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Optimization of algorithmic errors in analog quantum simulations
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Analog quantum simulation is emerging as a powerful tool for uncovering classically unreachable physics
such as many-body real-time dynamics. A complete quantification of uncertainties is necessary in order to
make precise predictions using simulations on modern-day devices. Therefore, the inherent physical limitations
of the device on the parameters of the simulation must be understood. This paper examines the interplay of
errors arising from simulation of approximate time evolution with those due to practical, real-world device con-
straints. These errors are studied in Heisenberg-type systems on analog quantum devices described by the Ising
Hamiltonian. A general framework for quantifying these errors is introduced and applied to several proposed
time evolution methods, including Trotter-like methods and Floquet-engineered constant-field approaches. The
limitations placed on the accuracy of time evolution methods by current devices are discussed. Characterization
of the scaling of coherent effects of different error sources provides a way to extend the presented Hamiltonian
engineering methods to take advantage of forthcoming device capabilities.
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I. INTRODUCTION

Simulation of quantum many-body systems has been an
outstanding goal of the scientific community for decades.
Despite the enormous success of classical methods in deter-
mining static properties of quantum systems, they suffer from
superpolynomial resource scaling for many real-time and
finite-density phenomena [1–6]. Quantum computing (QC)
has the potential to perform such calculations with realistic
resource costs [7,8]. A variety of noisy intermediate-scale
quantum (NISQ) devices are becoming available for science,
and while the applicability of these devices is limited by
various factors, interesting results can be already obtained for
modest calculations [9–14]. In contrast to digital QC, which
utilizes discrete logic gates to process information, analog
QC operates by continuously modulating parameters of the
experimental apparatus, e.g., a magnetic field. Analog simula-
tion is possible in cases where the problem of interest can be
mapped to a simulator’s native Hamiltonian exactly, or with
controllable error [15]. Hybrid digital-analog quantum simu-
lation protocols have also been proposed [16,17]. Although
the analog approach is more limited than digital methods,
current device capabilities show that beyond-classical results
may be possible with analog simulation due to larger possible
system sizes [18–21].

Systems of many interacting spins are a common start-
ing point for a number of the quantum simulations to date
[22–24], due to the ease of mapping physical problems to
the effective Hamiltonians describing many NISQ devices.
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One of the most highly studied spin models is the Heisenberg
model, which serves as a testing ground for condensed-matter
systems [25,26], as well as a universal model for quantum
computing [27]. Simulations of the Heisenberg model con-
stitute a proposed step towards achieving quantum advantage
[28]; these simulations can be mapped to processes relevant
for high-energy particle physics [29–32], quantum gravity
[33], QCD processes [34,35], and other applications. Many
of the analog platforms that are currently available can be
naturally described by the Ising model, which has proven to
be a flexible testbed for studying a broad variety of physics
[36], as well as a system where Heisenberg interactions can
be realized [37–49]. Systems supporting Ising interactions
include trapped ions [22,50,51], neutral atoms [20,43,52,53],
nuclear spins [54,55], and superconducting qubits [23,56,57].

Major limitations of all these devices are the numerous
sources of error that accompany any particular simulation.
Several error correction schemes have been proposed for ana-
log quantum computation [58,59], but they have not yet been
implemented on devices available today. Because of this, the
ability to quantify these errors is crucial to make precise
statements about a simulation. The three main sources of error
that are important to consider for the purposes of simulation
are the encoding error, the algorithmic error, and the hardware
error [60]. The encoding and algorithmic errors come from
the approximations that are made in translating physics to a
form best suited for a particular device (e.g., Hilbert-space
truncations, commutator error for product formulas, etc.). The
hardware error comes from experimental imperfections and
noise on a device, which is usually uncontrolled and needs
to be dealt with using error mitigation. Much work has been
done examining Trotter errors [61–65] and errors induced by
analog devices [66–69] individually, but little attention has
been paid to the interplay of these different sources of error.
As it turns out, there are particular choices of parameters that
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FIG. 1. The device Hamiltonian Hdev can be used to emulate a target system of interest with Hamiltonian Htar using Trotter-like methods
(top path) or continuous driving methods (bottom path). In the limit of perfect pulses (equivalently, infinite magnetic field), the dashed curves
implement the target time evolution exactly. The solid curves represent the mappings that are approximate due to algorithmic errors. These
errors increase the overall error when mapping between Hamiltonians due to idle errors and when implementing the time evolution operator
U (t ) (Trotter errors). Algorithmic errors affect constant-field time evolution engineering methods as well. The constant-field method C1 and
one of the Trotter methods S1 are labeled as resulting time evolution methods within the space of possible U (t ) operators.

will minimize the cumulative error within and across these
different categories.

With the advent of analog quantum simulation, an under-
standing of uncertainties stemming from mapping physical
problems and implementations of simulation algorithms is
now necessary. This paper investigates the interplay of two
types of algorithmic errors occurring in digital quantum com-
putations on analog systems, Trotter errors and idle errors.
Trotter errors arise due to the decomposition of the evolution
operator into a finite product formula of noncommuting uni-
taries. Idle errors, on the other hand, stem from the inability
of analog systems to turn off interactions while applying local
pulses (gates). Continuously driven fields have also recently
been shown to implement Heisenberg-type evolution in Ising
systems [49]; such methods incur errors similar to idle errors
as well. The decomposition of the algorithmic error into Trot-
ter and idle errors is shown in Fig. 1.

On a perfect device, improving precision is straightfor-
ward if these two error sources are analyzed independently.
In the absence of realistic device constraints, decreasing the
Trotter step size is guaranteed to decrease the Trotter error,
and decreasing the pulse width on the device lowers the idle
error contribution. However, these error sources play against
each other on real-world machines. For example, taking many
short Trotter steps will incur a large error if the idle errors
are high in the device. Furthermore, taking very small Trotter
steps may be impossible due to limited pulse width. There-
fore, it is necessary to analyze these effects collectively to
find the parameters that maximize the precision of the output
from simulations on a real device. In this paper, a general
framework for analyzing the error scaling of engineered time
evolution methods is presented and is used to compare the per-
formance of the aforementioned methods. We compare with
numerical results for an analog simulator with (quasi)local
Ising interactions and global longitudinal and transverse-field

addressing. This analysis gives the optimal choice of simula-
tion parameters as a function of device parameters. In Sec. II,
the general Hamiltonian engineering methods are described,
Sec. III introduces the types of algorithmic error studied,
Sec. IV presents the results of the error analysis, and Sec. V
discusses the implications of this paper’s findings.

