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Quantum entanglement estimation via symmetric-measurement-based positive maps
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We provide a class of positive and trace-preserving maps based on symmetric measurements. From these
positive maps we present separability criteria, entanglement witnesses, and the lower bounds of concurrence.
We show by detailed examples that our separability criteria, entanglement witnesses, and lower bounds can
detect and estimate the quantum entanglement better than existing related results.
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I. INTRODUCTION

Quantum entanglement is the key resource in quantum
information processing and plays an important role in quan-
tum communication, quantum computing, and other modern
quantum technologies [1]. Therefore, it is of significance to
distinguish the entangled states from the separable ones and
estimate the degree of entanglement for the entangled states.
However, generally the separability problem and the esti-
mation of entanglement are very difficult and even NP-hard
[2]. For low-dimensional systems such as C2 ⊗ C2 (qubit-
qubit) and C2 ⊗ C3 (qubit-qutrit) systems, the celebrated
positive partial transposition criterion is both necessary and
sufficient for separability [3,4]. For higher-dimensional sys-
tems, more sophisticated methods are needed to detect the
entanglement.

One separability criterion to detect entanglement is given
by positive maps. A bipartite state ρ is separable if and
only if (I ⊗ �)(ρ) � 0 for any positive map � [5], where
I is the identity operator. More specifically, ρ is entangled
if (I ⊗ �)(ρ) has negative eigenvalues for some positive
map �.

Entanglement can be also detected by entanglement
witnesses. A Hermitian operator W is called an entangle-
ment witness if Tr(W ρsep) � 0 for all separable states ρsep

and Tr(W ρ) < 0 for some entangled states ρ [6,7]. By
Choi-Jamiołkowski isomorphism, an entanglement witness is
related to a positive but not completely positive map �. One
kind of entanglement witnesses is the decomposable one,
for which an entanglement witness can be written as W =
A + B� , where A, B � 0 and B� = (I ⊗ T )B, with T denot-
ing the transpose. However, the decomposable witness cannot
detect the positive partial transpose (PPT) entangled states that
are positive under a partial transpose. The indecomposable
witnesses can detect the PPT states [5,8–11], which can be
constructed by using the realignment separability criterion
[12–14] and covariance matrix criterion [15–17]. In [18] the
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authors constructed a class of indecomposable witnesses by
using mutually unbiased bases. This method was extended to
the one using mutually unbiased measurements (MUMs) and
symmetric informationally complete (SIC) positive-operator-
valued measures (POVMs). New entanglement witnesses have
been also obtained [19–21]. Recently, a new kind of mea-
surement, called symmetric measurement, was proposed in
[22]. Based on the symmetric measurements, a class of
positive maps and entanglement witnesses was constructed
in [23].

To quantify the entanglement, many measures have been
presented such as the entanglement of formation (EOF)
[24,25] and concurrence [26–28]. However, it is a challenge
to evaluate the entanglement measures for general quantum
states. Instead of analytic formulas, progress has been made
toward the lower bounds of EOF and concurrence. Based
on a positive map, a new lower bound of concurrence for
arbitrary-dimensional bipartite systems was derived in [29],
which detects the entanglement that is not detected by the
previous lower bounds [30,31].

In this paper we first present a family of positive and trace-
preserving maps based on symmetric measurements. Then we
present separability criteria and show that these separability
criteria detect better entanglement of quantum states with an
exact example. We then construct a series of entanglement
witnesses which includes some existing ones as special cases.
These entanglement witnesses are shown to detect better en-
tanglement including bound entanglements. Finally, we give a
family of lower bounds of concurrence and demonstrate that
the bounds better estimate the quantum entanglement than the
existing ones.

II. POSITIVE MAPS AND SEPARABILITY CRITERIA

A POVM is given by a set of positive operators {Eα | Eα �
0,

∑
α Eα = I}. For a given state ρ, the probability of the

measurement outcome with respect to Eα is pα = Tr(Eαρ).
Recall that a new POVM called symmetric measurement
was provided in [22]. A set of N d-dimensional POVMs
{Eα,k| Eα,k � 0,

∑M
k=1 Eα,k = Id} (α = 1, . . . , N) is called an
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(N, M ) POVM, which satisfies the symmetry properties

Tr(Eα,k ) = d

M
,

Tr
(
E2

α,k

) = x,

Tr(Eα,kEα,�) = d − Mx

M(M − 1)
, � �= k

Tr(Eα,kEβ,�) = d

M2
, β �= α, (1)

where

d

M2
< x � min

{
d2

M2
,

d

M

}
. (2)

For any fixed dimension d < ∞, there are at least
four different types of informationally complete (N, M )
POVMs: (i) M = d2 and N = 1 (a general SIC POVM)
[32], (ii) M = d and N = d + 1 (a MUM) [33], (iii) M =
2 and N = d2 − 1, and (iv) M = d + 2 and N = d − 1.
A general construction of informationally complete (N, M )
POVMs is presented by using orthonormal Hermitian operator
bases {G0 = Id/

√
d, Gα,k ; α = 1, . . . , N ; k = 1, . . . , M − 1}

with Tr(Gα,k ) = 0,

Eα,k = 1

M
Id + tHα,k, (3)

where

Hα,k =
{

Gα − √
M(

√
M + 1)Gα,k, k = 1, . . . , M − 1

(
√

M + 1)Gα, k = M,

(4)
and Gα = ∑M−1

k=1 Gα,k . The parameters t and x satisfy the
relation

x = d

M2
+ t2(M − 1)(

√
M + 1)2. (5)

The optimal value xopt, which is the greatest x such that
Eα,k � 0, depends on the operator bases. There always exist
informationally complete (N, M ) POVMs for any integer d .

Reference [23] presented the class of positive maps

�(X ) = 1

b

(
a�0(X ) +

N∑
α=L+1

�α (X ) −
L∑

α=1

�α (X )

)
, (6)

where a = b − N + 2L, b = (d−1)M(x−y)
d , �0(X ) = Tr(X )

d Id ,
and

�α (X ) = M

d

M∑
k,l=1

O(α)
k�

Eα,kTr(XEα,l ) (7)

are N trace-preserving maps given by (N, M ) POVMs {Eα,k}
with {O(α)|O(α) = (O(α)

k�
), α = 1, . . . , N} a set of M × M or-

thogonal rotation operators that preserve the vector n∗ =
(1, . . . , 1)/

√
d . Using the maps (6), we have the following

theorem.
Theorem 1. A bipartite state ρ is entangled if (I ⊗

�z )(ρ) � 0, where

�z(X ) = (1 − z)�0(X ) + z�(X ) ∀ X ∈ Md (8)

are positive and trace-preserving linear maps with z ∈ [−1, 1].

