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Much recent work has been devoted to the study of information scrambling in quantum systems. In this
paper, we study the long-time properties of the algebraic out-of-time-order-correlator (“A-OTOC”) and derive
an analytical expression for its long-time average under the nonresonance condition. The A-OTOC quantifies
quantum scrambling with respect to degrees of freedom described by an operator subalgebra A, which is
associated with a partitioning of the corresponding system into a generalized tensor product structure. Recently,
the short-time growth of the A-OTOC was proposed as a criterion to determine which partition arises naturally
from the system’s unitary dynamics. In this paper, we extend this program to the long-time regime where the
long-time average of the A-OTOC serves as the metric of subsystem emergence. Under this framework, natural
system partitions are characterized by the tendency to minimally scramble information over long timescales. We
consider several physical examples, ranging from quantum many-body systems and stabilizer codes to quantum
reference frames, and perform the minimization of the A-OTOC long-time average both analytically and
numerically over relevant families of algebras. For simple cases subject to the nonresonant condition, minimal
A-OTOC long-time average is shown to be related to minimal entanglement of the Hamiltonian eigenstates
across the emergent system partition. Finally, we conjecture and provide evidence for a general structure of the
algebra that minimizes the average for nonresonant Hamiltonians.
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I. INTRODUCTION

Information-theoretic properties of quantum dynamics pro-
vide insights applicable to a wide range of physical systems.
Quantum information scrambling is a prominent such prop-
erty and refers to the dynamical generation of correlations
among initially distinguishable degrees of freedom. A wide
range of phenomena, from thermalization in quantum many-
body systems to black hole physics and holography [1–9],
have been linked to scrambling dynamics, which are com-
monly studied using the out-of-time-order correlator (OTOC)
as a diagnostic tool [10–19].

In this paper, we investigate scrambling dynamics in the
long-time regime. This regime is relevant when the timescale
of interest far exceeds the characteristic quantum (i.e., “mi-
croscopic”) system timescale and has been examined in
studies of quantum chaos [20–22] and quantum phase tran-
sitions [23]. We use an algebraic-out-of-time-order correlator
(A-OTOC) as a metric of information scrambling between an
algebra of observables and its commutant under dynamics,
which provides a unified framework that incorporates oper-
ator entanglement [24–26] and coherence-generating power
[27,28] as special cases. As correlation functions do not have
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infinite-time limits under unitary dynamics in finite-
dimensional systems, we probe the long-time behavior of the
A-OTOC via its long-time average (LTA). Notably, for the
case of bipartite algebras, the scaling of the LTA distinguishes
between the chaotic and integrable phases of quantum many-
body systems [26,29].

The A-OTOC LTA becomes more analytically tractable
under the assumption that the system dynamics satisfy the
no-resonance condition (NRC), meaning the energy spectrum
contains no degeneracies nor degenerate gaps. The condition
of nondegenerate energy gaps is generically satisfied by fully
interacting Hamiltonians [30], while the full NRC is expected
to hold, either exactly or approximately, for generic chaotic
Hamiltonians [31]. Furthermore, the addition of small random
perturbations generally lifts any degeneracies so that the NRC
is satisfied, even though the effect of such perturbations may
be significant only in large timescales.

Given a specific background structure (e.g., in terms of
spatial locality, such as a collection of neighboring qubits) and
physical system of interest, suitable averages of OTOCs over
the corresponding degrees of freedom quantify its scrambling
dynamics and reveal connections with other information-
theoretic concepts, such as operator entanglement and entropy
production [26,29,32], quantum coherence [33], quasiproba-
bilities [34], and more [25,35,36].

However, a reversed approach can be taken: given a
dynamics, different partitionings of the system can be
distinguished by their distinct scrambling properties, re-
vealing an emergent structure. This corresponds to an
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information-theoretic approach to quantum mereology,1 the
study of parthood relations in quantum systems [38–40].

Recently, Zanardi et al. [39] used the short-time expansion
of the A-OTOC as a mereological diagnostic criterion. The
algebraic approach to quantum mereology relies on two gen-
eral mathematical properties of Hilbert spaces. First, Hilbert
spaces are not equipped with unique tensor product structures,
even if a physical system may have a “natural” decomposition
(e.g., a collection of qubits, or an obvious system and bath).
Second, a subalgebra of observables induces a specific decom-
position of its Hilbert space.2 This “structural” freedom was
recognized in previous work on virtual quantum subsystems
[41,42] and is relevant to decoherence-free subspaces [43,44],
noiseless subsystems [45,46], operator-error correction [47]
and quantum reference frames [48]. It is intuitive, as Zanardi
et al. proposed, to consider the minimization of the short-time
A-OTOC as a selection of a preferred Hilbert space decompo-
sition into parts which scramble their informational identities
most slowly.

Using our results for the A-OTOC LTA, we extend this
framework to the long-time limit. We interpret the minimiza-
tion of the LTA over algebras as a selection of a preferred
decomposition of a system at “macroscopic” timescales. This
selection is a task of fundamental interest in understanding
emergent structure and phenomena in quantum systems, as
well as comparing the differences in structure between short
and long timescales. It may also serve as a practical diagnostic
for studying scrambling of operationally accessible observ-
ables on quantum circuits [13]. In some cases, the A-OTOC
minimization can be interpreted as fixing an algebra of observ-
ables and identifying a least-scrambling unitary dynamics,
which may be a more meaningful interpretation in examples
involving quantum control.

In Sec. II, we formally introduce the A-OTOC as well as
the decomposition of the Hilbert space induced by an algebra
and its commutant. In Sec. III, we take the long-time aver-
age of the A-OTOC and derive expressions for the A-OTOC
LTA that hold in nonresonant systems, showcasing their use
numerically for a family of stabilizer algebras. In Sec. IV we
study the minimization of the LTA for unitary families of NRC
Hamiltonians, providing a simple analytical application in the
context of quantum reference frames, as well as exhibiting nu-
merically the connection of the bipartite A-OTOC LTA with
the average eigenstate mutual information in certain quantum
many-body systems. Lastly, Sec. V provides conclusions and
steps forward for future research.

II. PRELIMINARIES

Consider a finite-dimensional quantum system represented
by a Hilbert space H ∼= Cd . Any physical observable is repre-
sented by a linear operator and we denote as L(H) the space
of all linear operators on H. L(H) is also a Hilbert space
equipped with the Hilbert-Schmidt inner product: 〈X,Y 〉 =
Tr(X †Y ). For closed quantum systems in the Heisenberg

1The term mereology is borrowed from philosophy, where it has a
rich history. For a succinct overview, see Ref. [37].

2See Sec. II for a formal statement.

FIG. 1. A visual representation of information scrambling in-
duced by Hamiltonian time evolution. The “component” of A′(t ) that
“leaks” into A corresponds to the scrambling; this is represented by
the dotted component of A′(t ).

picture, the time evolution of a physical observable X ∈ L(H)
is given as Ut (X ) = Ut XU †

t , where Ut = exp itH is the unitary
evolution generated by the system Hamiltonian H .

The central mathematical structures in this paper are
Hermitian-closed, unital subalgebras A ⊂ L(H) that are used
to describe the relevant degrees of freedom of interest. The
symmetries of A constitute the commutant algebra A′ = {Y ∈
A′|[Y, X ] = 0 ∀X ∈ A} and correspond to degrees of freedom
initially uncorrelated with A. Due to the double commutant
theorem, (A′)′ = A [49], and therefore these algebras can
be considered as pairs (A,A′). Under time evolution, infor-
mation is scrambled between A and A′, quantified by the
A-OTOC [50]:

Definition 1. The A-OTOC of algebra A and unitary Ut is
defined as

GA(Ut ) = 1

2d
EXA,YA′

[‖XA,Ut (YA′ )‖2
2

]
. (1)

EXA,YA′ denotes the Haar average over the unitaries XA ∈
A and YA′ ∈ A′. The evolution of operators in A′ under
Ut leads to potential noncommutativity with operators in A,
which is intuitively interpreted as information scrambling be-
tween the corresponding degrees of freedom (see Fig. 1). This
is operator spreading in the space of algebras, where locality is
defined relative to A. The A-OTOC thus provides an informa-
tion scrambling measure with respect to a generalized locality
structure [see Eq. (2)], independent of a specific choice of
operators XA and YA′ .