II. HAMILTONIAN ENGINEERING METHODS

Consider a general Hamiltonian that may be implemented
in various experimental systems:

Hdev(t ) = Hidle + Hdrive(t ),

Hidle =
∑
i< j

Ji j
(
cxXiXj + cyYiYj + czZiZ j

)
,

Hdrive(t ) = �B(t ) ·
(∑

i

�Si

)
. (1)

Using carefully engineered pulse sequences of the global
magnetic field �B(t ), the coefficients cx,y,z in Hidle can be modi-
fied into any target Hamiltonian Htar = H ′

idle in the interaction
picture, obeying cx + cy + cz = c′

x + c′
y + c′

z and min cx,y,z �
c′

x,y,z � max cx,y,z [70]. The targeted Hamiltonian Htar arises
through dynamical decoupling of the strong magnetic fields
| �B(t )| � � � max Ji j :

Htar = 1

τ

∫ τ

0
dt Udrive(t )† Hidle Udrive(t ),

i∂tUdrive(t ) = Hdrive(t )Udrive(t ),

Udrive(0) = 1, (2)

where an average is taken over a period τ of the pulse se-
quence with �B(t + τ ) = �B(t ) and � is the maximum field
strength that can be implemented on the device. The rest of the
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paper focuses on the concrete case of emulating the isotropic
Heisenberg c′

x,y,z = 1
3 evolution from Ising interactions cz =

1, cx,y = 0:

Hidle = HIsing =
∑
i< j

Ji jZiZ j

→ Htar = HXXX =
∑
i< j

Ji j

3
(XiXj + YiYj + ZiZ j ). (3)

Consider two types of pulse engineering methods, intermit-
tent and continuous driving. Intermittent driving is inspired by
Trotterized time evolution on digital quantum computers. The
strong magnetic field allows approximate global X , Y , or Z π

2
rotations through short pulses ε = π

2�
� J−1

i j at the maximal
field strength �:

R±
X (ε) = exp

⎛
⎝−iε

∑
i< j

Ji, j ẐiẐ j ∓ iπ

4

∑
j

X̂ j

⎞
⎠,

R±
Y (ε) = exp

⎛
⎝−iε

∑
i< j

Ji, j ẐiẐ j ∓ iπ

4

∑
j

Ŷj

⎞
⎠,

R±
Z (ε) = exp

⎛
⎝−iε

∑
i< j

Ji, j ẐiẐ j ∓ iπ

4

∑
j

Ẑ j

⎞
⎠.

(4)

Note that at infinite � these are exact rotation gates. These
pulses effectively permute the coefficients cx,y,z, yielding a set
of global gates which can be composed in the usual Trotter-
like fashion. There have been several recent developments
showing Trotter-like methods of Hamiltonian engineering
where similar target systems are recovered [37–48]. For the
native Ising interactions of Eq. (3), there are global evolutions
generated by native XX , YY , and ZZ gates:

RZZ (t ) = exp (−itHIsing),

R±
XX (t, ε) = R∓

Y (ε)RZZ (t )R±
Y (ε),

R±
YY (t, ε) = R∓

X (ε)RZZ (t )R±
X (ε).

(5)

Taking the product of these three gates defines a sequence
which is referred to as “pseudo-first-order”:

S1/2(�t, ε) = RZZ (tz )R+
YY (ty, ε)R+

XX (tx, ε). (6)

S stands for the pulse sequence and the subscript indicates the
error scaling with ε. As in digital product formulas, order is
defined by the scaling of the error with the parameters of the
sequence. For instance, a first-order sequence has errors that
only scale like O(t2, εt, ε2). The “pseudo” modifier indicates
that this sequence generates unwanted errors at order O(ε)
which contribute to Htar in Eq. (2). Such errors are avoidable
if the alternative gate set

R̃±
XX (t, ε) = R±

Y (ε)RZZ (t )R±
Y (ε),

R̃±
YY (t, ε) = R±

X (ε)RZZ (t )R±
X (ε) (7)

is used to define a “true-first-order” method:

S1(�t, ε) = RZZ (tz )R̃+
YY (ty, ε)R̃+

XX (tx, ε). (8)

FIG. 2. Pulse sequences for generating Heisenberg evolution
from ZZ interactions, corresponding to Eqs. (6) and (8)–(11). For
each pulse sequence, the magnetic-field strength (in units of �) is
given as a function of time (in units of ε = π

2�
). The length of each

sequence U is denoted by τU . The idling times ti are shown in the
graphics for each of the Trotter sequences.

Applying π
2 pulses in the same direction twice leads to de-

structive interference of the error terms plaguing S1/2. This
comes at the cost of a residual global Z rotation by π . This
overall rotation is easy to keep track of and correct for sub-
sequent stages of a simulation. To extend this Trotter-like
approach, we present a “pseudo-second-order” sequence, S̃1,
which carefully rearranges the gates in S1 to remove errors at
order O(t2):

S̃1(�t, ε) = RZZ (tz/2)R+
X (ε)RZZ (ty/2, ε)R̃+

XX (tx, ε)

× RZZ (ty/2)R−
X (ε)RZZ (tz/2). (9)

Finally, there is the fully symmetrized version of S1 according
to the formula S2(�t, ε) = S1(�t, ε)S1(−�t,−ε)† [71]. As one
would expect, all errors O(ε2, εt, t2) vanish due to the sym-
metry, making this a “true-second-order” sequence:

S2(�t, ε) = RZZ (tz/2)R̃+
YY (ty/2, ε)R̃+

XX (tx/2, ε)

× R̃−
XX (tx/2, ε)R̃−

YY (ty/2, ε)RZZ (tz/2). (10)

These pulse sequences are illustrated in Fig. 2. The pa-
rameter �t = (tx, ty, tz ) specifies the amount of time to evolve
without a magnetic field in the respective frames XX,YY, ZZ .
They obey τc′

i = ti + O(ε) since the finite pulse width also
contributes to these coefficients, and the ti need to be adjusted
accordingly. It is important to reiterate that the sequences S1
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and S̃1 reproduce evolution under HXXX up to a global Z π

rotation, which is accounted for in this analysis.
The constant drive field method of Refs. [49,72] is an

example of continuous driving. Similar methods have been
explored in various contexts within simulations [73]. This
approach involves the constant driving field:

�B(t ) = �√
3

⎛
⎝

√
2

0
1

⎞
⎠. (11)

In contrast with finite pulses, this method has the effect
of gradually rotating the interaction term around the Bloch
sphere. It is straightforward to show that after a full period
τC1 = 4ε = 2π/�, the generated Htar reproduces HXXX at
leading order in ε. The error analysis for the constant field
method is less involved than for the pulse sequences, since
there is only one parameter ε. The engineered Hamiltonian in
Eq. (2) is nothing but the leading-order term in the Magnus
expansion:

Uint(t ) = Udrive(t )†U (t ) = e
∑

k �k (t ), τC1 Htar = i �1(τC1 ).

(12)

Due to the scaling �k (τ ) = O(τ k ), the expected error is of
order O(τ 2) = O(ε2), which is equivalent to a first-order Trot-
ter formula. This method is referred to as C1 with C standing
for constant field, and the subscript again indicating the error
scaling with ε. C1 is shown graphically in the bottom panel of
Fig. 2.

