )
(8)

where β is reconciliation efficiency, and Z and X are the
raw sequences of Bob and Alice, respectively. H (Z|X ) is
the conditional entropy of sequence Z and X , relative with
the conditional probability density between them.

A tight lower bound on the security key rate can be
achieved by using a two-step procedure. First, the Frankwolf
[34] algorithm is utilized to iteratively repeat SDP [51,52] in
order to approach the minimum of relative entropy. In an ideal
scenario, we would obtain the optimal state ρAB which ensures
maximum security while satisfying all constraints. However,
because of numerical imprecision, we are only able to attain

FIG. 2. Simple model of the downstream-access network with
two ONUs. Alice, located in the OLT, sends a coherent state to the
quantum channel. Mode A transmits through ODN and is passively
divided into each channel for ONUs. The received modes by the
ONUs are C1 and C2.

a suboptimization state ρ∗
AB. In the second step, by solving

the dual problem of SDP and the linearization of the key rate
function at the state ρ∗

AB, we obtain a tight lower bound on the
key rate that accounts for linear undercuts within the feasible
set. The tight lower bound provided slightly underestimates
the key rate of the optimal state ρAB, which is crucial for
ensuring security.

B. Basis of the downstream-access network

The access network is constructed through the optical line
terminal (OLT), the optical network units (ONUs), and the
optical distribution network (ODN), for classical communi-
cation. First, the classical downstream-access network will be
introduced. As shown in Fig. 2, this system is composed of
the OLT, ONUs and ODN. The OLT sends the signal or data
packet to ONUs. The signal or data packet first arrives at the
ODN, and passes through the beam splitters (BSs) fixed in the
ODN. Then, this signal or data packet is passively divided and
sent to each downstream ONU. The BS is passive to division
and makes no active selection for the destination of the divided
signal, which is equivalent to the OLT making a networkwide
broadcast. All ONUs receive an identical signal or data packet.
In classical communication, encryption ensures the security
of the protocol. The OLT encrypts the signal before it is sent,
only with a private key held by both the OLT and correspond-
ing ONU that can decrypt these signals. After the signal is
broadcast, only the specific ONU which keeps the private
key can decrypt the signal. Other ONUs are unaware of the
information in signal.

The CV-QKD downstream-access network is of the same
structure as the classical downstream-access network. Its
model of sending and receipt is constructed by adopting
the prepare-and-measure model. Therefore, in practice, the
CV-QKD downstream-access network can directly utilize the
equipment of the classical network. The receiving and sending
devices need to be replaced by standard CV-QKD devices,
with coherent lasers and heterodyne detection devices cho-
sen in our scheme. First, a coherent state is prepared by the
OLT device and input into the network through the fiber.
When the quantum signal arrives at the ODN, it is passively
divided into n paths by the BS. Then, the n path quantum
signal is transmitted to each ONU. After a quantum signal
is received, the ONU performs measurement using its CV-
QKD receivers. Being the same as classical communication,
in the CV-QKD downstream-access network, the OLT only
communicates with one ONU at a time. That is to say, only the
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specific ONU is capable to extract the secret key. Therefore,
our focus is the amount of secret key rate that can be extracted.

Next, the security analysis of the CV-QKD downstream-
access network is briefly introduced as the example of a four
ONU downstream-access network. As shown in Fig. 2, the
communication ONU is assumed to be C1. In reverse recon-
ciliation, the secret key rate is written as [53,54]

K = βIAC1 − χEC1 , (9)

where IAC1 is the mutual information between system A and
C1, and χEC1 is the total information that Eve can eavesdrop,
which is given by

χEC1 = S(E ) − S(E |C1), (10)

where S(.) is von Neumann entropy. In standard security
analysis, when Eve reaches the upper bound of information
that can be eavesdropped, the von Neumann entropy satisfies

S(E ) = S(AB1C1C2C3C4),

S(E |C1) = S(AB1C1C2C3C4|C1). (11)