Proof. In order to prove the positivity of �z, we only need
to prove [34]

Tr{[�z(P)]2} � 1

d − 1
(9)

for every rank-1 projector P = |ψ〉〈ψ |. By straightforward
calculation we have

Tr{[�z(P)]2} = Tr{(1 − z)2�0(P)2 + z2�(P)2

+ z(1 − z)[�0(P)�(P) + �(P)�0(P)]}

= (1 − z)2

d
[Tr(P)]2 + 2z

d
[Tr(P)]2(1 − z)

+ z2Tr[�(P)2]

� (1 − z)2

d
+ 2z(1 − z)

d
+ z2

d − 1

= (z2 − 1) + d

d (d − 1)
� 1

d − 1
, (10)

which completes the proof of positivity. The proof of trace
preservation is obvious. The theorem follows from the sepa-
rability criterion based on positive maps. �

The map (8) is a linear but not convex combination of
the map � and the completely depolarizing channel �0 for
z ∈ [−1, 0), namely, it is truly a new positive but not com-
pletely positive map. To illustrate the theorem, let us consider
the state [35]

ρ = 1
4 diag(q1, q4, q3, q2, q2, q1, q4, q3, q3, q2,

q1, q4, q4, q3, q2, q1) + q1

4

i �= j∑
i, j=1,6,11,16

Fi, j, (11)

where Fi, j is a matrix with the (i, j) entry 1 and the rest of the
entries 0, qm � 0, and

∑
qm = 1, with m = 1, 2, 3, 4. We set

d = 4, N = L = 5, M = 4, and O(α) = I4 for any α ∈ [N].
The (5,4) POVMs are constructed from the Gell-Mann ma-
trices (see Appendix A). From Theorem 1 we obtain that ρ

is entangled for 0.25 < q1 < 1 by straightforward calculation
(see Appendix C). The criterion given in [29] detects the
entanglement when q1 > q4. Our criterion shows that when
0.25 < q1 < 1, ρ is entangled even if q1 < q4.

III. CONSTRUCTION OF ENTANGLEMENT WITNESSES
FROM POSITIVE MAPS

By entanglement witnesses we can detect the entanglement
of unknown quantum states experimentally. An entanglement
witness W can be obtained based on the positive but not
completely positive map � through Choi-Jamiołkowski iso-
morphism [36]

W =
d∑

k,�=1

|k〉〈�| ⊗ �(|k〉〈�|), (12)

where {|k〉}d
k=1 is an orthonormal basis in Cd . Therefore,

by using the positive maps in Theorem 1, we get the
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entanglement witnesses

W = 1

b

⎛⎝aw

d
Id2 +

N∑
α=L+1

Kα −
L∑

α=1

Kα

⎞⎠, (13)

where

Kα = Mz

d

M∑
k,�=1

O(α)
k�

Ēα,� ⊗ Eα,k, (14)

with Ēα,� the conjugation of Eα,l . In particular, when z = 1
our witnesses include the one given in [23] as a special case.

As the informationally complete (N, M ) POVMs can be
constructed by using an orthogonal basis {Id/

√
d, Gα,k} of

traceless Hermitian operators Gα,k for any dimension d , we
have the entanglement witnesses

W̃ = b

t2
W = d − 1

d2
M2(

√
M + 1)2Id2 +

N∑
α=L+1

Jα −
L∑

α=1

Jα,

(15)
where

Jα = Mz

d

M∑
k,�=1

O(α)
kl H̄α,� ⊗ Hα,k, (16)

with H̄α,� the conjugation of Hα,l . Note that these witnesses
do not depend on the parameter x that characterizes the

symmetric measurements, but W̃ are related to the number M
of operators in a single POVM. The larger the value of M is,
the larger the L can be.

Note that Jα in (16) can be directly represented by
the operator basis {G0 = Id/

√
d, Gα,k ; α = 1, . . . , N ; k =

1, . . . , M − 1}, since Hα,k are directly given by Gα,k . By using
(4) we further obtain

Jα = Mz

d

M−1∑
k,�=1

Q(α)
kl Ḡα,� ⊗ Gα,k,

where

Q(α)
k�

= M
(
O(α)

MM − 1
) + M(

√
M + 1)2O(α)

k�

− M(
√

M + 1)
(
O(α)

M� + O(α)
kM

)
. (17)

Since

Q(α)TQ(α) = Q(α)Q(α)T = M2(
√

M + 1)4IM−1,

Q(α) = (Q(α)
k�

) (α = 1, . . . , N ) are M × M rescaled orthogo-
nal matrices. When O(α) = IM , Eq. (17) can be rewritten as

Q(α)
k�

= M(
√

M + 1)2δk�. (18)

Next we illustrate that W̃ (15) are related to a well-known
class of entanglement witnesses. Suppose the (N, M ) POVM
is informationally complete and L = N . The corresponding
witnesses is

W̃ = M2

d
(
√

M + 1)2

(
Id2 − G0 ⊗ G0 − d

M2(
√

M + 1)2

N∑
α=1

Jα

)
, (19)

where G0 = Id/
√

d . By a simple relabeling of the indices (α, k) �→ μ, we have

W̃ ′ = dW̃

M2(
√

M + 1)2
= Id2 −

d2−1∑
μ,ν=0

QμνGT
μ ⊗ Gν, (20)

where Qμν are the entries of the block-diagonal orthogonal matrix

Q = 1

M(
√

M + 1)2

⎡⎢⎢⎢⎢⎢⎣
M(

√
M + 1)2

zQ(1)T

zQ(2)T

. . .

zQ(N )T

⎤⎥⎥⎥⎥⎥⎦. (21)

Therefore, the entanglement witnesses W̃ constructed from
symmetric measurements belong to a larger category of wit-
nesses

W ′ = Id2 −
d2−1∑
μ,ν=0

QμνGT
μ ⊗ Gν, (22)

which are related to the computable cross norm or realignment
criterion [37]. The Gμ (22) are the elements of an arbitrary
orthonormal Hermitian basis and Q = Qμν is an arbitrary
d2 × d2 orthogonal matrix with QT Q = Id2 (in fact, QT Q �
Id2 is sufficient).