The methods presented in this paper for approximating
desired Hamiltonians using pulse engineering, as well as the
methods described for analyzing the errors incurred, are gen-
eral and can be applied to any case of Eq. (1). The next
section describes how to analyze and quantify the errors as-
sociated with different time evolution methods.

III. CHARACTERIZATION OF ERROR TYPE
AND ERROR RATE

Consider the problem of simulating evolution for a total
time T , which is broken up into steps of length τ in physical
time. As seen in Fig. 2, the time it takes to implement a single
step on the device varies for each sequence; these are labeled
by τU for a pulse sequence U . This section analyzes the error
accrued during a single step of the sequences described and
shows how to optimize the length of this step to minimize
the error. The contributions of different sources of error are
isolated by considering a time evolution operator U that is a
smooth function of two parameters t and ε that admits the
following Taylor expansion:

U (t, ε) =
∞∑

k1=0

∞∑
k2=0

t k1εk2Utk1 εk2 ,

Utk1 εk2 = 1

k1!k2!
∂k1

t ∂k2
ε U (t, ε)

∣∣∣∣
t,ε=0

. (13)

The figure of merit that will be used to compare the error
scaling of the different evolution methods is the error rate

RU (t, ε) = 1

τU (t, ε)
||U (t, ε) − e−iτU (t,ε)Htar ||

� 1

τU (t, ε)

∞∑
k1=0

∞∑
k2=0

t k1εk2 ||EU ;t k1 εk2 ||, (14)

where

EU ;t k1 εk2 = Utk1 εk2 − 1

k1!k2!
∂k1

t ∂k2
ε e−iτU (t,ε)Htar

∣∣∣∣
t,ε=0

(15)

are defined to be the error terms that contribute at O(t k1 , εk2 ).
As before, Htar describes the system to be simulated (in this
paper it is HXXX ), and τU (t, ε) is the optimal step size for a
given time evolution U and parameters t and ε. In principle,
any norm can be used in Eq. (14); throughout this paper
the spectral norm induced by the Hilbert space two-norm is
used, which is defined by ||A|| = supv

||Av||2
||v||2 . While the error

for a single application of U will always decrease with step
size τU , multiple applications may cause this error to grow
unfavorably. The error accrued per step, the error rate RU , is
used to account for varying step size.

The different terms EU ;t k1 εk2 can be characterized as fol-
lows. Terms with k2 = 0 are the standard Trotter error, as
these come strictly from the algorithm used to simulate time
evolution (i.e., commutator error from Trotter-Suzuki formu-
las). The magnitude of this type of error is controlled by t .
Terms with k1 = 0 are called “idle errors” and come strictly
from the inability to implement ideal single qubit rotations.
For the device considered in this paper, the source of idle
error is due to the persistent Ising interaction during π

2 pulses.
The magnitude of this type of error is controlled by ε, which
is inversely related to the maximum magnetic-field strength.
Terms that correspond to k1, k2 
= 0 are referred to as “mixed
errors,” and these can be thought of as O(εk2 ) idle error that is
propagated through the simulation by the O(t k1 ) action of the
time evolution algorithm.

In the Trotter-like digital methods there is freedom in the
choice of τU . The aforementioned sources of error can balance
against one another to give overly pessimistic simulation re-
sults. This means that not all choices of τU are equally good,
and some choices will give more error than others. To be
precise, for a given time evolution method U , the optimal step
size τU is split into

τU (t, ε) = 3(trot + tcomp + t ), (16)

where trot corresponds to the evolution due to the rotation
gates, tcomp is the compensation for unwanted evolution due
to those gates, and t is optional evolution time. The factor
of 3 comes from mapping HIsing → HXXX in Eq. (3). The
optimization of τU proceeds as follows. trot is fixed by the
sequence, and so tcomp must be applied to match Htar evolu-
tion at leading order in the expansion of Eq. (13). t is then
chosen to minimize the contribution of terms not canceled
by tcomp to RU ; the optimal choice of t is labeled t∗. Here no

052425-4



OPTIMIZATION OF ALGORITHMIC ERRORS IN ANALOG … PHYSICAL REVIEW A 109, 052425 (2024)

FIG. 3. Different leading-order error terms contributing to the error rate analysis of the four Trotter methods considered in this paper. The
optimal scaling is given by the negative slope of each line at k1 = 1 and the corresponding error rate scaling is given by the k1 = 1 intercept.

assumptions are made about the relative smallness of t and ε,
only that they are small enough to give systematically improv-
able expansions for each type of error such that Eq. (13) may
be truncated at finite order.

The freedom in choosing τU for the Trotter sequences lies
in the choice of �t appearing in Eqs. (6)–(10). Specifically, �t is
chosen so that ti = tcomp,i + t where t is the optional evolution
time of Eq. (16) (this is expanded upon in Appendix C). An
important upshot of this relation is that all product formulas
have a minimum value of τU where ti = 0 for some i (e.g.,
corresponding to τS1 = 6ε). In other words, for given exper-
imental parameters and a given sequence, the step size τU

cannot be made arbitrarily small. Therefore the optimization
of t must be constrained such that τU is always larger than its
minimal value.

The optimal choice of t (assuming this is greater than the
minimal simulation time) is then given by

tU∗ = arg min
ti>0

[RU (t )]. (17)

For the low-order product formulas considered in this paper,
the solution becomes analytically tractable. Explicit expres-
sions for these bounds are presented in subsequent sections,
with derivations in Appendix C. For the constant-field method
C1, the step size is completely set by the Floquet period
τC1 = 4ε and so this method only incurs (algorithmic) error
as a function of ε.

There is a useful graphical view of the relevant error terms
that makes the optimal scaling of t and error rate with ε mani-
fest. The error rate in Eq. (14) is expanded using Eq. (13) and
truncated based on the leading-order Trotter and idle errors
(i.e., the lowest powers of strictly k2 or k1 respectively). This
leaves a finite number of terms contributing to the error rate
in unique powers of t and ε, which can be represented as a
curve k2 = B(k1) in the k1-k2 plane, as in Fig. 3. Specifically,

the error rate series becomes

RU (t ) � 1

τU (t, ε)

(
t n+1||EU ;t n+1 || + εm||EU ;εm ||

+
m−1∑
k=1

tκεk||EU ;tκ εk ||
)

, (18)

where κ is defined such that

||EU ;tκ εk || 
= 0, inf(||EU ;tκ−1εk ||, ||EU ;tκ εk−1 ||) = 0 (19)

for some fixed k. By working in the asymptotic limit, which
is defined as ε � 1 with t ∝ εα for some number α, the error
rate scaling may be analyzed in terms of the individual powers
of each of the contributing error terms. The leading-order
k1 error is α(k1 − 1) + B(k1), where 1 is subtracted because
τU (t, ε) = O(t, ε). The optimal error rate, for a given choice
of α, then scales with ε as

sup
k1

α(k1 − 1) + B(k1). (20)

This quantity then needs to be minimized over α. This is a
modified Legendre transform of B, where α and k1 form a
conjugate pair. Because of this, the optimal scaling of the
error rate is given by B(k1 = 1) and the optimal scaling α

is given by − dB
dk1

|k1=1. Comparing Fig. 3 to the results below
demonstrates these properties. An upshot of this analysis is
that for curves whose slope at k1 = 1 is undefined (e.g., S̃1),
there are actually a range of optimal scalings between the
slopes from the left and right side that give rise to the same
optimal error rate.