To ensure security, considering the worst case, we need to
subtract the information that is related to the other ONUs:

K ′ = K − χC1C2 − χC1C3 − χC1C4 , (12)

where χC1C2 , χC1C3 , and χC1C4 comprise the information that
system C1 relates with the other ONUs. For calculating the
secret key rate, all the other ONUs must be considered when
the formula of safety analysis is derived. It is necessary to
write down the covariance matrix γAB1C1C2C3C4 or calculate
the state ρAB1C1C2C3C4 . The complexity of calculation increases
with a rise in the number of ONUs. This hinders its practical
application. To solve this problem, it is assumed that Eve is
powerful enough to control all the other ONUs. Under such
an assumption, all the other ONUs are considered as part of
the channel and are controlled completely by Eve except for
the communicating ONU. An upper bound that can be held by
Eve’s information is estimated [55–58]:

S(E ) = S(EB1C1C2C3C4) = S(AC1),
S(E |C1) = S(EB1C1C2C3C4|C1) = S(A|C1), (13)

since Eve can control system B1C2C3 and C4. It is sufficient
to consider only the state ρAC1 or covariance matrix γAC1 in
security analysis. Next, it is necessary to consider the channel
parameters in the above situation. As shown in Fig. 2, the
ODN divides the channel into two parts. The transmittance
and excess noise between OLT and ODN are expressed as
TOLT−ODN and εOLT−ODN; the transmittance and excess noise
between ODN and C1 are expressed as TODN−C1 and εODN−C1 ;
the transmittance and excess noise of ODN are expressed
as ηODN and εODN. It is convenient to perform calibration in
practice. The total transmittance Ttot and total excess noise εtot

are defined as

Ttot = TOLT−ODN ∗ TODN−C1 ∗ ηODN,

εtot = εOLT−ODN + εODN−C1 + εODN
(14)

where ηODN is related to the number of ONUs. It can be seen
from Eq. (14) that the influence of the ODN is considered as
part of the influence of the channel. This means, in our secu-
rity analysis, the BS in the ODN is untrusted. In this way, it is

FIG. 3. Schematic diagram of the constellation for 16QAM pro-
tocol. We number the state and mapping region from left to right
and from top to bottom. Rz represents the mapping region. The
color depth of the coherent state represents the probability of being
selected.

adequate to consider only the total transmittance and the total
excess noise for parameter estimation. Also, it is sufficient to
consider only the modes A and C1, instead of having to write a
complicated quantum state or covariance matrix that contains
all the modes. Therefore, security analysis can be conducted
independently between any two points in the access network.

III. DISCRETE-MODULATION CV-QKD
WITH MQAM CONSTELLATION

On the basis of QPSK security analysis, the constel-
lation is expanded to MQAM. As Fig. 3 shows, Al-
ice makes a random selection from the alphabet αi =
[−an · · · − a1,−a0,a0, a1 · · · an] as the amplitude of the pre-

pared state on the q orthogonal component, where n =
√

M
2 −

1, and M represents the number of constellation points of
MQAM, which is equivalent to the p orthogonal compo-
nent. In practice, it is necessary to optimize the parameter
ax within a certain range. However, due to the substantial
resource consumption for optimizing every parameter, it is
impossible to achieve search optimization. For this reason, the
scheme that fixes the distance between adjacent constellation
points is chosen, which means ax= (2x + 1)a0 (x ∈ [0, n]).
It is adequate to optimize only the parameter a0 in this
scheme. Now, the alphabet Alice chooses from becomes
αi = [∓(2x + 1)a0] (x ∈ [0, n]), and the state prepared is

|αi j〉 = |αi + iα j〉 (i, j ∈ [0, n]). (15)

The sending states in the constellation are numbered in order
from left to right and from top to bottom, i.e., x = j(n + 1) +
i. Thus, the sending states are written as ρx = |αx〉. Alice
selects the state from the set {|αx〉} randomly with probability
Px, which is defined as