Importantly, the subalgebra of observables A induces a
decomposition of the Hilbert space H into a direct sum of
virtual quantum subsystems [41,42], referred to as generalized
tensor product structure (gTPS) [39]. Specifically, denoting
the center of the algebra as Z (A) := A ∩ A′ with dimension
dim Z (A) = dZ , we have

H =
dZ⊕

J=1

HJ , HJ
∼= CnJ ⊗ CdJ , (2)

where A and A′ act irreducibly on the CdJ and CnJ factors
respectively:

A ∼=
dZ⊕

J=1

InJ ⊗ L(CdJ ), A′ ∼=
dZ⊕

J=1

L(CnJ ) ⊗ IdJ . (3)

From Eqs. (2) and (3), we have d = ∑
J nJdJ , dim A :=

d (A) = ∑
J d2

J , and dim A′ := d (A′) = ∑
J n2

J .
For any given algebra A, there is an orthogonal com-

pletely positive projection map PA : L(H) → A, such that
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PA = P 2
A, PA = P †

A, ImPA = A. In terms of Eq. (3),

we have PA(·) = ⊕J
1nJ
nJ

⊗ TrnJ (·) and, similarly, PA′ (·) =
⊕JTrdJ (·) ⊗ 1dJ /dJ . Using appropriate orthogonal bases
{ fγ }d (A′ )

γ=1 of A′ and {eα}d (A)
α=1 of A, the projection maps have

the Kraus representations PA(·) = ∑
γ fγ (·) f †

γ , PA′ (·) =∑
α eα (·)e†

α [see Eq. (A2) for an explicit expression].

III. ALGEBRA SCRAMBLING IN THE LONG-TIME LIMIT

We begin with a Hamiltonian with a spectral decompo-
sition H = ∑M

k=1 Ek�k , where M is the number of distinct
energy levels. The scrambling properties of the unitary dy-
namics Ut = exp itH over algebras A in the long-time regime
can be quantified by utilizing the infinite-time average of the

A-OTOC, hereafter referred to as A-OTOC long-time time
average (LTA):

GA(Ut )
t

:= lim
T →∞

1

T

∫ T

0
GA(Ut )dt . (4)

Typical quantum systems reach equilibrium [51–53], whence
the A-OTOC relaxes to an equilibration value given by the
LTA.

A. The A-OTOC under the no-resonance condition

We now look to the nonresonant regime. There are two
types of systems that we consider. The first are those satisfying
the NRC+ [26]: energy gaps are nondegenerate but there exist
energy level degeneracies. The second are those with both
nondegenerate energy gaps and energy levels, satisfying the
full NRC. The LTA for each is written below:

Proposition 1.

(i)

GA(Ut )
NRC+

= 1 − 1

d

⎡
⎣∑

γ

(
‖PA′ [DH ( fγ )]‖2

2 − 1

2

∑
k

‖PA′ (�k fγ �k )‖2
2

)

+
∑

α

(
‖PA[DH (eα )]‖2

2 − 1

2

∑
k

‖PA(�keα�k )‖2
2

)]
, (5)

where DH (·) := ∑M
k=1 �k (·)�k is the dephasing map with respect to the eigenprojectors of H and fγ , eα are given in Eq. (A2).

(ii)

GA(Ut )
NRC = 1 − 1

d

⎛
⎝ ∑

X={A,A′}
Tr
(
R(0),X R(1),X ′) − 1

2
Tr
(

R(0),X
D R(1),X ′

D

)⎞⎠, (6)

where, for algebra X , we define R(0),X
lk := ‖PX (|φk〉〈φl |)‖2

2,
R(1),X

kl := 〈PX (�k ),PX (�l )〉, and for matrix M, MD :=
diag(M ).

A few observations follow directly. First, the infinite-time
average ensures that these NRC LTAs are independent of
any specific energy eigenvalues. Any Hamiltonians sharing
a fixed set of eigenstates and satisfying the NRC will have
the same A-OTOC LTA. Second, the above NRC expres-
sions are generally not bounds on the exact LTA for systems
not satisfying the NRC—the net sum of terms discarded in
these expressions can be either positive or negative. A notable
exception to this is for the important special case of alge-
bras that satisfy nJ = λdJ ∀ J for some integer λ, whence
the A-OTOC has a neat geometrical representation and the
NRC approximation provides an upper bound [54]. Finally,
systems with energy degeneracies do not necessarily have
a unique NRC LTA. This is because the NRC expression
depends on a choice of eigenbasis within degenerate energy
levels, since all projectors in the formula are one-dimensional.
These last two observations are especially relevant for usage
of the NRC LTA expression as an approximation for the
exact value.

Example 1 (stabilizer algebras). Let GS be the stabilizer
group generated by the stabilizer operators {Sl}n−k

l=1 associ-

ated with a stabilizer code with k logical qubits. Let Ast :=
C[GS] be the group algebra of GS . Then, the Hilbert space
decomposes into 2k-dimensional sectors H ∼= ⊕2n−k

J=1C
2k

that
correspond to the encoding and syndrome subspaces. In terms
of Eq. (2), we have dJ = 1 and nJ = 2k ∀ J = 1, . . . , 2n−k .

Suppose that we have a parametrized family of such
stabilizer algebras {Ast (θ )}θ and some unitary dynamics
U . The behavior of the A-OTOC LTA as a function of
θ describes the variation of the (on average) scrambling
of the corresponding encoding and syndrome subspaces by
the dynamics in long timescales. In general, determining
this behavior for a given family of algebras is nontrivial,
but we expect that in many cases the Eqs. (5) and (6)
may serve as “proxies” to the exact behavior of GA(Ut )

t
.

To illustrate this consider the family of algebras A =
{exp(iθσy)A5 exp(−iθσy)|θ ∈ [0, π/4]}, where A5 is the sta-
bilizer algebra associated with the stabilizer operators of the
5-qubit “perfect” code: {XZZXI, IXZZX, XIXZZ, ZXIXZ}.
For the unitary dynamics, we consider the Heisenberg model
with closed boundary conditions and a magnetic-field term
H = ∑5

i=1(hσ i
z + �σ i �σ i+1), where �σ 6 ≡ �σ 1 and h is a coupling

constant.
Using this family of algebras and dynamics, we compute

as a function of θ the NRC and NRC+ approximations of the
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FIG. 2. The A-OTOC LTA for the family of stabilizer algebras A = {exp(iθσy )A5 exp(−iθσy )|θ ∈ [0, π/4]} of the 5-qubit “perfect” code
with the dynamics given by the Heisenberg model. (a) For h = 0 the exact LTA is constant for all the stabilizer algebras since the rotation
exp iθσy is a symmetry of the Hamiltonian; the NRC+ approximation accurately captures this (since the eigenprojectors are similarly invariant),
however, the NRC approximation gives a nonconstant value as the chosen eigenbasis is not necessarily invariant under the rotation. (b) For
h = 1 both the NRC and NRC+ approximation accurately capture the behavior of the exact LTA, with minima occurring at θ = 0 and θ = π/4.

A-OTOC LTA, as well as the exact one obtained by numerical
simulations of the time evolution. We perform the above com-
putations for h = 0 and h = 1 (see Fig. 2). For h = 1, the NRC
and NRC+ approximations accurately capture the behavior of
the exact LTA, with minima occurring at θ = 0 and θ = π/4,
which corresponds to a rotation of X → Z , Z → −X . On the
other hand, for h = 0, the rotation exp(iθσy) is a symmetry of
the Hamiltonian, so the exact LTA is constant as a function of
θ ; this behavior is accurately captured by the NRC+, whereas
the NRC approximation gives a nonconstant value since the
chosen (nonunique) eigenbasis is not necessarily invariant
under the Hamiltonian symmetry.

