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Boson sampling from non-Gaussian states
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Boson sampling has emerged as an important tool to demonstrate the difference between quantum and
classical computers and has attracted the interest of experimentalists and theoreticians. In this work we study
boson sampling from general, single-mode states using a scheme that can generate any such state by combining
Gaussian states and photon number measurements. We derive a formula that can be used to calculate the output
photon number probabilities of these states after they travel through a linear interferometer. This extends the
Boson sampling protocol to the widest array of possible single-mode states and from this we show that the
complexity scaling of all such states is similar and hence there is no complexity advantage of using complex
input states over simpler ones.
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I. INTRODUCTION

Demonstrations of quantum advantage are important tests
of noisy intermediate-scale quantum computing (NIQC) [1],
with quantum sampling problems emerging as promising
milestones in this pursuit [2]. The aim of these sampling
protocols is to use quantum mechanics to create a large quan-
tum state, whose measurement outcomes are computationally
difficult for a classical computer to recreate. Within sampling
problems, boson sampling has established itself as an impor-
tant example in this class [3,4].

In the original boson sampling protocol, devised by Aaron-
son and Arkhipov [5], single photons are sent into the modes
of a linear interferometer and the output state is then measured
in the photon number basis. The probability of various output
states can be written in terms of the permanent of a matrix,
which itself is derived from the unitary matrix that describes
the interferometer. The permanent is in the #P-hard complex-
ity class [6] and is thus classically intractable to calculate for
large matrices. Thus the probability distribution can be sam-
pled more efficiently from this quantum device than a classical
one. The authors show that if there was a classical algorithm
that could efficiently approximate the permanent to reasonable
error margins, then this would have such significant implica-
tions for complexity theory that it is unlikely to be true. The
original version of boson sampling has been experimentally
realized by several groups [7–10]. There have been several
theoretical advances in the field of boson sampling that has
extended the protocol to other quantum states of light [11–18].
Recent work examined sampling from general bosonic states
[19,20], concluding that the complexity of sampling from the
state depends upon the stellar rank of the input state and
measurement scheme [21].

Here we show that this is not the case for general single-
mode input states by analyzing boson sampling using a
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different state generation method than previous work. We
can map this problem to a related Gaussian-state boson sam-
pling problem, allowing us to derive a formula that can be
used to calculate photon statistics from such an array of any
single-mode input states. The time-complexity of this formula
(number of terms to be summed to calculate it) scales as
O(2R), where R is a constant independent of the state, and
thus not dependent upon the particular nature of the state or
its nonclassical attributes.

II. NON-GAUSSIAN STATE CREATION FROM INITIAL
GAUSSIAN STATES

We briefly describe the scheme devised by Fiurášek et al.
[22], to create any pure single-mode photonic state, by using
two squeezing operations, multiple displacement operations,
and single-photon detections. Starting from an initial vacuum
state, the needed sequence of operations is

|ψ〉 ∝ Ŝ(−r)âD̂(αN ) · · · âD̂(α2) â D̂(α1)Ŝ(r)|0〉, (1)

where Ŝ(r) is a squeezing operation with parameter r, D̂(α) is
the displacement operation, and â is the annihilation operator,
a nonunitary operation that removes a photon from the state.
This state creation process can be seen by noting the effect of
the displacement and squeezing operators acting upon â,

D(α)âD†(α) = â + α, S(r)âS†(r) = cosh r â + sinh r â†,

(2)
which leads to (1) being written as

|ψ〉 ∝ (â† + αN ) · · · (â† + α1)|0〉 =
N∑

n=0

cnâ†n|0〉, (3)

which for the correct choice of displacement parameters {α j}
generates the desired state. An algorithm for these displace-
ment parameters was given in [22]. In general, an N-photon
state requires N displacement operators and photon removals,
with the two squeezing operations being fixed. The authors in
[22] suggest that such a scheme could be physically realized
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FIG. 1. Schematic of non-Gaussian state generation [22]. A
squeezed vacuum state is generated in the system mode by Ŝ(r), then
travels through a series of high-transmission beamsplitters where it
is combined with displaced vacuum states generated by D̂(α j ). After
the final beamsplitter the inverse squeezing operation is performed.
At the output of each herald mode a single photon must be detected
to create the desired state.