Pqx px = exp
[
v
(
qx

2 + px
2
)]

∑
qx px

exp
[
v
(
qx

2 + px
2
)] , (16)
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FIG. 4. The model for a noisy detector located in ONUs. The first
BS imitates the electronic noise; the second BS imitates the detection
efficiency. Then the mode C1 arrives at the ideal detector.

where v is the parameter related to probability distribution and
will be optimized in the following calculation. This probabil-
ity distribution confirms to a Gaussian distribution, and the
probability Px depends on its amplitude of q and p orthog-
onal components. As shown in Fig. 3, we take the 16QAM
constellation as an example, with the probabilities indicated
by color. Additionally, v affects the degree of the probability
concentrated at the internal constellation points. After state
preparation, Alice inputs the state |αx〉 into the quantum chan-
nel. Bob takes a heterodyne measurement after receiving the
measurement result y. Bob carries out parameter estimation
and draws the key map. In the region of the key map, the
number of parameters is also reduced through the scheme
of the fixed distance between adjacent constellation points
corresponding to the scheme of alphabet {ax} in the context of
MQAM. The boundary of the key map region is set as azi =
{−∞,−nac · · · − 2ac − ac, 0, ac, 2ac · · · nac,∞}. Therefore,
the key map of MQAM is written as

z = i + j(n + 1)

if
{
Re(y) ∈ (

azi , azi+1

)
and

Im(y) ∈ (
azj , azj+1

)}
(17)

as shown in Fig. 3 in the 16QAM situation. The key map
region is numbered from left to right and from top to bottom
as z, with z ∈ [0, 15] for 16QAM.

One of the challenges in MQAM compared with QPSK
is to optimize parameters, which is due to the increase in
the number of constellation points. Thus, it is impossible
to optimize them completely. To solve this problem, some
suboptimal choices must be made to minimize the number of
parameters. Even though these choices may not lead to the
highest secret key rate in a particular scenario, the choices of
parameters can still perform better in each scenario.

Figure 4 shows the model of the trusted detector set in
this paper [24]. The signal needs to pass through the BS with
transmittance ηe first, which represents the effect of electronic
noise. Then, the signal passes through the BS with transmit-
tance ηd , which represents the effect of detector efficiency. In
this trusted detector model, only the loss caused by detector
efficiency is considered as trust, and the influence of electronic
noise is considered as a part of the channel. Thus, we set
Ttot = TOLT−ONU ∗ ηe in heterodyne detection. This is an un-
derestimate to ensure security for the secret key rate. Notably,
after transformation of the BS, the probability distribution of
state C1 varies compared to B1. So, it is inappropriate to de-
limit the boundary of the key map for state C1 directly through

a demarcated boundary of the key map for state B1. To ensure
that the key map for the region operator is consistent with
the key map for error rate calculation, the key map basis of
the probability distribution of state C1 is used for subsequent
numerical calculation. In this scheme, the POVM element Gy

is equivalent to the operator for the ideal detector:

〈m|Gy|n〉 = 1

π
√

m!n!
e−(q2+p2 )(q − ip)n(q + ip)m. (18)

The region operator is

〈m|Rz|n〉 =
∫ azi+1

azi

∫ az j+1

az j

dqd p〈m|Gy|n〉 (19)

where i, j ∈ [1, 2(n + 1)]. This is the same as the first-
moment and second-moment observables in Eq. (5):

F̂Q =
∫ ∞

−∞

∫ ∞

−∞

√
2qGydqd p,

F̂P =
∫ ∞

−∞

∫ ∞

−∞

√
2pGydqd p,

ŜQ =
∫ ∞

−∞

∫ ∞

−∞
2q2Gydqd p,

ŜP =
∫ ∞

−∞

∫ ∞

−∞
2p2Gydqd p.