For any informationally complete (N, M ) POVM, assume
that O(α) = IM and L = N . According to (18) we have Q =
diag(1, z, z, . . . , z). The associated entanglement witnesses
are written

W̃ ′ = Id2 − G0 ⊗ G0 − z
d2−1∑
μ=1

GT
μ ⊗ Gμ. (23)

Therefore, it is possible to use different (N, M ) POVMs to
generate the same witnesses W̃ ′, provided the same Hermitian
orthonormal basis is used.
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If we let M = 2, then the rotation matrices can only be

O(α) = I2 or O(α) = σ1 = [
0 1
1 0]. In this case, all witnesses

constructed from (N, 2) POVMs have the form

W̃ ′ = Id2 − G0 ⊗ G0 + z

(
N∑

α=L+1

GT
α ⊗ Gα

−
L∑

α=1

GT
α ⊗ Gα

)
, (24)

where N � d2 − 1.
To show the advantages of our entanglement witnesses in

detecting quantum entanglement, we compare our entangle-
ment witnesses with the ones presented in [23] using three
examples, which show that our entanglement witnesses can
detect more entangled quantum states (see Appendix D).

IV. LOWER BOUND OF CONCURRENCE

Let H1 and H2 be d-dimensional vector spaces. A bipartite
quantum pure state |ψ〉 in H1 ⊗ H2 has a Schmidt form

|ψ〉 =
∑

i

αi

∣∣e1
i

〉 ⊗ ∣∣e2
i

〉
, (25)

where |e1
i 〉 and |e2

i 〉 are the orthonormal bases in H1 and H2,
respectively, and αi are the Schmidt coefficients satisfying∑

i α
2
i = 1. The concurrence C(|ψ〉) of the state |ψ〉 is given

by

C(|ψ〉) =
√

2
(
1 − Trρ2

1

) = 2
√∑

i< j

α2
i α

2
j , (26)

where ρ1 = Tr2(|ψ〉〈ψ |) is the reduced state obtained by trac-
ing over the second space [27].

The concurrence is extended to mixed states ρ by the
convex roof,

C(ρ) = min
∑

i

piC(|ψi〉), (27)

where the minimum is taken over all possible pure state
decompositions of ρ = ∑

i pi|ψi〉〈ψi|, where pi � 0 and∑
i pi = 1. Generally, it is extremely difficult to calculate

C(ρ). Instead, one considers the lower bound of C(ρ).
In [31] the authors presented a lower bound of C(ρ),

C(ρ) �
√

2

d (d − 1)
f (ρ), (28)

where f (ρ) is a real-valued and convex function satisfying

f (|ψ〉〈ψ |) � 2
∑
i< j

αiα j (29)

for all pure states |ψ〉 given by (25). A lower bound (28) of
concurrence can be obtained from a function f satisfying (29)
for arbitrary pure states. Nevertheless, it is still a problem to
find such a function f . In fact, there are positive maps which
can be used as separability criteria, but there are difficulties
using them to obtain lower bounds of concurrence by finding
such functions f . Based on the positive map defined in (8), we
construct below new functions f to obtain new lower bounds
of concurrence C(ρ). Setting M = d and L = N = d + 1 and
using the (N, M ) POVM constructed from the Gell-Mann
matrices [33] in �, we have the following theorem (the proof
is given in Appendix E).

Theorem 2. For any bipartite quantum state ρ ∈ H1 ⊗ H2,
the concurrence C(ρ) satisfies

C(ρ) �
√

2

d (d − 1)
[‖(Id ⊗ �z )ρ‖ − 1], (30)

where Id is the identity operator, �z is given in (8), and ‖ · ‖
stands for the trace norm.

It has been always a challenging problem to find new
separability criteria which detect better entanglement and new
lower bounds of entanglement which are larger than the exist-
ing ones, at least for some quantum states. We have presented
such separability criteria and lower bounds. We illustrate our
results below with a detailed example.

Example 1. Let us consider the state (11). From (30) we
have

C(ρ) �
√

1
6 [‖(I4 ⊗ �z )(ρ)‖ − 1] = 1

2
√

6

(
2
3 q1z − 1

24 z − 1
8 + ∣∣ 2

3 q1z − 1
24 z − 1

8

∣∣). (31)

In [29] a lower bound of the concurrence was given by

C(ρ) �
√

1
6 [‖(I4 ⊗ �′)(ρ)‖ − 3] = 1

4
√

6
(q1 − q4 + |q1 − q4|). (32)

Figure 1 shows the lower bounds of concurrence given in (31)
for the state (11) versus parameters z and q1. We see that the
lower bounds of concurrence are greater than 0 when 0.2 <

z � 1, namely, the entanglement of states (11) are detected in
this case. When z = 1 and 0.25 < q1 < 1, the lower bound of
concurrence is greater than 0. When z < 1, from Fig. 1 we see
the detected entanglement range of ρ and the lower bound of
concurrence decreases with z. When z � 0.2, it can be seen

from Fig. 1 that the lower bounds of concurrence become 0.
The lower bound of (31) reaches the maximum at z = 1.

Our lower bounds of concurrence in (31) are better than the
lower bounds of concurrence in (32) given in [29] at least for
some states. Let us take z = 1 and q4 = − 1

3 q1 + 1
2 . Then (31)

can be written as C(ρ) � 1
2
√

6
( 2

3 q1 − 1
6 + | 2

3 q1 − 1
6 |), while

(32) can be written as C(ρ) � 1
4
√

6
( 4

3 q1 − 1
2 + | 4

3 q1 − 1
2 |).
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FIG. 1. Lower bounds with respect to the parameters z and q1.

From Fig. 2 it can be seen that our bound of concurrence (31)
detects the entanglement for q1 > 0.25, while the bound of
concurrence in (32) detects entanglement for q1 > 0.375.