by a single-mode squeezed state, traveling through a series
of high-transmission beamsplitters, where it is combined with
displaced vacuum states and on the reflecting mode of each
beamsplitter a single photon is detected, with a final anti-
squeezing operation at the output, as sketched in Fig. 1. If
the single photons are detected, they herald the creation of
the desired state in the remaining mode. The downside of
this scheme is that the probability of generating such a state
decays exponentially with the number of photon measure-
ments required to generate the state. Although this makes it
impractical for experimental realizations, it allows us to derive
a mathematical expression for calculating the output statistics
of interference from such states. Utilizing the above scheme
we can relate, in a unified manner, bosonic non-Gaussian
(NG) states generated from other physical systems, such as
Kerr-squeezing or Bose-Hubbard terms, to bosonic sampling
and draw some general conclusions.

III. GAUSSIAN BOSON SAMPLING

This NG state generation process uses three operations,
squeezing, displacement, and photon number measurement,
that can all be described within the framework of the Gaussian
boson sampling (GBS) protocol. GBS is a further develop-
ment of the original BS protocol, where the single-photon
input states were replaced by a general Gaussian state of
light, in particular squeezed vacuum states. Gaussian states
are completely described by their covariance matrix and dis-
placement vector [23,24] and the input state remains Gaussian
after passing through the linear interferometer.

We now describe the main points of GBS. K single-mode
squeezed states (SMSS) with squeezing parameter r are sent
into K modes of an M ′-mode linear interferometer, character-
ized by a unitary transformation Û , and what emerges at the
output is a multimode squeezed state with covariance matrix
σ . The effects of displaced vacuum states can be included by
specifying a displacement vector that contains the amplitudes
of the coherent states in each mode. The measurement statis-
tics from multimode Gaussian states can be calculated using
phase-space methods [25,26], where each mode of the system
is represented by two variables α j, α

∗
j , the state is described

by its Husimi Q function, and the measurement operators
(here number operators) are described using their Glauber-
Sudarshan P functions. The probability of measuring photon
pattern n̄ = [n1, n2, . . . , nM] from an M-mode Gaussian state,
described by covariance matrix σ and displacement vector dv ,
is given by [13,16]

Pr(n̄) = exp
[ − 1

2 d†
vσ−1

Q dv

]
n̄!

√|σQ|

×
M∏

j=1

(
∂2

∂α j∂α∗
j

)n j

eαt
vAαv+Fαv

∣∣∣∣
α j ,α

∗
j =0

, (4)

where αv = [α1, α2, . . . , α
∗
1 , α

∗
M], and the matrix and vector

in the exponent are defined by

A =
(

0 IM

IM 0

)[
I2M − σ−1

Q

]
and F = d†

vσ−1
Q , (5)

with σQ = σ + I2M/2 and n̄! = n1!n2! · · · nM!. If dv = 0 then
this quantity can be related to the hafnian [27] of the matrix
AS , which is a submatrix of A that depends upon where the
photons are detected:

Pr(n̄) = 1

n̄!
√|σQ|Haf(As). (6)

When dv �= 0 the expression in Eq. (4) has been termed the
loop hafnian [28,29],

Pr(n̄) = exp
[ − 1

2 d†
vσ−1

Q dv

]
n̄!

√|σQ| Lhaf(As, Fs), (7)

where Fs is subvector that, like As, depends upon the location
of the measured photons. These functions are both in the
#P complexity class and hence can form a boson sampling
protocol.

IV. OVERALL NGBS SCHEME

We now combine the NG state generation scheme with
GBS to create a non-Gaussian boson sampling (NGBS) prob-
lem. We will consider the case where we sample from K
identical NG states (in principle all input states could be dif-
ferent). Each of the input states starts with M modes, of which
M − 1 are herald modes, where the photon detection occurs,
and the final system mode that will enter the M ′ × M ′-mode
interferometer, which itself has at least K modes. Thus the
total number of modes is K (M − 1) + M ′. The scheme for the
NGBS is sketched in Fig. 2.