(20)

The simulation statistics with the effect of detector efficiency
ηd are given by

〈F̂Q〉 =
√

2ηd TtotRe(αx ),

〈F̂P〉 =
√

2ηd TtotIm(αx ),

〈ŜQ〉 = 2ηd TtotRe(αx )2 + 1 + 1
2ηd Ttotεtot,

〈ŜP〉 = 2ηd TtotIm(αx )2 + 1 + 1
2ηd Ttotεtot,

(21)

where ξ is excess noise, and the values of Re(αx ) and Im(αx )
are selected from [∓(2i + 1)a0] (i ∈ [0, n]). The conditional
probability distribution of Bob’s measurement y is given by

P̃(y|x) = 1

π
(
1 + 1

2ηd Ttotεtot
) exp

[
−|y − √

ηd Ttotαx|2
1 + 1

2ηd Ttotεtot

]
.

(22)

Based on this equation, the conditional probability P(y|x) can
be calculated depending on the key map of state C1,

P(y|x) =
∫ azi+1

azi

∫ az j+1

az j

dqd pP̃(q + ip|x), (23)

to obtain the H (Z|X ) in Eq. (8).
Despite simplified schemes developed for parameters in the

MQAM protocol, there remains a stronger need to achieve
optimization than for the QPSK protocol. Also, with a rise in
the number of constellation points, there is also an increase in
the dimension of each matrix in numerical simulation, which
hinders the optimization of all parameters due to high compu-
tational complexity. In this case, a coarse-precision search is
conducted to choose a set of parameters that are more suitable
in each scenario for numerical simulation, although it may not
be the optimal strategy in a particular scenario.
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It is also worth discussing the calculation of region op-
erator Rz. Regarding the MQAM protocol, it is necessary to
calculate more region operators than for QPSK. Also, a high
cutoff photon number N is set. Since the parameter ac affects
the division of the key map region, it needs to be recomputed
frequently. It is necessary to reduce the computational com-
plexity of region operator Rz. We use MATHEMATICA to obtain
the analytical polynomial of the integral formula Eq. (19). In
this way, it is enough to take the integral upper and lower
bounds into the polynomial and obtain the result directly,

instead of spending a lot of time on calculating the integral
for every key map region. Notably, the numerical value of
MQAM is mutually symmetrical between the region operators
in each quadrant. So, it is sufficient to calculate the region
operator of only one quadrant. Since the integral upper and
lower bounds contain zero and infinity, the limit in calculat-
ing the analytical polynomial should be avoided to improve
the speed. Thus, the analytical polynomial is classified into
nine types, depending on the upper and lower bounds of the
integral:

{q ∈ (0, x1]p ∈ [y2,∞)}, {q ∈ [x1, x2]p ∈ [y2,∞)}, {q ∈ [x2,∞)p ∈ [y2,∞)},
{q ∈ (0, x1]p ∈ [y1, y2]}, {q ∈ [x1, x2]p ∈ [y1, y2]}, {q ∈ [x2,∞)p ∈ [y1, y2]},
{q ∈ (0, x1]p ∈ (0, y1]}, {q ∈ [x1, x2]p ∈ (0, y1]}, {q ∈ [x2,∞)p ∈ (0, y1]}. (24)

Then, the analytical polynomial of the region operator is
obtained in the first quadrant. Lastly, it is only necessary to
follow the symmetry relation between quadrants for obtaining
all the region operators.

The gap between region operators computed through the
analytical polynomial and the integral method is approxi-
mately of magnitude 10−16 for numerical simulation of the
16QAM protocol. With the cutoff photonumber N = 15, the
time to calculate all the 16 operators Rz by the analytical
polynomial is reduced to under 3 s. This makes it possible
to do optimization for parameter ac.