IV. RESULTS

A. Analytic results

This section gives the results of applying the analysis pre-
sented in the previous section to the Hamiltonian engineering
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methods of Sec. II. Specifically, U = S1/2,S1, C1 are used
to demonstrate the analysis described above, with details of
the calculations contained in Appendixes A and C. To isolate
the contributions of different sources of error E to the error
rate, the expansion of Eq. (13) is applied to the two Trotter
sequences. A bound on these contributions is then placed by
separating the part of the expression depending on the geome-
try of the system from the operator content. The leading-order
contributions to the error are found to be O(N ). These are
given in Eqs. (C19)–(C22).

As described in the previous section, the optimal step size
τU is found by first choosing tcomp to cancel leading-order
error terms and optimizing t to minimize the remaining terms
at leading or next-leading order, the result of which is shown
in Eqs. (C3) and (C4). τU is expected to vary for different
sequences since the error made depends on the sequence used.
The magnitudes of the different leading-order contributions
to the error are used to find t∗. Subject to the constraints de-
scribed in the previous section, the optimal t∗ values are [up to
O(1) factors determined by system geometry, see Eqs. (C23)
and (C24)]

tS1/2∗ = O(ε
1
2 ), tS1∗ = 0. (21)

The step size for C1 is fixed by τC1 , so there is no optimization
to be done for the constant-field method.

The error rate [Eq. (14)] is the main point of comparison
between different pulse sequences. It is computed by using the
individual error source contributions EU ;{... } and the optimal
step sizes t∗ to find the error rate scaling as a function of ε for
the sequences S1/2 and S1:

RS1/2 � ε
1
2

√√√√√
⎛
⎝∑

i 
= j 
=k

JikJk j

⎞
⎠
⎛
⎝∑

i 
= j

Ji j

⎞
⎠ = O

(
ε

1
2 N
)
,

RS1 � ε

⎛
⎝∑

i 
= j 
=k

JikJk j +
∑
i 
= j

J2
i j

⎞
⎠ = O(εN ). (22)

Here O(1) factors are again neglected for clarity. The full
expressions can be found in Eqs. (C25) and (C26). To find
the error rate for the constant-field method, the evolution
implemented on the device is expanded in a Magnus series
and the Heisenberg terms are subtracted off at leading order
to get a bound for RC1 . Dropping O(1) factors, the error rate
for this method is given by

RC1 � ε

⎛
⎝∑

i 
= j 
=k

Ji jJjk +
∑
i 
= j

J2
i j

⎞
⎠ = O(εN ). (23)

The error rates are found to be extensive quantities, which
is not surprising: the number of terms in the Hamiltonian
increases with the system size. For comparing systems of
different sizes and analyzing local observables, the error rate
density is useful: RU

N .
The methods described in this paper can be used to map

between device and target Hamiltonians obeying a simple
relation described in Sec. II. As an example of this, the setup
of Ref. [43] can accommodate time evolution methods similar
to those presented in previous sections. Their work assumes

an experimental system with dipole XX + YY interactions,
and tunable X and Y magnetic fields. With this setup, the
pulse sequences of Eqs. (6) and (8)–(10) implementing Trot-
terized time evolution carry over without change to emulate an
isotropic Heisenberg system. In addition, if a tunable Z mag-
netic field is assumed, the constant-field method of Eq. (11)
works as well. Following the analysis for RU , the method
proposed in Ref. [43] has a O(

√
ε) error rate scaling, similar

to S1/2, with a slightly different prefactor.
There exist many sequences that have the same error scal-

ing. Examples of this are the sequences S1 and S̃1, which
are essentially reordered versions of each other. The method
of Ref. [43] and S1/2 also both have RU = O(

√
ε). This

nonuniqueness comes from the fact that different combina-
tions of ±π

2 rotations may yield the same evolution and
similar scaling but with different prefactors due to the com-
bination of the errors incurred (see Appendix B). This paper
shows low-lying sequences up to O(ε2) in the error scaling. It
is possible to extend these using the standard Trotter methods
[71] to stitch them together to create higher-order sequences.
Furthermore, as the subscript on C1 suggests, it is possi-
ble to create higher-order variants of constant-field methods
by stitching together lower-order methods in the appropriate
manner, e.g., C2(2ε) = C1(ε)C1(−ε).

B. Numerical results

The reliance of this analysis on inequalities rooted in the
triangle inequality is a source of inflation of the derived upper
bounds. In practice, cancellations between different terms give
rise to a smaller error overall, compared to the worst-case
bounds. Realistic values for the error rate can be found by
evaluating Eq. (14) numerically to understand the extent to
which our bounds ignore these cancellations.

For concreteness, the physical Hamiltonian underlying ex-
perimental systems of Rydberg atoms [74,75] is used for
the rest of the paper, corresponding to cx = cy = 0, cz = 1
in Eq. (1). Rydberg atoms have an all-to-all coupling medi-
ated by a van der Waals interaction (i.e., Ji j = C6

|�ri−�r j |6 ). This
interaction only depends on the geometry of the Rydberg
array which is assumed to be fixed for the duration of the
simulation. In this paper, the values of C6 = O(106) MHz
µm6 and the lattice spacing a = O(1) µm are fixed to realistic
values based on current hardware parameters [76]. Chang-
ing these parameters is equivalent to rescaling the maximum
field strength �, so numerical calculations are performed with
these constants fixed. In reality, devices require some time to
change the magnetic fields; this time is determined by the slew
rate. This analysis assumes the ideal case of an infinite slew
rate for simplicity, although including realistic slew rates does
not change the results qualitatively.

The individual contributions E are compared to the numer-
ical values [obtained by directly evaluating the E terms in
Eq. (15)] in Fig. 7 as a function of system configuration. The
results for the error rates of Eqs. (22) and (23), along with their
numerical counterparts, can be seen in Fig. 4. In both Figs. 4
and 7, we see the analytic bounds exceed the numerical values.
This happens because the inequalities applied to derive the
bounds effectively ignore the cancellations between various
terms that happen in practice.
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FIG. 4. Comparison of analytic bounds for the error rate for a single Trotter step from Eqs. (22) and (23) to numerical results as a function
of the device parameter ε for 2 × 2 systems. The analytic bounds consistently exceed the numerical results by factors of O(1)–O(10), which
is an expected consequence of using the triangle inequality to evaluate the bounds [63].