The K independent input states can be described by the
individual covariance matrices σNG and displacement vectors
dNG (before any measurements on the herald modes take
place). The covariance matrix that describes the total input
state is the direct sum of the K single-mode covariance ma-
trices and the remaining vacuum modes will be the identity
matrix:

�in = σ⊕K
NG ⊕ I/2M ′−K ; (8)

and the total displacement vector is similarly constructed:

�in = d⊕K
NG ⊕ 0M ′−K , (9)
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FIG. 2. Schematic of total sampling from the initial NG states.
Each of the input states has M − 1 herald modes used to generate
the remaining state in the system mode, which then enter a linear
interferometer.

where vacuum modes here are zero. The system modes of this
state then enter the interferometer (described by U sys

M ′ ), where
the output covariance matrix and displacement vector of the
total state are easily calculated as,

�out = (
U sys

M ′ ⊕ Iherald
(M−1)K

)
�in

(
U † sys

M ′ ⊕ Iherald
(M−1)K

)
,

�out = (
U sys

M ′ ⊕ Iherald
(M−1)K

)
�in. (10)

Finally, every mode, system and herald, is measured in the
photon number basis. This combined scheme can be analysed
in terms of GBS in a rather straightforward way as given
below.

The NGBS problem is to calculate the conditional prob-
ability of the output photon pattern n̄ of the interferometer
modes, given the K× NG input states. This can be directly
related to the GBS problem to measure the photon pattern n̄
in the interferometric system modes and the pattern 1̄ in the
herald modes, i.e., single photons. Using Bayes’ theorem we
can relate this conditional probability to the joint probability
of measuring n̄system ∩ 1̄herald in all the modes, divided by the
probability of measuring 1̄herald in the herald modes only,

Pr(n̄system

∣∣1̄herald ) = Pr(n̄system ∩ 1̄herald )

[Pr(1̄herald )]K
. (11)

The probability Pr(n̄system ∩ 1̄herald ) can be calculated from
(7), using covariance matrix �out and displacement vector
�out,

Pr(n̄system ∩ 1̄herald )

= exp
[ − 1

2�
†
out�

−1
Q �out

]
n̄sys!

√|�Q| Lhaf
(
Atot

s , F tot
s

)
, (12)

with �Q = �out + ⊕I/2M ′−K , and Atot
s , F tot

s are derived ac-
cording to (5) from �Q and �out respectively. Note that all
modes of the total system are measured. The nature of the
scheme means that not all rows and columns of As are random,
due to the enforcement of the herald pattern.

The probability of creating the NG input state can be
written as

Pr(1̄herald ) = exp
[ − 1

2 d†
NG,sσ

−1
Q,NG,sdNG,s

]
√|σQ,NG,s|

Lhaf
(
ANG

s , F NG
s

)
,

(13)
where σNG,s and dNG,s are the submatrix (subvector) formed
by deleting the system mode (because it is not measured) and

ANG, F NG are again derived according to (5). Using a result by
[28], we can absorb the denominator factor, Pr(1̄herald ) = p,
into the numerator’s loop hafnian,

p−K Lhaf(As, Fs) = Lhaf(p−2K/N As, p−K/N Fs), (14)

where N = |n̄ + K (M − 1)|, the number of detected photons,
including the herald photons, which is also the dimension of
As. This equation to calculate the statistics from an array of
NG states is the main result of this paper and shows that
sampling from a NG input state is identical to sampling from
a squeezed, displaced vacuum state, where some of the mea-
sured output results are fixed (as single photons).

V. COMPLEXITY OF NON-GAUSSIAN BOSON SAMPLING

It has been shown that the rank of a matrix, R, is important
for the complexity of the calculation of both its hafnian and
permanent [28,30]. This is due to the number of terms to be
summed in each matrix function scaling as 2R, rather than
2N (where N is the dimension of the matrix), which can be
substantially faster for large, low-rank matrices. In the original
BS, the rank of the matrix sampled was equal to number of
unique modes that single photons enter and exit, and in GBS
the rank of the matrix sampled depends upon the number of
unique input squeezed modes and modes where photons are
detected [13,16].