IV. PERFORMANCE ANALYSIS OF DM CV-QKD
IN THE DOWNSTREAM-ACCESS NETWORK

In this section, the performance of the 16QAM proto-
col is demonstrated in downstream-access network, through
the numeral method described in Sec. III. The channel is
set as a Gaussian channel with transmittance T and excess
noise ε. Based on the discussion about the downstream-
access network in Sec. II B, the transmittance becomes Ttot

and the excess noise becomes εtot. The definition of total
transmittance is Ttot = 10− aL

10 ηODNηe in the distance L with
a = 0.2 dB/km, where ηODN is related to the number of
ONUs. For the MQAM protocol, it is a challenge to determine
proper parameters. In the 16QAM protocol for deployment
of constellation points, the parameters are set as follows. The
amplitude of Alice’s alphabet is α0 = 0.45, the amplitude of
the region boundary for the key map is ac = 1.5a0, and the
probability distribution parameter is v = 0.5. The optimiza-
tion of these parameters is shown in Fig. 7. Note that the
selection of these parameters may not be the optimal value in a
particular situation, but it produces an excellent performance
in each scenario. The reconciliation efficiency is set as β =
0.95 [59,60]. The parameters regarding the detector include
detection efficiency ηd = 0.48 and electronic noise ηe = 0.9.
Based on the practical implications of the downstream-access
network, the distance is limited to 30 km and the number of
ONUs ranges from 2 to 64. Given a compromise on computa-
tion time, the cutoff number is set to Ncut = 15 to perform the
Frank-Wolfe iterations until sufficient convergence.

Figure 5 shows the key rate with different numbers of
ONUs and distances. When the number of ONUs falls below
4, a high key rate is maintained within 30 km. With more
ONUs in connection with the network, the secret key rate de-
clines. When the number of ONUs exceeds 20, the secret key
rate drops sharply. When it reaches above 64, the transmission
distance is limited to under 10 km. Figure 6 shows the range
of tolerable excess noise with different numbers of ONUs
and distances. The tolerable excess noise is scanned with the
accuracy of 0.0002 for simulation. Apparently the tolerable
excess noise is maintained at a satisfactory level when the
ONU number is smaller than 4. The tolerable excess noise de-
creases progressively as the distance increases to 30 km. With
the number of ONUs as the abscissa variable, the tolerable
excess noise decreases sharply when the number of ONUs is
under 10 and gradually when the number of ONUs exceeds
20. Even though the number of ONUs is 64, the tolerable
excess noise remains above 0.03, which indicates the high
performance of our protocol in the presence of excess noise.
Compared with the performance of the QPSK protocol in
the downstream-access network shown in Fig. 8, the 16QAM

FIG. 5. Achievable secret key rate of DM CV-QKD against the
number of ONUs accessed in the downstream-access network and
transmission distance. (a) The function of secret key rate and trans-
mission distance with a different number of ONUs. (b) The function
of secret key rate and the number of ONUs with different distance.
Simulation parameters: the excess noise εtot = 0.04, reconciliation
efficiency β = 0.95, detection efficiency ηd = 0.48, electronic noise
ηe = 0.9, the sending amplitude α0 = 0.45, the amplitude of region
boundary ac = 1.5a0, the probability distribution parameter v = 0.5.
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FIG. 6. Tolerable excess noise of DM CV-QKD against the
number of ONUs accessed in the downstream-access network and
transmission distance. (a) The function of tolerable excess noise and
transmission distance with a different number of ONUs. (b) The
function of tolerable excess noise and the number of ONUs with
different distance. Simulation parameters: reconciliation efficiency
β = 0.95, detection efficiency ηd = 0.48, electronic noise ηe = 0.9,
the sending amplitude α0 = 0.45, the amplitude of region boundary
ac = 1.5a0, the probability distribution parameter v = 0.5.

protocol achieves the sufficiently supported number of ONUs
and tolerable excess noise required for implementing DM-CV
QKD in the downstream-access network.