So far, the error for a single Trotter step has been
considered. Figure 5 investigates whether it is better
to take many Trotter steps or a single large step by
considering the quantity δ1 − δn = ||Utrot(T ) − e−iHXXX T || −
||∏n Utrot(T/n) − e−iHXXX T ||. For a given Trotter time evolu-
tion method Utrot, measures how much closer Utrot with n steps
is to the true time evolution than Utrot with one large step.
Considering this figure, the effect of the different error contri-
butions on the overall error for each pulse sequence becomes
evident: while decreasing ε will always decrease the error, the
choice of the step size τU is of crucial importance to be able to
take advantage of the scaling properties of Trotter formulas.
In other words, a poorly chosen τU may inhibit successive
application of the sequence and incur more error than a single
large application as a result of constructive interference of
different E contributions. Figures 4 and 5 also demonstrate

FIG. 5. The effect of multiple Trotter steps on errors for
2 × 2 systems with ε ≈ 10−5 and pulse sequences S1/2 and S1.
The quantity δ1 − δn = ||Utrot(T ) − e−iHXXX T || − ||∏n Utrot(T/n) −
e−iHXXX T || is positive when taking many small steps of Utrot(T/n)
replicates e−iHXXX T better than taking one large step Utrot(T ). Here,
T = nτU and τU is chosen optimally according to Eq. (21). Taking
many steps to reach a total time T is beneficial for S1/2 and S1

compared to taking a single large step when the step size is chosen
optimally. This demonstrates the importance of choosing the step
size correctly to take advantage of the Trotter error scaling.

the order-of-magnitude difference between the rate at which
errors accrue for S1/2 and S1.

V. DISCUSSION

While simulation of real-life physical systems remains an
outstanding goal, the onset of devices capable of supporting
analog quantum simulation provides a path forward in the near
term. Because of the level of control and the large amount of
qubits compared to digital quantum computers, these devices
are attractive platforms for attempts at simulating classically
inaccessible physics. Control and understanding of errors are
important for any quantitative study. As demonstrated in this
paper for the case of analog simulations, the error on real-
life devices is not always minimized by trivially minimizing
the sources of error individually. Instead, parameters of the
simulation must be chosen specifically to maximize the pre-
cision of the simulation metrics of interest given the physical
limitations of the device. This paper has outlined and shown
examples of the analysis necessary to quantify the error in-
curred by methods of simulating Hamiltonians using analog
quantum devices. Different sources of error and the interplay
between them have been investigated, and the growth of these
contributions with system parameters has been described. The
analytic results provide worst-case guarantees for the methods
presented; in practice, numerical simulations of the methods
give more realistic reflections of the error. The error rate as a
function of minimal π

2 -pulse duration ε is used to compare the
effectiveness of several time evolution methods. For methods
emulating time evolution under HXXX starting from HIsing,
error rates are shown in Fig. 6, and relevant features and
parameters are given in Table I. Extensions of this analysis
method may include using different norms, since typically
only a small subset of the Hilbert space is of interest, such
as low-energy effective field theory spaces [77]. Furthermore,
physically relevant observables may have additional protec-
tion from errors due to their locality [78], and properties
of the physical system being simulated may combine with
algorithmic and device errors to produce unexpectedly differ-
ent results [79]. Overall, the considerations presented in this
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FIG. 6. Numerical error rates corresponding to Eq. (14) for a
single Trotter step (Floquet period for C1) for 2 × 2 systems. The
slopes of lines on these log-log plots indicate the scaling of the error
rate for each method (see Table I) and the y intercepts give the scaling
prefactor. The lines for S1/2,S1, and C1 are the same as the numerical
ones in Fig. 4. Current device capabilities report pulse control to
the ns level [76], meaning pulse sequences with ε ≈ O(10−5) can
be applied, indicated by the dashed vertical line.

paper are important for many analog quantum simulations on
devices whose evolution is naturally described by Ising-type
Hamiltonians such as Hdev. The discussion presented is an im-
portant step toward a complete quantification of uncertainties
for quantum simulation on analog devices.

Current device precision capabilities may limit the ability
to implement the time evolution methods that have been pre-
sented. To implement a sequence whose error grows as O(ε),
the device should have control of the pulse width at O(ε2) or
better precision. If such control is not possible, then the errors
will wash out any algorithmic scaling assumed by this anal-
ysis. Because of this, it is important to consider the level of
control that current devices have. Recently, nanosecond level
control has been demonstrated on a Rydberg system [76].
This corresponds to ε2 ≈ O(10−9), meaning sequences using
ε ≈ O(10−5) can be supported. This value of ε is shown by the
dashed vertical line in Fig. 6. Although constant-field methods
such as C1 do not require rapid switching of the magnetic field,
decreasing ε shortens the Floquet period, which makes the
engineered time evolution more accurate. In other words, the

TABLE I. The error rates, step size, and step parameters for each
method to simulate HX X X evolution. The three rightmost columns
show the breakdown of τU into the evolution due to the rotations trot,
the evolution to compensate for the rotations tcomp, and the optimal
optional evolution time t∗. t∗ is given by Eqs. (17) and (21), and
following similar analysis for the other Trotter sequences. For C1 the
step size corresponds to the Floquet period τC1 = 4ε. The essentially
identical properties of S1 and S̃1 and the better error rate scaling of
S2 at the cost of longer device time can be seen.

Comparison of time evolution methods

Method Error rate τU �trot �tcomp t∗

S1/2 O(
√

ε) O(
√

ε) (ε, ε, 2ε) (ε, ε, 0) O(
√

ε)
S1 O(ε) 6ε (ε, ε, 2ε) (ε, ε, 0) 0
S̃1 O(ε) 6ε (ε, 2ε, ε) (ε, 0, ε) 0
S2 O(ε2) 12ε (2ε, 2ε, 4ε) (2ε, 2ε, 0) 0
C1 O(ε) 4ε

level of control of the pulse width ε limits both types of time
evolution engineering methods considered in this paper. From
Fig. 6, it can be seen that at the level of control available today,
S2 outperforms all other considered engineering methods. Un-
less the minimal pulse width ε ≈ O(10−1), there is benefit to
using higher-order formulas at the cost of rapid magnetic-field
switching.

Many devices that implement Hamiltonians of the form
of Hdev are also able to modify the geometry of the system,
such as allowing arbitrary placement of sites in the experi-
mental plane of the apparatus using optical tweezers [80]. The
ability to run experiments with such configurations has been
proposed to simulate interesting physical phenomena such as
nontrivial θ dependence in nonlinear σ models [31], dynam-
ical quantum phase transitions [81], systems with topological
order [82], and optimizations for 2 + 1-dimensional gauge
theory simulations [83]. These changes to the geometry would
enter the error analysis in the form of modifying the sums in
the bounds of Eqs. (22) and (23).