IV. A-OTOC LONG-TIME-AVERAGE MINIMIZATION

In this section, we will be interested in using Eqs. (5) and
(6) to minimize the A-OTOC LTA over families of algebras.
A main motivation for this endeavor comes from Ref. [39],
where the short-time expansion of the A-OTOC, referred to
as the “Gaussian scrambling rate” τ−1

S , was introduced by
Zanardi et al. as a mereological criterion for any algebra A.
Specifically, it was shown that GA(Ut ) = 2(t/τS )2 + O(t3),
where

τ−1
S =

∥∥∥∥(1 − PA+A′ )
H√

d

∥∥∥∥
2

. (7)

At short timescales, this quantity describes the rate at which
information scrambles from A to its commutant A′ and is
related to the distance of the Hamiltonian H from the “no-
scrambling” operator subspace A + A′. Given the association
between algebras and virtual partitions of systems [Eq. (2)],
the Gaussian scrambling rate describes how quickly a collec-
tion of parts loses its “informational identity.” Equipped with
this interpretation, Zanardi et al. argued that it is natural to
consider partitions which retain their identity the longest to
be dynamically “preferred.” Thus, for a family of algebras
{Aθ }θ and Hamiltonian H , the algebra Amin ∈ {Aθ }θ with the
smallest τ−1

S “emerges” as the dynamically preferred decom-
position of the system under the action of H .

In this paper, we follow the same general framework as
Ref. [39] but focus on long timescales. We use the A-OTOC
LTA as our mereological criterion, which we interpret as
measuring the extent to which a decomposition of the Hilbert
space persists, on average, with informational “integrity.” The
remainder of this paper thus relies on the following:

Principle. Given a Hamiltonian H , and set of Hilbert space
partitions represented by a parametrized family of algebras
{Aθ }θ , the dynamically preferred partition at long timescales,
Amin ∈ {Aθ }θ , is the one that minimizes GA(Ut )

t
.

We can utilize Eq. (6) to analytically minimize the
A-OTOC LTA over unitary families of NRC Hamiltoni-
ans. Note that, in general, for Eq. (1), GA(WUtW†) =
GW†(A)(Ut ), where W is some unitary channel. This means
that optimizing over unitary families of Hamiltonians is dual
to optimizing over unitary families of algebras.

Proposition 2. Let A ∼= ⊕dZ
J=11nJ ⊗ L(CdJ ) be an algebra

of observables and Hf be a family of NRC Hamiltonians that
respect the superselection structure of the gTPS induced by
A, i.e., H ∈ Hf ⇔ H = ⊕JHJ and H satisfies NRC. Then the
following holds:

(i) The Hamiltonian with eigenstates that are prod-
uct states over the virtual quantum subsystems, i.e.,
{|ψJ〉 ⊗ |φJ〉|J = 1, . . . dZ ; ψJ = 1, . . . , nJ ; φJ = 1, . . . , dJ},
minimizes the A-OTOC LTA NRC. The minimum value is

GA
NRC
min = 1 − 1

d

(∑
J

dJ +
∑

J

nJ − dZ

)
. (8)

(ii) In particular, if A is a bipartite algebra (dZ = 1),
the Hamiltonian with product eigenstates over the bipartition
minimizes the bipartite OTOC LTA NRC over all NRC Hamil-
tonians. The minimum value is

G
NRC
min = 1 − 1

d1
− 1

d2
+ 1

d1d2
, (9)

where H ∼= Cd1 ⊗ Cd2 .
The above proposition shows that for NRC Hamiltonians

that are block diagonal with respect to the gTPS [Eq. (2)]
induced by A, the minimum of the A-OTOC LTA NRC is
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achieved exactly by Hamiltonians with eigenstates that have
zero entanglement across the virtual quantum subsystems of
the gTPS. Note that these eigenstates are unique up to local
unitaries on each virtual bipartition.

In addition, if A or A′ is Abelian (i.e., if nJ = 1 ∀ J or
dJ = 1 ∀ J), there is always an NRC block-diagonal Hamil-
tonian that belongs in A′ or A, respectively. Indeed, the NRC
minimum of Eq. (8) is GA

NRC
min = 0, when there is no infor-

mation scrambling. A special case is when A is a maximally
Abelian algebra {|k〉〈k|}d

k=1, whence the A-OTOC is equal
to the coherence-generating power of U in the basis B =
{|k〉}d

k=1 [50,54]. In this case, minimal scrambling corresponds
to Hamiltonians that have B as the eigenbasis.

Based on the above results, we conjecture that, for a
given algebra A, the NRC Hamiltonians with eigenstates
of the form {|ψJ〉 ⊗ |φJ〉|J = 1, . . . dZ ; ψJ = 1, . . . , nJ ; φJ =
1, . . . , dJ} minimize the A-OTOC LTA over the set of all
NRC Hamiltonians. Note that the conjectured Hamiltonian
is diagonal in the basis3 naturally selected by the algebra A.
Intuitively, such an eigenstate structure has the least coher-
ence and entanglement over the additive and multiplicative
components of the gTPS Eq. (2). Using the duality be-
tween optimizing over unitary families of Hamiltonians and
algebras, searching over all possible NRC Hamiltonians is
equivalent to searching over the equivalence class of isomor-
phic algebras, so the conjecture can be stated as

Conjecture. Let H be an NRC Hamiltonian and A f

be the equivalence class of isomorphic algebras of the
form A ∼= ⊕dZ

J=11nJ ⊗ L(CdJ ). Then, the algebra corre-
sponding to a gTPS [Eq. (2)] for which the Hamiltonian
eigenstates have the form {|ψJ〉 ⊗ |φJ〉|J = 1, . . . dZ ; ψJ =
1, . . . , nJ ; φJ = 1, . . . , dJ} minimizes the A-OTOC LTA over
the family of isomorphic algebras. The minimum value is

GA
NRC
min = 1 − 1

d

(∑
J

dJ +
∑

J

nJ − dZ

)
. (10)

Example 2 (quantum reference frames). Let us consider the
possible quantum reference frame relativity of the A-OTOC
LTA minimization. Before applying it to our framework, we
provide a brief overview of the perspective-neutral approach
to quantum reference frames (QRFs) [55–57]. Intuitively, us-
ing a quantum subsystem as a reference frame corresponds
to describing the state of the rest of the system in relation
to the state of the quantum frame. The reference frames we
consider are internal to the system, meaning they correspond
to quantum subsystems of the full Hilbert space Htot. For
simplicity, we focus on a full space consisting of two inter-
nal QRFs (R1 and R2) and a system of interest S, so that
Htot

∼= H1 ⊗ H2 ⊗ HS .
The basic ingredient of the formalism is a group G, taken

to be Abelian here, that constitutes the space of frame orienta-
tions, in a similar manner that the Lorentz group SO+(3,1) is
the space of classical frame orientations in special relativity
[55,57]. For ideal QRFs, the Hilbert spaces Hi

∼= C|G| are

3The distinguished basis corresponding to A consists of vectors
|pJ〉 ⊗ |kJ〉 (pJ = 1, . . . nJ , kJ = 1, . . . , dJ ) and is unique up to local
unitaries in each J-block.

spanned by the frame configuration states |g〉i, g ∈ G, and
furnish a regular unitary representation of G, U g′

i |g〉 = |g′g〉.
External frame reorientations are given by elements of a uni-
tary tensor product representation of G, U g

12S := U g
1 ⊗ U g

2 ⊗
U g

S . Relational states belong to the physical Hilbert space
Hphys ⊂ Htot, obtained via a coherent group averaging

�phys : Htot → Hphys,

�phys := 1

|G|
∑
g∈G

U g
12S,

(11)

and are invariant under the action of U g
12S . Hphys is the gauge-

invariant Hilbert space, such that U g
12S|ψphys〉 = |ψphys〉 ∀ g ∈

G, |ψ〉phys ∈ Hphys. Jumping into the perspective of a QRF
corresponds to gauge-fixing. For example, we can fix the R1

frame to be in a given orientation g. This is achieved via the
reduction map

Rg
1 : Hphys → H2 ⊗ HS,

Rg
1 =

√
|G|(〈g|1 ⊗ 12 ⊗ 1)�phys. (12)

This is a unitary map with the inverse given as [58, Lemma
21] (

Rg
1

)−1 = (
Rg

1

)† =
√

|G|�phys(|g〉1 ⊗ 12 ⊗ 1S ). (13)

Here, H2 ⊗ HS is the perspective Hilbert space as “seen”
from the R1 point of view. Utilizing the reduction maps, the
change from the description of the full system relative to R1

in orientation g to the one relative to R2 in orientation g′ is
given by

V g,g′
1→2 = Rg′

2

(
Rg

1

)†
. (14)

V g,g′
1→2 is unitary and defines an isomorphism between the

perspective Hilbert spaces H2 ⊗ HS and H1 ⊗ HS , while the
adjoint action V̂ g,g′

1→2(·) ≡ V g,g′
1→2(·)(V g,g′

1→2)† is an algebra iso-
morphism between L(H2 ⊗ HS ) and L(H1 ⊗ HS ).