V. CONCLUSION

Based on symmetric measurements, we have presented
a family of positive and trace-preserving maps. From these
maps we have obtained separability criteria which better
detect the entanglement of quantum states. We have also
constructed a series of entanglement witnesses which in-
cludes some existing ones as special cases and detects even
the entanglement of bound entangled states. We have de-
rived a family of lower bounds of concurrence which are
tighter than the related existing ones. Since our approach is
based on the symmetric measurements, the entanglement of

FIG. 2. Lower bound given in (31) (solid line) and in (32)
(dashed line) as a function of q1.

any known quantum states can be experimentally estimated.
Moreover, our results may be applied also to the investigation
on multipartite entanglement and highlight the detection of
entanglement in optimal entanglement manipulations [38].
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APPENDIX A: GELL-MANN MATRICES

For d = 4, the Hermitian orthonormal basis is given by the Gell-Mann matrices

g01 = 1√
2

⎛⎜⎜⎝
0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, g02 = 1√
2

⎛⎜⎜⎝
0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎞⎟⎟⎠, g03 = 1√
2

⎛⎜⎜⎝
0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

⎞⎟⎟⎠,

g10 = 1√
2

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, g12 = 1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

⎞⎟⎟⎠, g13 = 1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

⎞⎟⎟⎠,

g20 = 1√
2

⎛⎜⎜⎝
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞⎟⎟⎠, g21 = 1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠, g23 = 1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

⎞⎟⎟⎠,

g30 = 1√
2

⎛⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎠, g31 = 1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠, g32 = 1√
2

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠,
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g11 = 1√
2

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, g22 = 1√
6

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

⎞⎟⎟⎠, g33 = 1

2
√

3

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞⎟⎟⎠,

and G0 = I4/
√

4. For the entanglement estimation with respect to the state (11), we set the indices of Gα,k as

G1,1 = g01, G1,2 = g02, G1,3 = g03,

G2,1 = g10, G2,2 = g12, G2,3 = g13,

G3,1 = g20, G3,2 = g21, G3,3 = g23,

G4,1 = g30, G4,2 = g31, G4,3 = g32,

G5,1 = g11, G5,2 = g22, G5,3 = g33. (A1)

For d = 3, the Hermitian orthonormal basis is given by the Gell-Mann matrices

g01 = 1√
2

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠, g10 = 1√
2

⎛⎝0 −i 0
i 0 0
0 0 0

⎞⎠,

g02 = 1√
2

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠, g20 = 1√
2

⎛⎝0 0 −i
0 0 0
i 0 0

⎞⎠,

g12 = 1√
2

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠, g21 = 1√
2

⎛⎝0 0 0
0 0 −i
0 i 0

⎞⎠,

g11 = 1√
2

⎛⎝1 0 0
0 −1 0
0 0 0

⎞⎠, g22 = 1√
6

⎛⎝1 0 0
0 1 0
0 0 −2

⎞⎠,

and G0 = I3/
√

3. For the entanglement witnesses in Example 2, we set the indices of Gα,k as

G1,1 = g01, G1,2 = g10, G2,1 = g02, G2,2 = g20,

G3,1 = g12, G3,2 = g21, G4,1 = g11, G4,2 = g22. (A2)

In Example 4 we set

G1,1 = g01, G1,2 = g02, G1,3 = g10, G1,4 = g20,

G2,1 = g12, G2,2 = g21, G2,3 = g11, G2,4 = g22. (A3)

APPENDIX B: HERMITIAN ORTHONORMAL BASIS FROM MUTUALLY UNBIASED BASES

Using the complete set of four mutually unbiased bases in d = 3 and the corresponding projectors

E1,1 =
⎛⎝1 0 0

0 0 0
0 0 0

⎞⎠,

E1,2 =
⎛⎝0 0 0

0 1 0
0 0 0

⎞⎠,

E1,3 =
⎛⎝0 0 0

0 0 0
0 0 1

⎞⎠,

E2,1 = 1
3

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠,

E2,2 = 1
3

⎛⎝ 1 ω2 ω

ω 1 ω2

ω2 ω 1

⎞⎠,

E2,3 = 1
3

⎛⎝ 1 ω ω2

ω2 1 ω

ω ω2 1

⎞⎠,

E3,1 = 1
3

⎛⎝1 ω2 ω2

ω 1 1
ω 1 1

⎞⎠,

E3,2 = 1
3

⎛⎝ 1 ω 1
ω2 1 ω2

1 ω 1

⎞⎠,

E3,3 = 1
3

⎛⎝ 1 1 ω

1 1 ω

ω2 ω2 1

⎞⎠,

E4,1 = 1
3

⎛⎝ 1 ω ω

ω2 1 1
ω2 1 1

⎞⎠,

E4,2 = 1
3

⎛⎝1 ω2 1
ω 1 ω

1 ω2 1

⎞⎠,

E4,3 = 1
3

⎛⎝1 1 ω2

1 1 ω2

ω ω 1

⎞⎠,

(B1)

where ω = exp(2π i/3), we find the corresponding Hermitian orthonormal basis

G1,1 = 1√
3(1 + √

3)

⎛⎝−2 − √
3 0 0

0 1 0
0 0 1 + √

3

⎞⎠, G1,2 = 1√
3(1 + √

3)

⎛⎝1 0 0
0 −2 − √

3 0
0 0 1 + √

3

⎞⎠,
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G2,1 = 1

2
√

3(1 + √
3)

⎛⎝ 0 −v∗ −v

−v 0 −v∗
−v∗ −v 0

⎞⎠, G2,2 = 1√
3(1 + √

3)

⎛⎝ 0 iv∗ −iv
−iv 0 iv∗
iv∗ −iv 0

⎞⎠,

G3,1 = 1

2
√

3(1 + √
3)

⎛⎝ 0 u∗ iv∗
u 0 −v∗

−iv −v 0

⎞⎠, G3,2 = 1√
3(1 + √

3)

⎛⎝ 0 u −v∗
u∗ 0 iv∗
−v −iv 0

⎞⎠,

G4,1 = 1

2
√

3(1 + √
3)

⎛⎝ 0 u −iv
u∗ 0 −v

iv∗ −v∗ 0

⎞⎠, G4,2 = 1√
3(1 + √

3)

⎛⎝ 0 u∗ −v

u 0 −iv
−v∗ iv∗ 0

⎞⎠,

and G0 = I/
√

3, where u = (1 − i)(1 + √
3) and v = 2 + √

3 + i. The entanglement witnesses in Example 3 are
given by (24) with Gμ grouped in the following way: {G1, G2, G3} = {G1,2, G2,1, G2,2} and {G4, G5, G6, G7, G8}
= {G1,1, G3,1, G3,2, G4,1, G4,2}.