The interactions that can natively be supported on devices
described by Hdev are limited. Because of this, Hamiltonian
engineering is an attractive way to emulate other models.
While this paper constitutes an important step towards quan-
tifying the errors involved in mapping a physical problem to
an analog device, a collective study including other sources of
error such as device imperfections and other limitations would
be necessary for complete control of uncertainties of an analog
quantum simulation. The dynamics of Heisenberg evolution
are of broad interest in physics, and analog simulations are
enabling their study today. Therefore, a full understanding of
the impact of errors and approximations on analog quantum
simulations of the Heisenberg model is vital in a path toward
scientifically practical results. With the errors under control,
data from simulations of systems beyond the reach of classical
computers may be used to make predictions about nature.
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APPENDIX A: CONSTANT-FIELD METHOD
ERROR RATE DERIVATION

For the choice of �B(t ) given by (11), time evolution in the
interaction picture is given by

UIsing(t, 0) = expT

{
−i
∫ t

0
dt ′Hint(t

′)
}
,

where Hint(t ) = 1
2

∑
i 
= j Ji jZi(t )Zj (t ), Zi(t ) = 2�e(t ) · �Si, and

�e(t ) = 1

3

⎛
⎜⎝2

√
2 sin2

(
�t
2

)
−√

6 sin �t
1 + 2 cos �t

⎞
⎟⎠. (A1)

The error rate at Floquet periods τC1 = 2π
�

[i.e., the period of
�e(t )] is given by

RC1 (τC1 ) = 1

τC1

∣∣∣∣
∣∣∣∣expT

{
−i
∫ τC1

0
dtHint(t )

}

− exp

{
− i

τC1

3
HXXX

}∣∣∣∣
∣∣∣∣. (A2)

To get the tightest possible bounds on RC1 with minimal
application of triangle inequalities, the two propagators are

organized in powers of � (equivalently powers of τC1 ). For
the target evolution,

exp

{
− i

τC1

3
HXXX

}
= 1 − i

τC1

3
HXXX − τ 2

C1

18
H2

XXX + O
(
τ 3
C1

)
.

Working up to second order in a Magnus expansion, the Flo-
quet evolution gives

expT

{
−i
∫ τC1

0
dtHint(t )

}
= e−i

∑∞
k=1 �k (τC1 ) (A3)

= 1 −
(

i�1(τC1 ) − i�2(τC1 ) + 1

2
�2

1(τC1 )

)
+ O

(
τ 3
C1

)
,

(A4)

where

�1(τC1 ) =
∫ τC1

0
dtHint(t ) = τC1

3
HXXX , (A5)

�2(τC1 ) = 1

2

∫ τC1

0
dt1

∫ t1

0
dt2[Hint(t1), Hint(t2)]. (A6)

Evaluating Eq. (A6) and defining �ei = �e(ti )

�2(τC1 ) = −i
∫ τC1

0
dt1

∫ t1

0
dt2

⎧⎨
⎩8

∑
i 
= j 
=k

Ji jJjk (�e1 · �Si )[(�e1 × �e2) · �S j](�e2 · �Sm) + 2
∑
i 
= j

J2
i j (�e1 · �e2)(�e1 × �e2) · �S j

⎫⎬
⎭, (A7)

and the following definitions to simplify expressions,

�αβγ (t1, t2) = (�e1)α (�e1 × �e2)β (�e2)γ , (A8)

�̃α (t1, t2) = (�e1 · �e2)(�e1 × �e2)α, (A9)

the �1 terms exactly cancel the target Heisenberg evolution, giving the error rate at leading order in τC1 as

RC1 (τC1 ) = 1

τC1

||�2(τC1 )|| + O
(
τ 3
C1

)
(A10)

� 1

2π�

⎡
⎣∣∣∣∣
∣∣∣∣
∫ 1

0

∫ t1

0
dt1dt2�(t1, t2)

∣∣∣∣
∣∣∣∣
⎛
⎝∑

i 
= j 
=k

Ji jJjk

⎞
⎠+

∣∣∣∣
∣∣∣∣
∫ 1

0

∫ t1

0
dt1dt2�̃(t1, t2)

∣∣∣∣
∣∣∣∣
⎛
⎝∑

i 
= j

J2
i j

⎞
⎠
⎤
⎦ (A11)

= 2ε

π

⎡
⎣√

142 + 24π2

18

⎛
⎝∑

i 
= j 
=k

Ji jJjk

⎞
⎠+ 1

3

⎛
⎝∑

i 
= j

J2
i j

⎞
⎠
⎤
⎦ (A12)

= O(εN ). (A13)

APPENDIX B: DERIVATION OF THE π
2 -PULSE ERROR

As noted in the main body of the paper, the global rotation gates cannot be perfectly implemented due to the persistent Ising
interaction. The deviation from the ideal behavior is found using a Magnus expansion, following Appendix A of Ref. [72]:

ϒ±
X (ε) = RX

(
∓ π

2

)
R±

X (ε) = exp

(
−i
∑
k=1

χ±
k εk

)
, (B1)

ϒ±
Y (ε) = RY

(
∓ π

2

)
R±

Y (ε) = exp

(
−i
∑
k=1

ν±
k εk

)
. (B2)
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To derive the error rate bounds, it is only necessary to work to O(ε2) in ϒ±
X,Y . The expressions for χ±

1,2 and ν±
1,2 are

χ±
1 =

∫ 1

0
dte± iπt

4

∑
i Xi

⎛
⎝∑

i< j

Ji jZiZ j

⎞
⎠e∓ iπt

4

∑
i Xi

=
∑
i< j

Ji j

(
YiYj + ZiZ j

2
± YiZ j + ZiYj

π

)
, (B3)

ν±
1 =

∑
i< j

Ji j

(
XiXj + ZiZ j

2
∓ XiZ j + ZiXj

π

)
, (B4)

and

χ±
2 = −i

2

∫ 1

0

∫ t1

0
dt1dt2

⎡
⎣e± iπt1

4

∑
i Xi

⎛
⎝∑

i< j

Ji jZiZ j

⎞
⎠e∓ iπt1

4

∑
i Xi , e± iπt2

4

∑
i Xi

⎛
⎝∑

i< j

Ji jZiZ j

⎞
⎠e∓ iπt2

4

∑
i Xi

⎤
⎦

= −i
∑

i< j,m<n

Ji jJmn

(
1

π2
[YiYj, ZmZn] ± 1

8π
[YiYj − ZiZ j, ZmYn + YmZn]

)

= 1

π

∑
i,m 
= j

Ji jJjm
YiXjZm + XjZmYi

π
± YiYmXj + ZiXjZm + YmXjYi + XjZmZi

8
, (B5)

ν±
2 = − 1

π

∑
i,m 
= j

Ji jJjm
XiYjZm + YjZmXi

π
∓ XiXmYj + ZiYjZm + XmYjXi + YjZmZi

8
. (B6)