Let g1 and g2 be the orientations of R1 and R2 and assume
that the dynamics from the perspective of R1 are given by
a Hamiltonian H1 ∈ L(H2 ⊗ HS ). The associated dynamics
from the perspective of R2 are, then, given by the Hamiltonian
H2 = V̂ g1,g2

1→2 (H1) ∈ L(H1 ⊗ HS ). We distinguish between two
cases of information scrambling minimization based on the set
of algebras of interest:

Perspective-neutral minimization. Consider a set of al-
gebras of relational observables expressed as A1 = {Aμ

2S ⊂
L(H2 ⊗ HS )}μ in the R1 frame and A2 = {V̂ g1,g2

1→2 (Aμ
2S ) ⊂

L(H1 ⊗ HS )}μ in the R2 frame. The minimization of the
A-OTOC LTA can then be performed equivalently either over
A1 with dynamics given by H1 or over A2 and dynamics given
by H2; in this sense, it is perspective-neutral. The algebras
obtained in this way are simply related by V̂ g1,g2

1→2 , but will, in
general, differ in terms of their locality structure with respect
to the corresponding perspective Hilbert spaces H2 ⊗ HS and
H1 ⊗ HS [57].

Perspectival minimization. Let {Aμ
S ⊂ L(HS )}μ be a set

of observable algebras of interest in the system S. From the
perspective of R1, these degrees of freedom are described
by A1 = {12 ⊗ Aμ

S }μ, while from the perspective of R2 by
A2 = {11 ⊗ Aμ

S }μ. Although we use the same notation as
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before for the sets of algebras A1, A2, we note that they are
no longer simply related by V̂ g1,g2

1→2 ; they are now distinct and
the A-OTOC LTA minimization will depend on the “chosen”
perspective.

To more concretely illustrate the above observations, let
us consider a toy example where the frames R1 and R2

and the system S are qubits. In this case, the frame con-
figuration group is simply the cyclic group of order 2,
G = Z2 = {e, g|e2 = e, eg = g, g2 = e}. Also, Hi

∼= C2 and
we identify the configuration states with the computational
basis of the R1, R2 qubits, namely, |e〉i := |0〉i, |g〉i := |1〉i
and, thus, U e

i = 1i, U g
i = σ x

i , where we denote as σ
x,y,z
α the

Pauli operators acting on the α subsystem. For simplicity,
let the group action on S be the same, namely, U e

S = 1S ,
U g

S = σ x
S . Assuming that both QRFs are in the e orienta-

tion, we have V e,e
1→2 = |0〉1 ⊗ 〈0|2 ⊗ 1S + |1〉1 ⊗ 〈1|2 ⊗ σ x

S ,
and V e,e

2→1 = 〈0|1 ⊗ |0〉2 ⊗ 1S + 〈1|1 ⊗ |1〉2 ⊗ σ x
S .

Let the dynamics in the R1 perspective be given by the
Hamiltonian

H1 = Jzσ
z
2 ⊗ σ z

S + Jxσ
x
2 ⊗ σ x

S + Jyσ
y
2 ⊗ σ

y
S , (15)

where Jx, Jy, Jz are coupling constants. In R2’s perspective, the
Hamiltonian is

H2 = V̂ e,e
1→2(H1)

= Jz11 ⊗ σ z
S + Jxσ

x
1 ⊗ 1S − Jyσ

x
1 ⊗ σ z

S . (16)

Using this setup we now showcase examples for the two types
of minimization we conceptually described above.

(1) As an example of perspective-neutral optimization, we
consider the so-called natural bipartitions [57]. Intuitively,
these bipartitions correspond to the way the QRF observers
divide the “rest” of the system into “other frame” and S
subsystems. Expressing these bipartitions in the R1 frame, we
have

A1 = {A1,A2}, where

A1 = 12 ⊗ L(HS )

= 〈
12S,12 ⊗ σ z

S ,12 ⊗ σ x
S ,12 ⊗ σ

y
S

〉
A2 = V̂ e,e

2→1[11 ⊗ L(HS )]

= 〈
12S, σ

z
2 ⊗ σ z

S ,12 ⊗ σ x
S , σ z

2 ⊗ σ
y
S

〉
. (17)

For Jx, Jy, Jz all different to each other, the Hamiltonian
Eq. (15) satisfies the NRC and the eigenstates are given by the
Bell states |φ±〉 = 1/

√
2(|0〉2 ⊗ |0〉S ± |1〉2 ⊗ |1〉S ), |ψ±〉 =

1
√

2(|0〉2 ⊗ |1〉S ± |1〉2 ⊗ |0〉S ). Denoting the Bell states as
|χλ〉; χ = φ,ψ ; λ = +,−, notice that A2 is the algebra
of observables that acts nontrivially only on χ and thus
corresponds to a virtual bipartition where the Bell states
are product states. Then, due to Proposition 2, GA2 (U1,t )

t =
1/4, where Uα,t (·) = exp itHα (·) exp −itHα , α = 1, 2, and A2

minimizes the A-OTOC LTA. Also, GA1 (U1,t )
t = 3/4, which

saturates the upper-bound max{1 − 1/d (A), 1 − 1/d (A′)} of
the A-OTOC [50]. Therefore, A2 is the emergent bipartition,
corresponding to R1 and S being distinguishable systems from
the perspective of R2, and R2 and S to be “entangled” from the
perspective of R1. In this sense, R2 remains “hidden” from R1,
while R1 is “visible” to R2.

(2) As an example of perspectival minimization, consider
a family of subalgebras of AS ≡ {〈1S, σ

�η
S 〉}�η, parametrized

by the unit vector �η = {(ηx, ηy, ηz ) ∈ R3|η2
x + η2

y + η2
z =

1}, where σ �η
S = ηxσ

x
S + ηyσ

y
S + ηzσ

z
S . These observables

correspond to the spin of S in the �η direction and relate to
the distinct families of relational observable algebras A1 =
{A�η

1 ≡ 〈12S,12 ⊗ σ �η
S 〉}�η and A2 = {A�η

2 ≡ 〈11S,11 ⊗ σ �η
S 〉}�η.

In R1’s perspective the dynamics are given by Eq. (15), while
in R2’s perspective by Eq. (16), and the A-OTOC LTA for A�η

1,
A�η

2 is given respectively as a function of �η as

GA�η
1
(U1,t )

t = 1

2
− η4

x + η4
y + η4

z

8
, (18)

GA�η
2
(U2,t )

t = (
1 − η2

z

)(3 + 5η2
z

)
8

. (19)

The minimum value of Eq. (18) is 3/8 and is achieved when
any of ηx, ηy, ηz is equal to ±1; from the R1 perspective all
three algebras that correspond to the spin directions x̂, ŷ, ẑ
of S indistinguishably minimize the LTA. The equivalence of
the x̂, ŷ, ẑ directions is readily anticipated by the fact that the
eigenstates of Eq. (15) are invariant under any π/2 rotation
around any coordinate axis x, y, z. The minimum value of
Eq. (19) is 0 and is achieved when ηz = ±1; from the R2

perspective, the algebra corresponding to the spin direction
ẑ of S is dynamically preferred, maximally retaining its in-
formational content. This is intuitive since the spin of S in
the z direction is a conserved quantity of the Hamiltonian in
Eq. (16). This shows that using the A-OTOC minimization
criterion, the dynamically preferred partition of the system S
differs for observers in different QRFs.

Example 3 (many-body emergent bipartitions). We now
focus on the important, special case of a bipartite algebra
A, with H ∼= HA ⊗ HB and A ∼= 1A ⊗ L(HB). Here, GA(Ut )
coincides with the operator entanglement of Ut across the A:B
bipartition [26], where Ut (·) = Ut (·)U †

t .
For a bipartite algebra, the Gaussian scrambling rate

Eq. (7) that dictates the short-time behavior of the A-OTOC
is [39]

τ−1
S = 1√

d

∥∥∥∥H − 1A

dA
⊗ TrA(H ) − TrB(H ) ⊗ 1B

dB

∥∥∥∥
2

, (20)

assuming for simplicity that Tr(H ) = 0. Equation (20) shows
that the short-time behavior of the bipartite A-OTOC depends
exactly on the strength of the interaction part of the Hamilto-
nian between A and B.