Here, we provide evidence that the rank is also important
to the time complexity of the loop hafnian calculation. If
we examine Eq. (4), where A is a low-rank matrix, we can
transform from the {α j, α

∗
j } basis to one where A is diagonal

and thus we only have R variables, {β j, β
∗
j }. This means that

the exponential function is now a product of R single-variable
functions, whose derivatives are easy to calculate. The com-
plexity of the calculation is now that the product of partial
derivatives needs to be transformed to this new basis. This is
equivalent to expanding a multivariate polynomial [31],

N∏
j=1

∂

∂α j
=

N∏
j=1

(
R∑

k=1

Tj,k
∂

∂β j

)
, (15)

whose coefficients in the new basis depend upon the perma-
nent of a matrix derived from the transformation matrix T .
Expanding the polynomial in this new basis can be done in
O(NR−1) operations [30], i.e., it is dependent upon the rank
of the original matrix A. Also, each term in the polynomial,
i.e., ∂

n j

∂
n j β j

∂
n j

∂
n j β j

· · · ∂
n j

∂
n j β j

has a coefficient that depends upon a
permanent constructed from the matrix T , that has at most
rank R, and thus can be calculated in O(NR−1) steps [31].

This means that the complexity of sampling from these NG
states is saturated and does not grow, even as other measures
of quantumness do, such as negativity of the Wigner func-
tion [32]. A reason for this saturation is that even though
the input states grow in quantumness, the measurement basis
remains fixed in the number states, and due to the symmetry
of quantum mechanics we can consider these as in the input
states and measurement in the NG basis. Thus there is no im-
mediate advantage to using complicated, general multiphoton
single-mode input states to a boson sampling protocol over
simpler input states, such as single-photon states or squeezed
Gaussian states.
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VI. FIDELITY OF OUTPUT STATES

The authors in [22] show that the NG state generation
scheme has a fidelity that approaches unity as the transmission
coefficient of the beamsplitters approaches 1. However, we
may have to approximate an infinite-dimensional state by a
finite truncation in the photon number basis. Then, the created
state will have a fidelity below unity regardless of any param-
eters chosen, which may be a source of error in the protocol
presented here. This can be countered in boson sampling, as
we are generally only concerned with measuring a total of N
photons from our output state, thereby truncating our state to
this subspace. Thus each individual input state only has to be
expanded up to this N photon limit and as long as we ensure
unit fidelity of this subspace in our input state, then our overall
fidelity of the boson sampling protocol can be unity.

VII. CONCLUSIONS

In conclusion, we have introduced a way to analyze bo-
son sampling from non-Gaussian states by relating them to
Gaussian input states and conditional measurements. Thus
we arrive at a formula that can be used to calculate the

output probabilities of boson numbers from non-Gaussian
states entering linear interferometers. One consequence of this
approach is that all pure single-mode states have the same
time-complexity scaling that is independent of the particular
input state.

This work can extend the photonic sampling problem to
other physical bosonic systems that can create more exotic
input states than single photons or squeezed light, from, say,
higher-order Hamiltonians. In future it would be useful to look
at two-mode non-Gaussian states, which have a richer struc-
ture that single-mode states and may lead to more complex
states over single-mode states.
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[9] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, and
P. Walther, Experimental boson sampling, Nat. Photon. 7, 540
(2013).

[10] N. Spagnolo, C. Vitelli, M. Bentivegna, D. J. Brod, A. Crespi,
F. Flamini, S. Giacomini, G. Milani, R. Ramponi, P. Mataloni,
R. Osellame, E. F. Galvão, and F. Sciarrino, Experimental vali-
dation of photonic boson sampling, Nat. Photon. 8, 615 (2014).

[11] A. P. Lund, A. Laing, S. Rahimi-Keshari, T. Rudolph, J. L.
O’Brien, and T. C. Ralph, Boson sampling from a Gaussian
state, Phys. Rev. Lett. 113, 100502 (2014).

[12] S. Barkhofen, T. J. Bartley, L. Sansoni, R. Kruse, C. S.
Hamilton, I. Jex, and C. Silberhorn, Driven boson sampling,
Phys. Rev. Lett. 118, 020502 (2017).

[13] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, Gaussian boson sampling, Phys. Rev.
Lett. 119, 170501 (2017).

[14] U. Chabaud, T. Douce, D. Markham, P. Van Loock, E. Kashefi,
and G. Ferrini, Continuous-variable sampling from photon-
added or photon-subtracted squeezed states, Phys. Rev. A 96,
062307 (2017).

[15] N. Quesada, J. M. Arrazola, and N. Killoran, Gaussian boson
sampling using threshold detectors, Phys. Rev. A 98, 062322
(2018).