APPENDIX C: FIRST-ORDER PRODUCT FORMULA ERROR

As an example, the analysis of Sec. III is applied to the product formulas S1/2 and S1, with the specific choice Htar = HXXX .
The result of this analysis will be Eqs. (21) and (22). The error rate formulas are

RS1/2 � 1

τS1/2 (t, ε)

(
t2
∣∣∣∣ES1/2;t2

∣∣∣∣+ ε
∣∣∣∣ES1/2;ε

∣∣∣∣), (C1)

RS1 � 1

τS1 (t, ε)

(
t2
∣∣∣∣ES1;t2

∣∣∣∣+ ε2
∣∣∣∣ES1;ε2

∣∣∣∣+ tε||ES1;tε ||
)
. (C2)

The choices of t that optimize the error rates are

tS1/2∗ = ε
1
2

√ ∣∣∣∣ES1/2;ε

∣∣∣∣∣∣∣∣ES1/2;t2

∣∣∣∣ + O(ε), (C3)

tS1∗ = ε

⎛
⎝
√

4 − 2||ES1;tε || − ∣∣∣∣ES1;ε2

∣∣∣∣∣∣∣∣ES1;t2

∣∣∣∣ − 2

⎞
⎠. (C4)

The corresponding error rate bounds (valid for tS1/2∗, tS1∗ > 0) are given by

RS1/2 � 2
√∣∣∣∣ES1/2;t2

∣∣∣∣∣∣∣∣ES1/2;ε

∣∣∣∣ε 1
2 + O(ε), (C5)

RS1 �
(

2
√∣∣∣∣ES1;t2

∣∣∣∣(4∣∣∣∣ES1;t2

∣∣∣∣+ ∣∣∣∣ES1;ε2

∣∣∣∣− 2||ES1;tε ||
)+ ||ES1;tε || − 4

∣∣∣∣ES1;t2

∣∣∣∣)ε. (C6)

An important point to consider is that Eq. (C4) suggests that tS1∗ may be negative, while in both Eqs. (C1) and (C2), tS1/2∗
and tS1∗ were assumed to be positive numbers. This apparent contradiction simply reflects the fact that this is an optimization
problem whose solution is on the boundary tS1∗ = 0. It is now clear which error terms must be calculated to recover the optimal
step sizes and the error rates, which is done below.
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1. First-order error in ε

At leading order in ε and t , Eqs. (6) and (8) take the form

S1/2 = 1 − i
∑
i< j

Ji j (txXiXj + tyYiYj + tzZiZ j ) − iε
∑
i< j

Ji j

(
XiXj + YiYj + 2ZiZ j + 2

π
(YiZ j + ZiYj − XiZ j − ZiXj )

)
, (C7)

S1 = RZ (π )

⎡
⎣1 − i

∑
i< j

Ji j (txXiXj + tyYiYj + tzZiZ j ) − iε
∑
i< j

Ji j (XiXj + YiYj + 2ZiZ j )

⎤
⎦. (C8)

The leading-order target evolution is 1 − iτU (t, ε)HXXX , and matching these evolutions requires tx, ty = ε + t and tz = t . These
choices imply that τU (t, ε) = 2ε + t . With these choices, the leading-order Heisenberg evolution is the same for S1/2 and S1,
implying that τS1/2 = τS1 . The individual terms in the expansion (13) are

S1/2;t = −i
∑
i< j

Ji j
(
XiXj + YiYj + ZiZ j

)
, (C9)

S1;t = RZ (π )

⎛
⎝−i

∑
i< j

Ji j
(
XiXj + YiYj + ZiZ j

)⎞⎠, (C10)

S1/2;ε = −2i
∑
i< j

Ji j

(
XiXj + YiYj + ZiZ j + YiZ j + ZiYj − XiZ j − ZiXj

π

)
, (C11)

S1;ε = RZ (π )

⎛
⎝−2i

∑
i< j

Ji j
(
XiXj + YiYj + ZiZ j

)⎞⎠. (C12)

The error terms that contribute to the error rates at this order are

ES1;t , ES1;ε = 0, (C13)

ES1/2;t = 0, (C14)

ES1/2;ε = −2i

π

∑
i< j

Ji j[(Yi − Xi )Zj + Zi(Yj − Xj )]. (C15)

There is O(ε) error appearing for S1/2 which causes the t ∝ √
ε scaling. To find the optimal t∗ for S1, higher-order terms must

be calculated.

2. Higher-order error in ε, t

The error terms that contribute to the error rates are [up to a factor of RZ (π )]

ES1;t2 = 8i
∑

i 
= j 
=k

Ji jJjk (XiYjZk − YiXjZk − YiZ jXk ), (C16)

ES1;ε2 = 2i
∑

i 
= j 
=k

Ji jJjk

(
8YiZ jXk − 4(YiXj + XiYj )Zk + 7(YiXjYk − XiYjXk ) + Zi(Yj − Xj )Zk

π

)
+ 12i

π

∑
i 
= j

J2
i j (Xi − Yi ), (C17)

ES1;tε = 8i
∑

i 
= j 
=k

Ji jJjk

(
2YiZ jXk − 3

2
XiYjZk + 1

2
YiXjZk + YiXjYk − XiYjXk

π

)
+ 8i

π

∑
i 
= j

J2
i j (Xi − Yi ). (C18)

3. Evaluation of prefactors

The scaling prefactors in Eqs. (C3) and (C4) require evalu-
ation of the following quantities:

||ES1/2;ε || � 4
√

2

π
J1, (C19)

||ES1;ε2 || � 28J3 + 12
√

2

π
J2, (C20)

||ES1;tε || � 25J3 + 8
√

2

π
J2, (C21)

||ES1/2;t2 || = ||ES1;t2 || � 8

√
3 + 2

√
3J3, (C22)

where the factors J1, J2, J3 are defined in Eqs. (D1)–(D3). As
explained in Sec. IV, numerics are used to see the values
of the different E terms in practice. Equations (C19)–(C22)

052425-11



ZEMLEVSKIY, FROLAND, AND CASPAR PHYSICAL REVIEW A 109, 052425 (2024)

FIG. 7. Scaling of the contributions E to the error from different sources in a single Trotter step of the pulse sequences S1/2 and S1 as a
function of system geometry. Ny is varied on the x axis and each line represents the contribution to the error with a different value of Nx . Here
the analytic bounds of Eqs. (C19)–(C22) are compared to values obtained by numerically evaluating the norm of Eq. (15) for each type of
contribution. Note that in the latter three panels, the Nx = 1, Ny = 1 points are much lower than the rest of the Nx = 1 lines because of the fact
that there are three-body contributions to the error for these terms; when the system has less than three sites, these contributions are absent,
leading to a much smaller error.

are compared to values obtained numerically as a function of
system size in Fig. 7.