For the bipartite A-OTOC NRC LTA of Eq. (6) we see that
[26]

d2(1 − G(Ut )
NRC

)

=
∑

X={A,B}

⎛
⎝ d∑

k,l=1

〈
ρX

k , ρX
l

〉2 − 1

2

d∑
k=1

〈
ρX

k , ρX
k

〉2⎞⎠, (21)

where R(X )
kl := 〈ρX

k , ρX
l 〉 is the Gram matrix of the reduced

Hamiltonian eigenstates on the X subsystem. Equation (21)
shows that the bipartite A-OTOC LTA is intimately related to
the entanglement structure of the Hamiltonian eigenstates that
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FIG. 3. The dependence of the bipartite A-OTOC LTA GA(Ut )
t

and the average eigenstate mutual information Ī on the choice of bipartition
for (a) the transverse field Ising model (TFIM) and (b) the XXZ Heisenberg model with N = 6 qubits. The qualitative behavior of GA(Ut )

t
and

Ī is identical, showing that, for the chosen many-body models, the bipartite A-OTOC LTA probes the amount of correlations of the Hamiltonian
eigenstates across the bipartition A : B.

depends on the full details of the Hamiltonian operator, well
beyond simply the interaction strength.

In what follows, we consider a background tensor prod-
uct structure (TPS) H ∼= ⊗

i Hi and compare the short-
and long-time behavior of the A-OTOC for algebras
that act nontrivially on a subset of the subsystems Hi.
Specifically, we consider a spin-chain of N qubits, H ∼=
(C2)N with open boundary conditions and dynamics given by
(i) the XXZ Heisenberg model HXXZ = ∑N

i=1[JX (σ x
i σ x

i+1 +
σ

y
i σ

y
i+1) + Jσ z

i σ z
i+1] with JX = −0.4, J = −1; (ii) the trans-

verse field Ising model (TFIM) HI = ∑N
i=1(hσ z

i + gσ x
i ) −∑N−1

i=1 σ z
i σ z

i+1 with h = −0.5,, g = 1.05. Let N be even and
A be the set of algebras that act nontrivially on exactly N/2
(not necessarily contiguous) qubits. We are interested in the
emergent spatial bipartition for the short- and long-time limits
based on the principle of minimal scrambling. Clearly, the
bipartition that minimizes the interaction Hamiltonian, and
thus the Gaussian scrambling rate, for either of the models
is the contiguous one: HA = ⊗N/2

i=1 Hi, HB = ⊗N
i=N/2+1 Hi.

Note that for the above coupling constants, the XXZ model
satisfies NRC+ as there are no gap degeneracies, while the
Ising model is chaotic, satisfying NRC [26]. Using Eq. (5)
for the XXZ model and Eq. (6) for the Ising model, we
calculate for N = 6 the A-OTOC LTA for all possible choices
of algebras in A . We find that the bipartition that mini-
mizes the A-OTOC LTA coincides with the short-time one,
HA = H1 ⊗ H2 ⊗ H3, for the Ising model, while for the XXZ
model there are two noncontiguous long-time preferred bi-
partitions, HA = H1 ⊗ H2 ⊗ H6 and HA = H1 ⊗ H5 ⊗ H6.
These noncontiguous bipartitions deviate from the short-time
dynamically preferred ones, which correspond to minimal
interaction strength across the boundary.

As is clear from Eq. (21), the A-OTOC LTA is related to
the eigenstate correlations between either subsystem of a bi-
partition. To make this relation more concrete, we compute for
the models above an average eigenstate mutual information

Ī ≡ 1

M

M∑
i=1

I (ρEi ) (22)

where ρEi
:= �i/Tr(�i ) is the uniform pure state ensem-

ble of eigenstates in a given energy Ei and I (ρ) := S(ρA) +

S(ρB) − S(ρ) is the mutual information of ρ across the A : B
bipartition. As shown in Fig. 3, the qualitative behavior of
the A-OTOC LTA as a function of the chosen bipartition
is identical to that of Ī . Quite intuitively, for the many-
body systems considered here, the information scrambling
between A and B in long times is controlled by the amount of
eigenstate mutual information, and its minimization over A
is related to the subsystem emergence in the long-time limit.
This correlation sheds light on the role of entanglement in the
emergence of nontrivial bipartitions: long-time information
scrambling is lower between subsystems over which Hamil-
tonian eigenstates are less entangled. Notice that, under NRC,
Proposition 2 already ensures that for the optimal bipartition,
the eigenstate entanglement is exactly zero; such a bipartition
will in general be highly nontrivial and nonlocal. The obser-
vations above highlight how eigenstate entanglement plays a
significant role even when comparing algebras away from the
“global” optimum point.

FIG. 4. The number of algebra classes scales exponentially in
Hilbert-space dimension, making higher dimensional tests of the
conjecture difficult.
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A. Numerical evidence for conjecture

We make use of the algebra-Hamiltonian duality of the
NRC LTA by fixing an algebra A and searching over the space
of Hamiltonians for a violation of the conjecture. As seen
in Eq. (6), the NRC LTA depends only on the Hamiltonian
eigenbasis, which can be represented by a unitary matrix with
eigenstates as the columns. Given an underlying basis, this
representation is unique up to permutations of the columns.
Succinctly, for Hamiltonian eigenbasis (unitary) E and alge-
bra A, the LTA is a function fA(E ).

For any arbitrary unitary U , UE is also a unitary
corresponding to the eigenbasis of some other class of Hamil-
tonians, and for any eigenbasis Q, there exists a U such that
Q = UE . Fixing E = I for convenience, which corresponds
to a Hamiltonian eigenbasis satisfying the conjecture,3 the
LTA is a function fA(U ).4 We can now search over all uni-
taries to try to find a U such that fA(U ) is less than the
conjectured minimum. To do this, for a fixed algebra, we
use an algorithm devised by Abrudan et al. [59] to perform
gradient descent of the LTA on the space of unitary matrices
(see Appendix A 4 for elaboration). The algorithm is run until
convergence, beginning with a random unitary. At this point,
we compare the observed LTA value with the conjectured
minimum.

To systematically search for a violation of the conjecture,
we need to perform this gradient descent for all algebras of a
given Hilbert-space dimension. Recall that each algebra has a
structure given by Eq. (3). This allows us to characterize each
algebra by dZ and the set of pairs {(nJ , dJ )}dZ

J=1. Note that these
values correspond to an equivalence class of algebras that are
identical up to intrasector unitary conjugation, which can be
thought of as just performing a change of basis within a sector.
Because we are already performing a search over unitaries, it
is sufficient to select just one representative algebra from each
equivalence class on which to run the algorithm.

To generate these algebras, given a Hilbert-space dimen-
sion d , we generate all unique sets of positive integers which
sum to d . Each integer corresponds to the dimension of a
block in the direct sum Eq. (3), and dZ is the order of the set.
The ordering of elements in a given set does not matter, since
the rearrangement of blocks in the direct sum does not affect
the algebra structure. Next, we decompose each integer into a
product of two factors, corresponding to nJ and dJ ; the full set
of pairs corresponds to an equivalence class of algebras. We
continue to perform this decomposition until we generate all
unique sets of pairs, i.e., every equivalence class of algebras.
Finally, we run the unitary gradient descent algorithm on each
algebra class. Note that the number of algebra classes scales
exponentially in system size, see Fig. 4.

We were able to generate all algebra classes for Hilbert
spaces up to d = 40. For each class generated, the resultant
LTA value equals the conjectured minimum. This provides
some numerical evidence that the conjectured minimum is at
least a local minimum for small systems.

4It is important to recognize that U here is distinct from the time-
evolution unitary Ut in previous formulas.

V. CONCLUSION

We have studied the long-time properties of quantum in-
formation scrambling of algebras of observables A, quantified
by the long-time average (LTA) of the A-OTOC. In systems
with energy spectra that satisfy nonresonant conditions, we
have derived simplified expressions for the A-OTOC LTA
in terms of the Hamiltonian eigenprojectors and projections
onto the algebras A and A′. In the presence of resonances,
we have shown how these nonresonant approximations can
be used as a proxy for the behavior of the exact LTA for a
unitary family of stabilizer algebras as well as the dynamics
generated by a Heisenberg Hamiltonian. We expect that such
a procedure will be of practical significance in determining
the long-time scrambling properties of algebras of observables
in physical systems of interest, as computing the nonresonant
approximations is considerably less computationally complex
than calculating the exact LTA value.