[16] R. Kruse, C. S. Hamilton, L. Sansoni, S. Barkhofen, C.
Silberhorn, and I. Jex, Detailed study of Gaussian boson sam-
pling, Phys. Rev. A 100, 032326 (2019).

[17] A. Deshpande, A. Mehta, T. Vincent, N. Quesada, M. Hinsche,
M. Ioannou, L. Madsen, J. Lavoie, H. Qi, J. Eisert, D.
Hangleiter, B. Fefferman, and I. Dhand, Quantum com-
putational advantage via high-dimensional Gaussian boson
sampling, Sci. Adv. 8, eabi7894 (2022).

[18] N. Spagnolo, D. J. Brod, E. F. Galvão, and F. Sciarrino, Non-
linear boson sampling, npj Quantum Inf. 9, 3 (2023).

[19] U. Chabaud and M. Walschaers, Resources for bosonic quan-
tum computational advantage, Phys. Rev. Lett. 130, 090602
(2023).

[20] U. Chabaud, G. Ferrini, F. Grosshans, and D. Markham, Classi-
cal simulation of Gaussian quantum circuits with non-Gaussian
input states, Phys. Rev. Res. 3, 033018 (2021).

052427-4

https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.95.035001
https://doi.org/10.1038/s41534-017-0018-2
https://doi.org/10.1117/1.AP.1.3.034001
https://doi.org/10.4086/toc.2013.v009a004
https://doi.org/10.1126/science.1231440
https://doi.org/10.1126/science.1231692
https://doi.org/10.1038/nphoton.2013.102
https://doi.org/10.1038/nphoton.2014.135
https://doi.org/10.1103/PhysRevLett.113.100502
https://doi.org/10.1103/PhysRevLett.118.020502
https://doi.org/10.1103/PhysRevLett.119.170501
https://doi.org/10.1103/PhysRevA.96.062307
https://doi.org/10.1103/PhysRevA.98.062322
https://doi.org/10.1103/PhysRevA.100.032326
https://doi.org/10.1126/sciadv.abi7894
https://doi.org/10.1038/s41534-023-00676-x
https://doi.org/10.1103/PhysRevLett.130.090602
https://doi.org/10.1103/PhysRevResearch.3.033018


BOSON SAMPLING FROM NON-GAUSSIAN STATES PHYSICAL REVIEW A 109, 052427 (2024)

[21] U. Chabaud, D. Markham, and F. Grosshans, Stellar represen-
tation of non-Gaussian quantum states, Phys. Rev. Lett. 124,
063605 (2020).

[22] J. Fiurášek, R. García-Patrón, and N. J. Cerf, Conditional gen-
eration of arbitrary single-mode quantum states of light by
repeated photon subtractions, Phys. Rev. A 72, 033822 (2005).

[23] B. L. Schumaker, Quantum mechanical pure states with Gaus-
sian wave functions, Phys. Rep. 135, 317 (1986).

[24] R. Simon, N. Mukunda, and B. Dutta, Quantum-noise matrix
for multimode systems: U(n) invariance, squeezing, and normal
forms, Phys. Rev. A 49, 1567 (1994).

[25] W. P. Schleich, Quantum Optics in Phase Space (John Wiley &
Sons, New York, 2011).

[26] S. Barnett and P. M. Radmore, Methods in Theoretical Quantum
Optics (Oxford University Press, Oxford, 2002), Vol. 15.

[27] E. R. Caianiello, Combinatorics and Renormalization in
Quantum Field Theory (W. A. Benjamin, Reading, MA,
1973).

[28] A. Björklund, B. Gupt, and N. Quesada, A faster Hafnian
formula for complex matrices and its benchmarking on a su-
percomputer, ACM J. Exp. Algorithmics 24, 1 (2019).

[29] N. Quesada, Franck-Condon factors by counting perfect match-
ings of graphs with loops, J. Chem. Phys. 150, 164113 (2019).

[30] A. I. Barvinok, Two algorithmic results for the traveling sales-
man problem, Math. Oper. Res. 21, 65 (1996).

[31] A. Barvinok, Combinatorics and Complexity of Partition Func-
tions (Springer, Berlin, 2016), Vol. 9.
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