With these expressions, calculating Eqs. (21) and (22) is
now straightforward:

tS1/2∗ ≈ .3

√
J1

J3
ε

1
2 + O(ε), (C23)

tS1∗ = 0. (C24)

Note that calculating tS1∗ using the bounds derived gives a
negative number, which is why Eq. (C24) is zero; this con-
clusion is supported by numerics. The corresponding optimal
error rate bounds are

RS1/2 � 12.2
√

J1J3ε
1
2 + O(ε), (C25)

RS1 � (14J3 + 2.7J2)ε. (C26)

APPENDIX D: ANALYSIS OF THE INTERACTION SUMS

Throughout this paper, various sums over the Ising inter-
action terms appear. These sums encapsulate the geometry of
the device used. Nx is the horizontal extent of the atoms and

Ny is the vertical extent. These sums depend very clearly on
total number of atoms N = NxNy. In the following analysis it
is assumed that the configuration of atoms in the experimental
apparatus is two-dimensional and rectangular (i.e., Nx, Ny �
2). The sums analyzed are

J1(N ) =
∑
i 
= j

Ji j = J̃11N − J̃12, (D1)

J2(N ) =
∑
i 
= j

J2
i j = J̃21N − J̃22, (D2)

J3(N ) =
∑

i 
= j 
=k

Ji jJjk = J̃31N − J̃32. (D3)

By explicit numerical evaluation of the sums for the con-
sidered system sizes, the following fits are found, which are
plotted in Fig. 8:

J̃11 = 4.46, J̃12 = −36.74,

J̃21 = 3.91, J̃22 = 28.35,

J̃31 = 4.05, J̃32 = −63.58.
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FIG. 8. J1, J2, J3 sums evaluated for explicit array configurations with fits. The extent of the array in the x direction is Nx = 20 atoms.
While there is a deviation for smaller array sizes, a linear scaling is still seen.

To see how this scaling arises, consider the J1 sum, which may
be written as

J1 = C6

a6

Nx,Ny∑
x1=1
y1=1

Nx,Ny∑
x2=x1+1
y2=y1+1

1

[(x2 − x1)2 + (y2 − y1)2]3

= C6

a6

Nx,Ny∑
x1=1
y1=1

Nx−x1
Ny−y1∑
x′

2=1
y′

2=1

1

[(x′
2)2 + (y′

2)2]3

� C6

a6

Nx,Ny∑
x1=1
y1=1

∫ ∞

1

dx′
2dy′

2

[(x′
2)2 + (y′

2)2]3
.

The integral converges to some constant, so we see (for N =
NxNy) that

J1 = O(Na−6).

Scalings for J2 and J3 may be shown in a similar fashion.
This scaling may be understood intuitively in the following
manner. The power-law interactions are rapidly decaying and
so the dominant contribution to these sums will be given by
a single sum over an effective nearest-neighbor interaction.
For a square array, this implies a ≈4N scaling, which is
seen in Fig. 8. The deviation in the fit values from the ideal
4N scaling stems from the fact that the fits include values
from geometrically thin arrays (e.g., 2 × 20), where boundary
interactions play a larger role.
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[77] B. Şahinoğlu and R. D. Somma, Hamiltonian simulation in the
low-energy subspace, npj Quantum Inf. 7, 119 (2021).

[78] M. Heyl, P. Hauke, and P. Zoller, Quantum localization bounds
trotter errors in digital quantum simulation, Sci. Adv. 5,
eaau8342 (2019).

[79] K. Chinni, M. H. Muñoz-Arias, I. H. Deutsch, and P. M. Poggi,
Trotter errors from dynamical structural instabilities of Flo-
quet maps in quantum simulation, PRX Quantum 3, 010351
(2022).

[80] M. Schlosser, D. Ohl de Mello, D. Schäffner, T. Preuschoff,
L. Kohfahl, and G. Birkl, Assembled arrays of Rydberg-
interacting atoms, J. Phys. B 53, 144001 (2020).

[81] T. V. Zache, N. Mueller, J. T. Schneider, F. Jendrzejewski, J.
Berges, and P. Hauke, Dynamical topological transitions in the
massive Schwinger model with a θ term, Phys. Rev. Lett. 122,
050403 (2019).

[82] R. Samajdar, W. W. Ho, H. Pichler, M. D. Lukin, and S.
Sachdev, Quantum phases of Rydberg atoms on a kagome
lattice, Proc. Natl. Acad. Sci. USA 118, e2015785118
(2021).

052425-15

https://doi.org/10.1038/nature13461
https://doi.org/10.1103/PhysRevA.95.013602
https://doi.org/10.1103/PhysRevA.97.023611
https://doi.org/10.1103/PhysRevA.108.042216
https://doi.org/10.1103/PhysRevB.95.024431
https://doi.org/10.1103/PRXQuantum.2.020328
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1016/S0009-2614(97)00194-2
https://doi.org/10.1103/PhysRevB.75.094415
https://doi.org/10.1103/PhysRevX.5.021027
https://doi.org/10.1038/nature10012
https://doi.org/10.1103/PhysRevLett.80.4088
https://doi.org/10.1103/PhysRevLett.119.180507
https://doi.org/10.1103/PhysRevA.99.052335
https://doi.org/10.1088/1751-8113/43/6/065203
https://doi.org/10.1103/PhysRevLett.123.050503
https://doi.org/10.1103/PhysRevX.11.011020
https://doi.org/10.1103/RevModPhys.95.045005
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1038/s41534-021-00380-8
https://arxiv.org/abs/2212.04924
https://doi.org/10.1103/PRXQuantum.1.020308
https://doi.org/10.1103/PhysRevX.12.021049
https://arxiv.org/abs/quant-ph/0202042
https://doi.org/10.1007/BF01609348
https://doi.org/10.22331/q-2023-04-06-970
https://arxiv.org/abs/2303.02209
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1088/1674-1056/abd76f
https://arxiv.org/abs/2306.11727
https://doi.org/10.1038/s41534-021-00451-w
https://doi.org/10.1126/sciadv.aau8342
https://doi.org/10.1103/PRXQuantum.3.010351
https://doi.org/10.1088/1361-6455/ab8b46
https://doi.org/10.1103/PhysRevLett.122.050403
https://doi.org/10.1073/pnas.2015785118


ZEMLEVSKIY, FROLAND, AND CASPAR PHYSICAL REVIEW A 109, 052425 (2024)

[83] B. Müller and X. Yao, Simple Hamiltonian for quantum simu-
lation of strongly coupled 2+1D su(2) lattice gauge theory on a
honeycomb lattice, Phys. Rev. D 108, 094505 (2023).

[84] https://iqus.uw.edu.
[85] https://phys.washington.edu.

[86] https://artsci.washington.edu.
[87] W. R. Inc., MATHEMATICA, version 13.2, Champaign, IL,

2022.
[88] G. Van Rossum and F. L. Drake, Python 3 Reference Manual

(CreateSpace, Scotts Valley, CA, 2009).

052425-16

https://doi.org/10.1103/PhysRevD.108.094505
https://iqus.uw.edu
https://phys.washington.edu
https://artsci.washington.edu