Based on the above results, we have extended the use
of the A-OTOC as a criterion for quantum mereology into
the “macroscopic” regime. We propose that, given a sys-
tem Hamiltonian, the minimization of the A-OTOC LTA
selects an algebra of observables which corresponds to a
preferred Hilbert-space partition that best retains its infor-
mational structure under the dynamics. Using the analytic
formula for the LTA and a duality in optimizing the A-OTOC
over unitary families of algebras and unitary families of
Hamiltonians, we have performed analytic minimizations of
the A-OTOC LTA. For certain unitary families of NRC
Hamiltonians, including the family of all NRC Hamiltoni-
ans in a bipartite Hilbert space, we have shown that the
A-OTOC LTA is minimized when the eigenstates are unen-
tangled across the virtual bipartitions induced by A. Based
on these analytic results and some numerical evidence, we
conjecture that the minimization of the A-OTOC LTA over
all isomorphic algebras with fixed structural dimensions
dZ , {dJ}, {nJ}, is achieved by algebras that induce a gTPS
[Eq. (2)] for which the eigenstates belong to a unique su-
perselection sector and are unentangled across the virtual
bipartitions.

As a further application, we illustrated via a toy example
how our A-OTOC LTA minimization framework depends on
the choice of an internal quantum reference frame (QRF) in
the context of the perspective-neutral approach to QRFs. Fi-
nally, we numerically studied the A-OTOC LTA in the case of
bipartite algebras for certain quantum many-body models and
showed that its behavior with respect to the chosen bipartition
is connected to the average eigenstate mutual information
between the corresponding subsystems.

Computing the NRC A-OTOC LTA [Eq. (6)] requires
the ability to implement the algebra projections PA,PA′

and the dephasing map DH . The computational complexity of
the former depends on the structure of the relevant algebra of
observables, while the latter depends on the cost of diagonal-
izing H. These computations are typicaly classically simulable
only for small system sizes. A promising avenue of future
research is the experimental measurement of the A-OTOC
on quantum devices via Hamiltonian simulation. We are cur-
rently working towards measuring the bipartite A-OTOC for
a small number of qubits on NISQ-era quantum computers
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(see Appendix C of Ref. [26] for a possible experimental
protocol). We anticipate that these techniques coupled with
future realization of fault-tolerant quantum computation will
allow access to substantially larger system sizes.

The work here can be extended in several paths. Further
analytical and numerical studies are needed to investigate the
validity of the conjecture for the algebra that minimizes the
A-OTOC for NRC Hamiltonian dynamics. It is also natural
to consider the long-time behavior of the A-OTOC in open
quantum systems, where there is a competition between the
entropic contributions of information scrambling and decoher-
ence [32,50].
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APPENDIX

1. Proof of Proposition 1

Let H ∼= Cd be a Hilbert space. For a Hamiltonian evolution Ut = exp(itH ) the A-OTOC can be expressed as [50]

GA(Ut ) = 1 − 1

d
Tr
[
S�AU⊗2

t (�A′ )
]
, (A1)

where Ut (·) = Ut (·)U †
t , �A = ∑

α eα ⊗ e†
α , �A′ = ∑

γ fγ ⊗ f †
γ , and {eα}d (A)

α=1 , { fγ }d (A′ )
γ=1 are appropriate orthonormal bases of A

and A′, respectively. We can choose these algebra bases in terms of the decomposition Eq. (2) as

fγ = |pJ〉〈qJ | ⊗ 1dJ√
nJ

, γ = (J, pJ , qJ ); J = 1, . . . , dZ ; pJ , qJ = 1, . . . , nJ ,

eα = 1nJ√
dJ

⊗ |kJ〉〈lJ |, α = (J, kJ , lJ ); J = 1, . . . , dZ ; kJ , lJ = 1, . . . , dJ ,

(A2)

where we used a basis B = {|pJ〉 ⊗ |kJ〉|J = 1, . . . , dZ ; pJ = 1, . . . , nJ ; kJ = 1, . . . , dJ} of H. Using the spectral decomposition
H = ∑M

k=1 Ek�k , we have

U⊗2
t (·)t = lim

T →∞
1

T

∫ T

0

M∑
k,l,m,n=1

exp [it (Ek + El − Em − En)]�k ⊗ �l (·)�m ⊗ �n dt

=
M∑

k,l,m,n=1

δEk+El ,Em+En�k ⊗ �l (·)�m ⊗ �n. (A3)

Substituting the explicit expressions on Eq. (A1) and using the identity

Tr(SA ⊗ B) = Tr(AB), (A4)

we have

GA(Ut )
t = 1 − 1

d

M∑
k,l,m,n=1

δEk+El ,Em+En Tr

⎛
⎝d (A)∑

α=1

d (A′ )∑
γ=1

eα�k fγ �me†
α�l f †

γ �n

⎞
⎠

= 1 − 1

d

M∑
k,l,m,n=1

δEk+El ,Em+En

d (A′ )∑
γ=1

〈PA′ (�k fγ �m),PA′ (�n fγ �l )〉, (A5)

where we used that PA′ (·) = ∑
α eα (·)e†

α is a projector.
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(i) The NRC+ condition requires that there are no degenerate gaps, which implies that Ek + El = Em + En ⇔ (k = m, l =
n) or (k = n, l = m) ⇔ δEk+El ,Em+En = δk,mδl,n + δk,nδl,m − δk,lδk,mδk,n). So, Eq. (A5) becomes

GA(Ut )
NRC+

= 1 − 1

d

d (A)∑
α=1

d (A′ )∑
γ=1

⎛
⎝ M∑

k,l=1

[Tr(eα�k fγ �ke†
α�l f †

γ �l ) + Tr(eα�k fγ �l e
†
α�l f †

γ �k )] −
M∑

k=1

Tr(eα�k fγ �ke†
α�k f †

γ �k )

⎞
⎠

= 1 − 1

d

⎡
⎣d (A′ )∑

γ=1

(
‖PA′[DH ( fγ )]‖2

2 − 1

2

M∑
k=1

‖PA′ (�k fγ �k )‖2
2

)
+

d (A)∑
α=1

(
‖PA[DH (eα )]‖2

2 − 1

2

M∑
k=1

‖PA(�keα�k )‖2
2

)⎤⎦.

(A6)

(ii) The NRC condition requires in addition that the energy levels are nondegenerate, so the eigenprojectors �k are one-
dimensional, i.e., �k = |φk〉〈φk| ∀ k = 1, . . . , d . Notice that

d (A′ )∑
γ=1

‖PA′[DH ( fγ )]‖2
2 =

d (A′ )∑
γ=1

∥∥∥∥∥
d∑

k=1

〈φk| fγ |φk〉PA′ (|φk〉〈φk|)
∥∥∥∥∥

2

2

=
d (A′ )∑
γ=1

d∑
k,l=1

〈φl | fγ |φl〉〈φk| f †
γ |φk〉〈PA′ (|φk〉〈φk|),PA′ (|φl〉〈φl |)〉

=
d∑

k,l=1

〈|φk〉〈φl |,PA(|φk〉〈φl |)〉〈PA′ (|φk〉〈φk|),PA′ (|φl〉〈φl |)〉 = Tr(R(0),AR(1),A′
), (A7)

where R(0),A
lk := ‖PA(|φk〉〈φl |)‖2

2, R(1),A
kl := 〈PA(�k ),PA(�l )〉. Similarly,

d (A)∑
α=1

‖PA[DH (eα )]‖2
2 = Tr(R(0),A′

R(1),A),

d∑
k=1

d (A′ )∑
γ=1

‖PA′
(
�k fγ �k

)‖2
2 = Tr

(
R(0),A

D R(1),A′
D

)
,

d∑
k=1

d (A)∑
α=1

‖PA(�keα�k )‖2
2 = Tr

(
R(0),A′

D R(1),A
D

)
, (A8)

where RD = diag(R). Plugging Eqs. (A7) and (A8) in Eq. (A6) one gets Eq. (6).