Figure 7 shows the optimization of parameters: v, α0,
and αc with Ttot = 1

2 , 1
10 , and 1

100 . Due to the complexity
of computation, it is difficult to achieve optimization under
each scenario. Therefore, these three typical scenarios are
simulated, and the parameters that perform well with each Ttot

are chosen, even though it may not be optimal. The situation
with Ttot = 1

2 represents the general point-to-point case within
30 km; the situation with Ttot = 1

10 represents the case of a
small number of ONUs within 30 km; and the situation with

FIG. 7. The curve between secret key rate and the parameters:
(a) the probability distribution parameter v, (b) the amplitude of
Alice’s alphabet α0, (c) the amplitude of the region boundary for
the key map αc = xα0, with Ttot = 1

2 , 1
10 , and 1

100 , from left to
right, respectively. Simulation parameters: reconciliation efficiency
β = 0.95, excess noise εtot = 0.04, detection efficiency ηd= 1.

FIG. 8. The performance of QPSK protocol in the downstream-
access network. (a) The function of secret key rate and transmission
distance with different number of ONUs. (b) The function of tolera-
ble excess noise and transmission distance with a different number of
ONUs. Simulation parameters: the excess noise εtot = 0.04, reconcil-
iation efficiency β = 0.95, detection efficiency ηd = 0.48, electronic
noise ηe = 0.9, the sending amplitude α = 0.7.

Ttot = 1
100 represents the case where there are more ONUs

connected or a small number of ONUs with long distance
communication. We finally select the parameters: v = 0.5,
α0 = 0.45, and ac = 1.5a0. Note that, in order to cover a wide
range of scenarios, we set ηd= 1. This does not imply that
this optimization is restricted to exclusive use by an ideal
detector. As Eq. (21) shows, ηd Ttot can be considered as a
whole. In other words, the actual scenarios we choose are
ηd Ttot = 1

2 , 1
10 , and 1

100 . For the practical nonideal detector,
we can initially determine the value of ηd Ttot and select the
suitable parameters according to Fig. 7.

Figure 8 shows the secret key rate and tolerable excess
noise of the QPSK protocol with a different number of ONUs
and distance. We choose the parameter α = 0.7 based on the
result of the scan optimization in the downstream-access net-
work. The other parameters we set are based on measurements
from our actual system. The QPSK protocol can only support
communication at a distance of 20 km when the number of
ONUs is 2. The number of ONUs that can be supported is at
most 4 when εtot = 0.04. The most excess noise is 0.05. By
contrast, the 16QAM protocol is capable of supporting up to
64 ONUs as shown in Fig. 5.

V. CONCLUSION

This paper focuses on the MQAM discrete-modulation
continuous-variable quantum key distribution protocol in a
downstream-access network. In order to support more units
in the quantum network, an extra dimension is introduced
for signal modulation by quadrature amplitude modulation
to address the severe loss and excess noise in the quantum
network. By solving the multiplier computational complexity
caused by the extra dimension, the application of high-order
discrete-modulation CV-QKD is facilitated. Given the actual
quantum network, a suitable trusted detector model is given.
This trusted detector model, which can be implemented in the
quantum network, ensures that the key map for the region op-
erator is consistent with the key map for error rate calculation.

Furthermore, the security analysis of the downstream-
access quantum network can be conducted with MQAM
CV-QKD. Finally, the simulation of the 16QAM protocol is
performed in the downstream-access network. Even though
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the number of ONUs reaches 64, our protocol remains ef-
fective in ensuring a communicable distance of 5 km and a
tolerable excess noise of 0.03. If the number of ONUs is no
greater than 4, it is possible to achieve a high secret key rate
and tolerable excess noise of at least 0.07 within 30 km. These
results also confirm that the 16QAM constellation scheme
improves the supported number of ONUs by 16 times com-
pared to the QPSK constellation scheme.

In this paper, MQAM CV-QKD is achieved in a
downstream-access quantum network, which paves the
way for construction of large-scale practical quantum-key-

distribution networks and the application of high-order
discrete modulation in quantum networks.
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