APPENDIX C: CALCULATION PROCESS OF SEC. II

By direct computation,

(I4 ⊗ �z )(ρ) = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A · · · · − 1
6 q1z · · · · − 1

6 q1z · · · · − 1
6 q1z

· B · · · · · · · · · · · · · ·
· · C · · · · · · · · · · · · ·
· · · D · · · · · · · · · · · ·
· · · · D · · · · · · · · · · ·

− 1
6 q1z · · · · A · · · · − 1

6 q1z · · · · − 1
6 q1z

· · · · · · B · · · · · · · · ·
· · · · · · · C · · · · · · · ·
· · · · · · · · C · · · · · · ·
· · · · · · · · · D · · · · · ·

− 1
6 q1z · · · · − 1

6 q1z · · · · A · · · · − 1
6 q1z

· · · · · · · · · · · B · · · ·
· · · · · · · · · · · · B · · ·
· · · · · · · · · · · · · C · ·
· · · · · · · · · · · · · · D ·

− 1
6 q1z · · · · − 1

6 q1z · · · · − 1
6 q1z · · · · A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

A = −z
(

3
8 q1 + 5

24 q4 + 5
24 q3 + 5

24 q2 + 1
) + 1

8 + 5
4 z,

B = −z
(

5
24 q1 + 3

8 q4 + 5
24 q3 + 5

24 q2 + 1
) + 1

8 + 5
4 z,

C = −z
(

5
24 q1 + 5

24 q4 + 3
8 q3 + 5

24 q2 + 1
) + 1

8 + 5
4 z,

D = −z
(

5
24 q1 + 5

24 q4 + 5
24 q3 + 3

8 q2 + 1
) + 1

8 + 5
4 z.

We have the following set of eigenvalues of (I4 ⊗ �z )(ρ): { 1
2 (A − 1

2 q1z), 1
2 (A + 1

6 q1z), 1
2 (A + 1

6 q1z), 1
2 (A +

1
6 q1z), 1

2 B, 1
2 B, 1

2 B, 1
2 B, 1

2C, 1
2C, 1

2C, 1
2C, 1

2 D, 1
2 D, 1

2 D, 1
2 D}. When 0 < z � 1, the negative minimum eigenvalue 1

2 (A − 1
2 q1z) <

0 implies that z − 16q1z + 3 < 0. We get q1 > 1
16 + 3

16z . From 0 � q1 � 1 we get z ∈ [ 1
5 , 1]. Therefore, our criterion detects

the entanglement of ρ for 0.25 < q1 < 1.

APPENDIX D: EXAMPLES OF ENTANGLEMENT WITNESSES

Example 2. Let us take N = 4 and M = 3 and fix the operator basis Gα,k to be the Gell-Mann matrices (see Appendix A). For
L = 1 we take

O(α) =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠ for any α ∈ [N]. (D1)
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The corresponding entanglement witnesses have the form

W̃1 = (
√

3 + 1)2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2z + 2 · · · −3z · · · 3z
· −z + 2 · · · · · · ·
· · −z + 2 · · · · · ·
· · · −z + 2 · · · · ·

−3z · · · 2z + 2 · · · 3z
· · · · · −z + 2 · · ·
· · · · · · −z + 2 · ·
· · · · · · · −z + 2 ·

3z · · · 3z · · · 2z + 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D2)

When z = −1, it is verified that the entanglement of the following state can be detected:

ρ1 = 1
27

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 · · · 6 · · · 6
· 1 · · · · · · ·
· · 1 · · · · · ·
· · · 1 · · · · ·
6 · · · 7 · · · 6
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · 1 ·
6 · · · 6 · · · 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D3)

When z = 1, it is the witness constructed in [23] that cannot detect the entanglement of the state ρ1.
Example 3. Let M = 2. Instead of the Gell-Mann matrices, we take the (N, 2) POVM constructed from the orthonormal

Hermitian basis presented in Appendix B. For N = 7 and L = 4, the corresponding witnesses W̃2 are given by

W̃2 = 1
6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4(1 − z) · · 4 z Az 4 A∗z z
· 2(2 + z) · Bz 4 Cz Ez 4 Fz
· · 2(2 + z) C∗z Dz 4 Gz −7z 4
4 B∗z Cz 2(2 + z) · · 4 C∗z Hz
z 4 D∗z · 4(1 − z) · Dz 4 zi

A∗z C∗z 4 · · 2(2 + z) Mz Nz 4
4 E∗z G∗z 4 D∗z M∗z 2(2 + z) · ·

Az 4 −7z Cz 4 N∗z · 2(2 + z) ·
z F ∗z 4 H∗z −zi 4 · · 4(1 − z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (D4)

where

A = 1
2 (

√
3 − i), B = 1

2 (3
√

3 − 5i), C = −(8 − 2
√

3i),

D = 1
2 (5

√
3 − i), E = −(8 + 2

√
3)i, F = − 1

2 (5
√

3 + 3i),

G = 1
2 (7

√
3 + 3i), H = 1

2 (3
√

3 + 11i), M = −(7 −
√

3i),

N = − 1
2 (

√
3 + 3i).

When z = −1, it can detect the entanglement of the state

ρ2 = 1
75

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7 · · · 2 · · · 2
· 9 · · · −4 −4 · ·
· · 9 −4 · · · −4 ·
· · −4 9 · · · −4 ·
2 · · · 7 · · · 2
· −4 · · · 9 −4 · ·
· −4 · · · −4 9 · ·
· · −4 −4 · · · 9 ·
2 · · · 2 · · · 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D5)

For z = 1, these witnesses reduce to the one given in [23], which cannot detect the entanglement of the state ρ2.
It is well known that indecomposable witness is a very important kind of entanglement witnesses, but it is difficult to construct.

A witness W is decomposable if it can be written as W = A + B� , with A and B being positive operators and � = I ⊗ T denoting
a partial transpose. Otherwise the W is indecomposable. Next we give an example of indecomposable witnesses obtained from
symmetric measurements.
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Example 4. Consider the (1,5) POVM constructed from the orthonormal Hermitian operator basis of the Gell-Mann matrices.
Let L = 1 and

O(1) =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠. (D6)

From (20) we get the entanglement witnesses

W̃ ′
3 = 1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 · · · B∗z C∗z · D∗z B∗z
· 4 · A∗z · · −30zi · ·
· · 4 30zi · · −A∗z · ·
· Az −30zi 4 · · · · ·

Bz · · · 4 · · · ·
Cz · · · · 4 · · ·
· 30zi −A∗z · · · 4 · ·

Dz · · · · · · 4 ·
Bz · · · · · · · 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (D7)

where

A = 15(1 − i)(2 − i +
√

5),

B = 15(1 − i)(2 + i +
√

5),

C = −30
√

5(2 +
√

5),

D = 30(1 − 2i)(2 +
√

5).