2. Proof of Proposition 2

Recall that, given the Hilbert-space decomposition (2), we can express the projectors over A and A′ as

PA′ (·) =
dZ⊕
J=1

(
TrdJ (·) ⊗ 1dJ

dJ

)
, PA(·) =

dZ⊕
J=1

(
1nJ

nJ
⊗ TrnJ (·)

)
. (A9)

Also, we have a partial-trace trick:

TrA[TrB(|φk〉〈φl |)TrB(|φl〉|φk〉)] = TrB[TrA(|φk〉〈φk|)TrA(|φl〉|φl〉)]. (A10)

Using the above we have

Tr(R(0),AR(1),A′
) =

d∑
k,l=1

∥∥∥∥∥∥
dZ⊕
J=1

1nJ

nJ
⊗ TrnJ

(∣∣φJ
k

〉〈
φJ

l

∣∣)
∥∥∥∥∥∥

2

2

〈
dZ⊕

K=1

TrdK

(∣∣φK
k

〉〈
φK

k

∣∣) ⊗ 1dK

dK
,

dZ⊕
L=1

TrdL

(∣∣φL
l

〉〈
φL

l

∣∣) ⊗ 1dL

dL

〉

=
d∑

k,l=1

dZ∑
J=1

(〈
TrnJ

(∣∣φJ
l

〉〈
φJ

k

∣∣), TrnJ

(∣∣φJ
l

〉〈
φJ

k

∣∣)〉
nJ

)
dZ∑

K=1

(〈
TrdK

(∣∣φK
k

〉〈
φK

k

∣∣), TrdK

(∣∣φK
l

〉〈
φK

l

∣∣)〉
dK

)

=
d∑

k,l=1

dZ∑
J=1

(〈
ρ

nJ
k , ρ

nJ
l

〉
nJ

)
dZ∑

K=1

(〈
ρ

nK
k , ρ

nK
l

〉
dK

)
, (A11)
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where |φJ
k 〉 is the projection of |φk〉 on the Jth sector and ρ

nJ
k := TrdJ (|φJ

k 〉〈φJ
k |). Similarly,

Tr(R(0),A′
R(1),A) =

d∑
k,l=1

dZ∑
J=1

(〈
ρ

dJ
k , ρ

dJ
l

〉
dJ

)
dZ∑

K=1

(〈
ρ

dK
k , ρ

dK
l

〉
nK

)
,

Tr
(

R(0),A
D R(1),A′

D

)
=

d∑
k=1

dZ∑
J=1

(〈
ρ

nJ
k , ρ

nJ
k

〉
nJ

)
dZ∑

K=1

(〈
ρ

nK
k , ρ

nK
k

〉
dK

)
,

Tr(R(0),A′
D R(1),A

D ) =
d∑

k=1

dZ∑
J=1

(〈
ρ

dJ
k , ρ

dJ
k

〉
dJ

)
dZ∑

K=1

(〈
ρ

dK
k , ρ

dK
k

〉
nK

)
. (A12)

Using Eqs. (A11) and (A12) in Eq. (6) we have

d (1 − GA(Ut )
NRC

) =
d∑

k,l=1

dZ∑
J=1

(〈
ρ

dJ
k , ρ

dJ
l

〉
nJ

)
dZ∑

K=1

(〈
ρ

dK
k , ρ

dK
l

〉
dK

)
− 1

2

d∑
k=1

dZ∑
J=1

(〈
ρ

dJ
k , ρ

dJ
k

〉
nJ

)
dZ∑

K=1

(〈
ρ

dK
k , ρ

dK
k

〉
dK

)

+
d∑

k,l=1

dZ∑
J=1

(〈
ρ

nJ
k , ρ

nJ
l

〉
dJ

)
dZ∑

K=1

(〈
ρ

nK
k , ρ

nK
l

〉
nK

)
− 1

2

d∑
k=1

dZ∑
J=1

(〈
ρ

nJ
k , ρ

nJ
k

〉
dJ

)
dZ∑

K=1

(〈
ρ

nK
k , ρ

nK
k

〉
nK

)
. (A13)

Let us calculate the A-OTOC NRC LTA when the eigenstates are of the form |φk〉 = |J, p〉 ⊗ |J, m〉 where |J, p〉 ∈ CnJ and
|J, m〉 ∈ CdJ . Using the multi-index notation k = (R, p, m):

ρ
nJ
R,p,m = δJ,R|R, p〉〈R, p|,〈
ρ

nJ
R,p,m, ρ

nJ
W,s,t

〉 = δJ,RδR,W δp, s,〈
ρ

dJ
R,p,m, ρ

dJ
W,s,t

〉 = δJ,RδR,W δm, t, (A14)

we then have

d (1 − GA(Ut )
NRC

) =
∑

(R,p,m),(W,s,t )

δR,W
δp,s

nR

δp,s

dR
+

∑
(R,p,m),(W,s,t )

δR,W
δm,t

nR

δm,t

dR
−

∑
(R,p,m)

1

nR

1

dR

=
∑

R

nRd2
R

1

nRdR
+
∑

R

n2
RdR

1

nRdR
−
∑

R

nRdR
1

nRdR

=
∑

J

(dJ + nJ − 1) =
∑

J

dJ +
∑

J

nJ − dZ . (A15)

Now, consider the family of Hamiltonians that satisfy NRC and are of the form H = ⊕JHJ . This implies that each
J-subspace is spanned by exactly nJdJ orthonormal energy eigenstates, i.e., |φk〉 = |φJ,a〉 with J = 1, . . . ,Z , a = 1, . . . , nJdJ .
Equation (A13) takes the form

d (1 − GA(Ut )
NRC

) =
∑
J,a,b

〈
ρ

nJ
J,a, ρ

nJ
J,b

〉2
nJdJ

+
∑
J,a,b

〈
ρ

dJ
J,a, ρ

dJ
J,b

〉2
nJdJ

− 1

2

∑
J,a

〈
ρ

nJ
J,a, ρ

nJ
J,a

〉2 + 〈
ρ

dJ
J,a, ρ

dJ
J,a

〉2
nJdJ

. (A16)

Notice that ρ
nJ
J,a are reduced density matrices, so ‖ρnJ

J,a‖1 = 1 and ‖ρnJ
J,a‖2

2 = ‖ρdJ
J,a‖2

2 =: Pa
J � 1. So

〈
ρ

nJ
J,a, ρ

nJ
J,b

〉
� ‖ρnJ

J,a‖1‖ρnJ
J,b‖∞ � ‖ρnJ

J,b‖2 =
√

Pb
J ,

〈
ρ

dJ
J,a, ρ

dJ
J,b

〉
�
√

Pb
J . (A17)

Also, ∑
a

ρ
nJ
J,a =

∑
a

TrdJ (|φJ,a〉〈φJ,a|) = TrdJ (1nJ dJ ) = dJ1nJ ,

∑
a

ρ
dJ
J,a = nJ1dJ . (A18)

052424-11



ANDREADAKIS, DALLAS, AND ZANARDI PHYSICAL REVIEW A 109, 052424 (2024)

So

d (1 − GA(Ut )
NRC

) �
∑
J,a,b

〈
ρ

nJ
J,a, ρ

nJ
J,b

〉√
Pb

J

nJdJ
+
∑
J,a,b

〈
ρ

dJ
J,a, ρ

dJ
J,b

〉√
Pb

J

nJdJ
−
∑
J,a

Pa
J

2

nJdJ

=
∑
J,b

〈
1nJ , ρ

nJ
J,b

〉√
Pb

J

nJ
+
∑
J,b

〈
1dJ , ρ

dJ
J,b

〉√
Pb

J

dJ
−
∑
J,a

Pa
J

2

nJdJ

=
∑
J,a

[√
Pa

J

(
1

nJ
+ 1

dJ

)
− Pa

J
2

nJdJ

]
=:

∑
J,a

f (Pa
J ). (A19)

Notice that

∂ f

∂Pa
J

= nJ + dJ − 4Pa
J

3/2

2nJdJ
√

Pa
J

. (A20)

Now, for all J for which nJ , dJ � 2, the partial derivative (A20) is non-negative ∀ Pa
J ∈ (1/ min{nJ , dJ}, 1), so f is maximized

for Pa
J = 1. Meanwhile, if either nJ = 1 or dJ = 1, the purity Pa

J = 1. So

d (1 − GA(Ut )
NRC

) �
∑
J,a

f ({Pa
J = 1}) =

∑
J,a

(
1

nJ
+ 1

dJ
− 1

nJdJ

)
=
∑

J

(nJ + dJ − 1). (A21)

Thus, the value (A15) is indeed the minimum.
A technical challenge in extending this proof for the Conjecture is that for nondiagonal Hamiltonians the eigenstates |φk〉

generally have nonzero components in more than one sector J . This means that one needs to do a simultaneous optimization of
bounds that include both the sector contributions ‖|φJ

k 〉‖ and the reduced purities of |φJ
k 〉/‖|φJ

k 〉‖, which leads to complications
in obtaining a tight upper bound.

3. Calculations for Example 2

(1) For the algebra A1 = 〈12S,12 ⊗ σ z
S ,12 ⊗ σ x

S ,12 ⊗ σ
y
S 〉 we have dZ = 1, d1 = n1 = 2. It is convenient to work with the

orthogonal basis {eα}4
α=1 = {12S

2 ,
12⊗σ z

S
2 ,

12⊗σ x
S

2 ,
12⊗σ

y
S

2 } of A1. Note that this is not the same with the basis in Eq. (A2), but is
unitarily related. We can, then, express the projectors PA1 ,PA1 ′ as

PA1 (·) =
4∑

α=1

〈eα, (·)〉eα = Tr(·)12S

4
+ Tr(Tr2(·)�σS )

12 ⊗ �σS

4
,

PA1 ′ (·) =
4∑

α=1

eα (·)e†
α = (·)

4
+ 12 ⊗ �σS (·)12 ⊗ �σS

4
, (A22)

where we also used that the eα are already normalized, ‖eα‖2 = 1. In R1 frame the dynamics Ut (·) = exp(itH )(·) exp(−itH )
are given by the Hamiltonian H1 = Jzσ

z
2 ⊗ σ z

S + Jxσ
x
2 ⊗ σ x

S + Jyσ
y
2 ⊗ σ

y
S with the eigenstates being the Bell states {φk}4

k=1 =
{|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}. Writing out Eq. (6) explicitly we have

GA1 (Ut )
NRC = 1 − 1

4

⎛
⎜⎜⎝2

4∑
k,l=1
k<l

‖PA1 (|φk〉〈φl |)‖2
2〈PA1 ′ (|φk〉〈φk|),PA1 ′ (|φl〉〈φl |)〉

+2
4∑

k,l=1
k<l

‖PA1 ′ (|φk〉〈φl |)‖2
2〈PA1 (|φk〉〈φk|),PA1 (|φl〉〈φl |)〉

+
4∑

k=1

‖PA1 (|φk〉〈φk|)‖2
2‖PA1 ′ (|φk〉〈φk|)‖2

2

⎞
⎟⎟⎠, (A23)

where we used the fact that the terms with k > l are equal to those with k < l . Substituting Eq. (A22) in Eq. (A23) one obtains,

in a rather tedious but straightforward manner, that GA1 (Ut )
NRC = 3/4.
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(2) The algebra A�η
i = 〈1iS,1i ⊗ σ �η

S 〉 is Abelian and we have dZ = 2, d1 = d2 = 1, n1 = n2 = 2. We work with the orthog-

onal basis {eα}2
α=1 = {1iS√

2
,
1i⊗σ �η

S√
2

}. Then

PA�η
i
(·) =

2∑
α=1

〈
eα

‖eα‖2
, (·)

〉
eα

‖eα‖2
= Tr(·)1iS

4
+ Tr(Tri(·)�σS )

1i ⊗ σ �η
S

4
,

PA�η
i

′ (·) =
2∑

α=1

eα (·)e†
α = (·)

2
+ 1i ⊗ σ �η

S (·)1i ⊗ σ �η
S

2
. (A24)

In R1 frame the Hamiltonian is H1 = Jzσ
z
2 ⊗ σ z

S + Jxσ
x
2 ⊗ σ x

S + Jyσ
y
2 ⊗ σ

y
S with the eigenstates being the Bell states {φk}4

k=1 =
{|φ+〉, |φ−〉, |ψ+〉, |ψ−〉}, while in R2 frame the Hamiltonian is H2 = Jz11 ⊗ σ z

S + Jxσ
x
1 ⊗ 1S − Jyσ

x
1 ⊗ σ z

S with the eigenstates
being {|+0〉, |+1〉, |−0〉, |−1〉}, where |±〉 ≡ 1√

2
(|0〉 ± |1〉) are the eigenstates of σx. Using the analogous expression of

Eq. (A23) and substituting Eq. (A24) for the two frames one obtains Eqs. (18) and (19).

4. Gradient descent for test of conjecture

The distinguished basis corresponding to A consists of vectors B = {|pJ〉 ⊗ |aJ〉}nJ , dJ
pJ=1, aJ=1 and is unique up to local unitaries

on the virtual bipartitions in each J block of Eq. (2). In this basis, the eigenstates of the conjectured Hamiltonian (see Conjecture)
are the “canonical” basis vectors of the full Hilbert space. For an arbitrary NRC Hamiltonian H , the eigenbasis can be expressed
as a rotation of B by a unitary U , so that the one-dimensional eigenprojectors are given as U�kU †, where �k ≡ |pJ , aJ〉〈pJ , aJ |
are the projectors corresponding to B.

In Sec. IV A we utilize a gradient descent algorithm by Abrudan et al. [59] in order to numerically minimize Eq. (6) over

all possible eigenbases for a given algebra A. For a given A, the A-OTOC NRC LTA is a function GA(Ut )
NRC

(U ) : U (d ) → R
over the manifold U (d ) of d × d unitaries, which we can embed in a Euclidean space Cd×d with inner product 〈A, B〉Cd×d :=
Re(Tr(AB†)), where Re denotes the real part. Note that Ut (·) = exp(itH )(·) exp(−itH ) is the unitary Hamiltonian evolution in
the Heisenberg picture, while U is the unitary that represents the transformation of the eigenbasis of H to B.

Starting from a random unitary U0 we move on U (d ) along the geodesic with the steepest descent for GA(Ut )
NRC

(U ) via
U1 ≡ exp(−μGU0U0). Here, μ ∈ R+ is a dynamic step size adjusted to improve the rate of convergence [59] and GU0 ∈ T1U (d )

is the Riemannian gradient of GA(Ut )
NRC

(U ) at U0 translated to the tangent space at the identity. Choosing the inner product

〈X,Y 〉U := 1
2 Re(Tr(XY †)) for the tangent space of U (d ) at U , we have GU ≡ �UU † − U�

†
U [59], where �U := ∇U ∗GA(Ut )

NRC

is the standard Euclidean gradient on Cn×n. Using the first expression in Eq. (A6) for the one-dimensional eigenprojectors

U�kU †, the function GA(U )
NRC

(U ) is written explicitly as

GA(Ut )
NRC

(U ) = 1 − 1

d

d (A)∑
α=1

d (A′ )∑
γ=1

⎛
⎝ d∑

k,l=1

Tr(eαU�kU
† fγU�kU

†e†
αU�lU

† f †
γ U�lU

†)

+
d∑

k,l=1

Tr(eαU�kU
† fγU�lU

†e†
αU�lU

† f †
γ U�kU

†)

−
d∑

k=1

Tr(eαU�kU
† fγU�kU

†e†
αU�kU

† f †
γ U�kU

†)

)
. (A25)

For the Euclidean gradient of a function f (U ) : Cd×d → R, we have δ f = 〈∇U f , δU 〉Cd×d + 〈∇U ∗ f , δU ∗〉Cd×d =
2Re(Tr[(∇U ∗ f )T δU ]), where AT denotes the matrix transpose and we used that (∇U f )∗ = ∇U ∗ f . Performing the variation in

Eq. (A25) and comparing with δGA(Ut )
NRC = 2Re(Tr(�T

U δU )) we find, after some algebraic manipulation, that

�U = 2
∑

kl

⎧⎨
⎩(1 − δkl/2)

⎛
⎝
⎡
⎣∑

γ

(PA′ (U�lU
† fγU�lU

†)U�kU
† f †

γ )

+
∑

α

PA(U�lU
†eαU�lU

†)U�kU
†e†

α

]
+ H.c.

)
U�k

}
, (A26)

where H.c. denotes the Hermitian conjugate of the expression inside the brackets.
We iteratively update the unitary Uk+1 = exp(−μkGUkUk ) until the convergence condition

|GA(Ut )
NRC

(Uk+1) − GA(Ut )
NRC

(Uk )| < ε is met, where ε is a tolerance set to ε = 10−8.
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