Consider the state

ρ3 = 1
81

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 · · · · −7 · · ·
· 9 · 4 − i · · · · ·
· · 9 · · · −4 − i · ·
· 4 + i · 9 · · · · ·
· · · · 9 · · · ·

−7 · · · · 9 · · ·
· · −4 + i · · · 9 · ·
· · · · · · · 9 ·
· · · · · · · · 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D8)

It is directly verified that ρ3 is a PPT state. Take z = −1. From (D7) we have that the state ρ3 is entanglement. Hence the
entanglement witness (D7) is an indecomposable witness when z = −1. For z = 1, these witnesses reduce to the one given in
[23] and we have Tr(W̃ ′

3ρ2) � 0, i.e., it cannot detect the entanglement of ρ3.
From the above examples, we see that the entanglement witnesses we presented cover the ones in [23] and can detect more

entangled states including bound entangled ones.

APPENDIX E: PROOF OF THEOREM 2

Let f (|ψ〉〈ψ |) = ‖(Id ⊗ �z )|ψ〉〈ψ |‖ − 1. Obviously
f (|ψ〉〈ψ |) is convex as the trace norm is convex. What we
need to prove is that for any pure state in the Schmidt form
(25), the inequality (29) holds.

Since the trace norm does change under local coordinate
transformation, we take |ψ〉 = (α1, 0, . . . , 0, 0, α2, . . . , 0, 0,

0, α3, . . . , 0, . . . , 0, . . . , 0, αd )T , where T denotes transpose
and the Schmidt coefficients satisfy 0 � α1, α2, α3, . . . , αd �
1,

∑d
i=1 α2

i = 1. By direct computation, we have

(Id ⊗ �z )(|ψ〉〈ψ |) = 1

d (d − 1)

⎡⎢⎢⎢⎣
(d − 1 + z)α2

1 −dzα1α2 · · · −dzα1αd

−dzα1α2 (d − 1 + z)α2
2 · · · −dzα2αd

...
...

. . .
...

−dzα1αd −dzα2αd · · · (d − 1 + z)α2
d

⎤⎥⎥⎥⎦
⊕ (d − 1 + z)α2

1Id−1 ⊕ · · · ⊕ (d − 1 + z)α2
d Id−1.

052426-9



LI, YAO, FEI, FAN, AND MA PHYSICAL REVIEW A 109, 052426 (2024)

The matrix (Id ⊗ �z )(|ψ〉〈ψ |) has d singular values with the multiplicity d − 1, 1
d (d−1) (d − 1 + z)α2

1,
1

d (d−1) (d − 1 +
z)α2

2, . . . ,
1

d (d−1) (d − 1 + z)α2
d , and the remaining d values are the singular values of the matrix P,

P = 1

d (d − 1)

⎡⎢⎢⎢⎣
(d − 1)(1 − z)α2

1 −dzα1α2 · · · −dzα1αd

−dzα1α2 (d − 1)(1 − z)α2
2 · · · −dzα2αd

...
...

. . .
...

−dzα1αd −dzα2αd · · · (d − 1)(1 − z)α2
d

⎤⎥⎥⎥⎦

= dz

d (d − 1)

⎡⎢⎢⎢⎣
tα2

1 −α1α2 · · · −α1αd

−α1α2 tα2
2 · · · −α2αd

...
...

. . .
...

−α1αd −α2αd · · · tα2
d

⎤⎥⎥⎥⎦ � dz

d (d − 1)
H,

where t = (d−1)(1−z)
dz . As P is Hermitian and real, its singular values are simply given by the square roots of the eigenvalues of

P2. In fact, we need to consider only the absolute values of the eigenvalues of P. The eigenpolynomial equation of H is

h(x) = |xId − H | = xd − txd−1 + (t − 1)(t + 1)

⎛⎝∑
i< j

α2
i α

2
j

⎞⎠xd−2 − (t − 2)(t + 1)2

⎛⎝ ∑
i< j<k

α2
i α

2
j α

2
k

⎞⎠xd−3

+ (t − 3)(t + 1)3

⎛⎝ ∑
i1<i2<i3<i4

α2
i1α

2
i2α

2
i3α

2
i4

⎞⎠xd−4 + · · ·

+ (−1)d−2(t − d + 3)(t + 1)d−3

⎛⎝ ∑
i1<i2<···<id−2

α2
i1α

2
i2 · · · α2

id−2

⎞⎠x2

+ (−1)d−1(t − d + 2)(t + 1)d−2

⎛⎝ ∑
i1<i2<···<id−1

α2
i1α

2
i2 · · · α2

id−1

⎞⎠x

+ (−1)d (t − d + 1)(t + 1)d−1(α2
1α

2
2 · · ·α2

d

) = 0. (E1)

Let x1, x2, x3, . . . , xd denote the d roots of (E1). By using the relations between the roots and the coefficients of the polynomial
equation, we have

d∑
i=1

xi = t,
d∏

i=1

xi = (t − d + 1)(t + 1)d−1
(
α2

1α
2
2 · · ·α2

d

)
. (E2)

From (E1) and that
∑d

i=1 α2
i = 1, the inequality (29) that needs to be proved now has the form

f (|ψ〉〈ψ |) = ‖(Id ⊗ �z )|ψ〉〈ψ |‖ − 1 = dz

d (d − 1)

d∑
i=1

|xi| + d − 1

d (d − 1)
(d − 1 + z) − 1 � 2

⎛⎝∑
i< j

αiα j

⎞⎠. (E3)

Next we consider the eigenpolynomial equation (E1). We set β = ∏d
i=1 α2

i . Since t = (d−1)(1−z)
dz , when z ∈ (0, 1], we get

t ∈ [0,+∞), and when z ∈ (−1, 0], we have t ∈ ( − ∞,−(2 − 2
d )).

(i) When t � d − 2 the following conditions hold.
(a) If β = 0, then h(0) = 0, where 0 is an eigenvalue of H . From the derivative of h(x) with respect to x,

h′(x) = dxd−1 − t (d − 1)xd−2 + (d − 2)(t − 1)(t + 1)

⎛⎝∑
i< j

α2
i α

2
j

⎞⎠xd−3 − (d − 3)(t − 2)(t + 1)2

⎛⎝ ∑
i< j<k

α2
i α

2
j α

2
k

⎞⎠xd−4

+ · · · + 2(−1)d−2(t − d + 3)(t + 1)d−3

⎛⎝ ∑
i1<i2<···<id−2

α2
i1α

2
i2 · · · α2

id−2

⎞⎠x

+ (−1)d−1(t − d + 2)(t + 1)d−2

⎛⎝ ∑
i1<i2<···<id−1

α2
i1α

2
i2 · · ·α2

id−1

⎞⎠, (E4)
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we have that if d is even, h′(x) < 0 when x < 0. Therefore,
h(x) is a monotonically decreasing function for x < 0. Taking
into account that h(0) = 0, we see that there exist no negative
roots of (E1) in this case. When d is odd, h(x) is a monotoni-
cally increasing function for x < 0. There are also no negative
roots of (E1).

The inequality (E3) that needs to be proved now has the
form

dz

d (d − 1)

d∑
i=1

xi + d − 1

d (d − 1)
(d − 1 + z) − 1

� 2

⎛⎝∑
i< j

αiα j

⎞⎠. (E5)

According to the relations in (E2) and t = (d−1)(1−z)
dz , the left-

hand side of the inequality (E5) is zero. Hence the inequality
(E3) holds.

(b) If β �= 0, we have h(0) = (−1)d (t − d + 1)(t +
1)d−1(α2

1α
2
2 · · · α2

d ). When t ∈ (d − 1,+∞), we have h(0) >

0. If d is even, since h(x) is a monotonically decreasing func-
tion for x < 0, there exist no negative roots of (E1) in this case.
If d is odd,

∏d
i=1 xi = (t − d + 1)(t + 1)d−1(α2

1α
2
2 · · · α2

d ) >

0. Then (E1) has no negative roots or even-number negative
roots. Since h(x) is monotonically increasing when x < 0, it
has at most one negative root. Therefore, the eigenpolynomial
equation (E1) has no negative roots. This case is similar to (a)
and can be shown to satisfy (E3).

When t ∈ [d − 2, d − 1), we have
∏d

i=1 xi = (t − d +
1)(t + 1)d−1(α2

1α
2
2 · · · α2

d ) < 0. Therefore, there exists at least
one negative root, say, x1 < 0, such that h(x1) = 0.

If d is even, then h(0) < 0 and h(x) is a monotonically
decreasing function when x < 0. Thus, x1 < 0 is the only
negative root. Hence the inequality (E3) needing to be proved
becomes

dz

d (d − 1)

(
d∑

i=2

xi − x1

)
+ d − 1

d (d − 1)
(d − 1 + z) − 1

� 2

⎛⎝∑
i< j

αiα j

⎞⎠. (E6)

From (E2) we only need to prove that x1 � − d−1
z (

∑
i< j αiα j ).

From the definition of h(x) we have h( − d−1
z (

∑
i< j αiα j )) =

| − d−1
z (

∑
i< j αiα j )Id − H | = | d−1

z (
∑

i< j αiα j )Id + H | � 0,
where in the last step the property of the diagonally
dominant matrix d−1

z (
∑

i< j αiα j )Id + H is used. Since

h(x1) = 0 � h( − d−1
z (

∑
i< j αiα j )) and h(x) is a mono-

tonically decreasing function when x < 0, we have that
x1 � − d−1

z (
∑

i< j αiα j ).
If d is odd, then h(0) > 0 and h(x) is a monotonically

increasing function when x < 0. Similarly, h(x) only has
one negative root. Hence, we still only need to prove
the inequality (E6). From (E2) we need to prove that
x1 � − d−1

z (
∑

i< j αiα j ). From the definition of h(x), we

have h( − d−1
z (

∑
i< j αiα j )) = | − d−1

z (
∑

i< j αiα j )Id −
H | = −| d−1

z (
∑

i< j αiα j )Id + H | � 0, where in the last

step the property of the diagonally dominant matrix
d−1

z (
∑

i< j αiα j )Id + H is used. Since h(x1) = 0 �
h( − d−1

z (
∑

i< j αiα j )) and h(x) is a monotonically increasing

function when x < 0, we have that x1 � − d−1
z (

∑
i< j αiα j ).

(ii) When t ∈ [d − 3, d − 2) we have the following. Set

p0 = 1,

p1 = −t,

p2 = (t − 1)(t + 1)

⎛⎝∑
i< j

α2
i α

2
j

⎞⎠,

p3 = −(t − 2)(t + 1)2

⎛⎝ ∑
i< j<k

α2
i α

2
j α

2
k

⎞⎠,

p4 = (t − 3)(t + 1)3

⎛⎝ ∑
i1<i2<i3<i4

α2
i1α

2
i2α

2
i3α

2
i4

⎞⎠,

...

pd−2 = (−1)d−2(t − d + 3)(t + 1)d−3

×
⎛⎝ ∑

i1<i2<···<id−2

α2
i1α

2
i2 · · · α2

id−2

⎞⎠,

pd−1 = (−1)d−1(t − d + 2)(t + 1)d−2

×
⎛⎝ ∑

i1<i2<···<id−1

α2
i1α

2
i2 · · · α2

id−1

⎞⎠,

pd = (−1)d (t − d + 1)(t + 1)d−1
(
α2

1α
2
2 · · · α2

d

)
. (E7)

If ρ = |ψ〉〈ψ | is an entangled pure state, there are at most
d − 2 Schmidt coefficients that are zero. We can assume the
following.

(a) If β �= 0, except that pd−2 has the same sign as pd−1,
we have p0 > 0, p1 < 0, p2 > 0, p3 < 0, etc. The sign of the
polynomial coefficients {pi}d

i=0 changes V ({pi}d
i=0) = d − 1

times. By the Descartes rule of signs for the polynomial which
has only real roots [39], there are V ({pi}d

i=0) = d − 1 positive
roots of h(x). Since there is no zero root of h(x), we have
that there is only one negative root of h(x), say, x1 < 0, such
that h(x1) = 0. Therefore, we still only need to prove the
inequality x1 � − d−1

z (
∑

i< j αiα j ).

When d is even, h( − d−1
z (

∑
i< j αiα j )) = | −

d−1
z (

∑
i< j αiα j )Id − H | = | d−1

z (
∑

i< j αiα j )Id + H | � 0.

If h( − d−1
z (

∑
i< j αiα j )) = 0, x1 = − d−1

z (
∑

i< j αiα j ) since

h(x) has only one negative root. If h( − d−1
z (

∑
i< j αiα j )) > 0,

let us suppose x1 < − d−1
z (

∑
i< j αiα j ) < 0. Because h(0) < 0

and h(x) is continuous, by the zero-point theorem, there exists
another root between − d−1

z (
∑

i< j αiα j ) and 0, which is
contradicted by the fact that h(x) has only one negative root.
Hence, x1 � − d−1

z (
∑

i< j αiα j ).

When d is odd, h( − d−1
z (

∑
i< j αiα j )) = | −

d−1
z (

∑
i< j αiα j )Id − H | = −| d−1

z (
∑

i< j αiα j )Id + H | � 0.

If h( − d−1
z (

∑
i< j αiα j )) = 0, x1 = − d−1

z (
∑

i< j αiα j ) since
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h(x) has only one negative root. If h( − d−1
z (

∑
i< j αiα j )) < 0,

suppose x1 < − d−1
z (

∑
i< j αiα j ) < 0. Because h(0) > 0 and

h(x) is continuous, by the zero-point theorem there exists
another root between − d−1

z (
∑

i< j αiα j ) and 0, which is
contradicted by the fact that h(x) has only one negative root.
Hence, x1 � − d−1

z (
∑

i< j αiα j ).
(b) If β = 0, we set α1 = · · · = αK = 0 and

αK+1, . . . , αd �= 0, where 1 � K � d − 2. Then pd−K+1 =
· · · = pd = 0 and there exist K zero roots of h(x). The
sign of the polynomial coefficients V ({pi}d

i=0) changes
V ({pi}d

i=0) = d − K or d − K − 1 times. Then either there
are no negative roots or there is only one negative root of
h(x). The case that h(x) has no negative roots can be proved
as the case (i a). When h(x) has only one negative root,
say, x1 < 0, such that h(x1) = 0, we still only need to prove
x1 � − d−1

z (
∑

i< j αiα j ).

When d is even, h( − d−1
z (

∑
i< j αiα j )) = | −

d−1
z (

∑
i< j αiα j )Id − H | = | d−1

z (
∑

i< j αiα j )Id + H | � 0.

If h( − d−1
z (

∑
i< j αiα j )) = 0, x1 = − d−1

z (
∑

i< j αiα j ) since

h(x) has only one negative root. If h( − d−1
z (

∑
i< j αiα j )) > 0,

from the derivative of h(x) with respect to x,

h′(x) = d p0xd−1 + (d − 1)p1xd−2 + (d − 2)p2xd−3 + · · ·
+ kpd−kxk−1, (E8)

the sign of the polynomial coefficients of h′(x) changes d − K
or d − K − 1 times and there are K zero roots of h′(x). Hence,
h′(x) has no negative roots or only one negative root. Since
h(x1) = h(0) = 0 and h(x) is continuous, according to Rolle’s
mean value theorem, there exists a ξ ∈ (x1, 0) such that
h′(ξ ) = 0. Thus, h′(x) must have only one negative root. Since
h′(x) → −∞ when x → −∞, h′(x) < 0 when x < ξ . Ac-
cording to h( − d−1

z (
∑

i< j αiα j )) > 0, − d−1
z (

∑
i< j αiα j ) ∈

(−∞, x1) ∪ (ξ, 0). Suppose − d−1
z (

∑
i< j αiα j ) ∈ (ξ, 0) and

thus that h(ξ ) < 0 and h(x) is continuous. By the zero-point
theorem we have that there exists another negative root be-
tween ξ and − d−1

z (
∑

i< j αiα j ), which is contradicted by
the fact that h(x) has only one negative root. Therefore,
− d−1

z (
∑

i< j αiα j ) ∈ (−∞, x1), i.e., x1 � − d−1
z (

∑
i< j αiα j ).

When d is odd, h( − d−1
z (

∑
i< j αiα j )) = | −

d−1
z (

∑
i< j αiα j )Id − H | = −| d−1

z (
∑

i< j αiα j )Id + H | � 0.

If h( − d−1
z (

∑
i< j αiα j )) = 0, x1 = − d−1

z (
∑

i< j αiα j ) since

h(x) has only one negative root. If h( − d−1
z (

∑
i< j αiα j )) < 0,

from (E8) the sign of the polynomial coefficients of
h′(x) changes d − K or d − K − 1 times and there are
K zero roots of h′(x). Hence, h′(x) has no negative roots
or only one negative root. Since h(x1) = h(0) = 0 and
h(x) is continuous, according to Rolle’s mean value
theorem, we get that there exists a ξ ∈ (x1, 0) such
that h′(ξ ) = 0. Thus, h′(x) must have only one negative
root. Since h′(x) → +∞ when x → −∞, h′(x) > 0
when x < ξ . According to h(− d−1

z (
∑

i< j αiα j )) < 0,

we have − d−1
z (

∑
i< j αiα j ) ∈ (−∞, x1) ∪ (ξ, 0). Suppose

− d−1
z (

∑
i< j αiα j ) ∈ (ξ, 0). Taking into account that

h(ξ ) > 0 and h(x) is continuous, by the zero-point
theorem we get that there exists another negative root
between ξ and − d−1

z (
∑

i< j αiα j ), which is contradicted
by the fact that h(x) has only one negative root. Hence,
− d−1

z (
∑

i< j αiα j ) ∈ (−∞, x1), i.e., x1 � − d−1
z (

∑
i< j αiα j ).

Similarly, we can prove that Theorem 2 holds when t ∈
[d − 4, d − 3), [d − 5, d − 4), . . . , [0, 1).

(iii) When t ∈ (− ∞,−(2 − 2
d )) we have the following.

We have h(0) = (−1)d (t − d + 1)(t + 1)d−1(α2
1α

2
2 · · · α2

d ) �
0. From (E4) we have h′(x) > 0 when x > 0. Taking into
account that h(0) � 0, we see that there exist no positive roots
of (E1) in this case. The inequality (29) that we need to prove
also has the same form as (E5) and holds as well.

(iv) When z = 0, f (|ψ〉〈ψ |) = ‖(Id ⊗ �z )|ψ〉〈ψ |‖ − 1 =
0. The inequality (29) also holds. �
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