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Quantum computing has a potential to accelerate data processing efficiency, especially in machine learning,
by exploiting special features such as the quantum interference. The major challenge in this application is that,
in general, the task of loading a classical data vector into a quantum state requires an exponential number
of quantum gates. The approximate amplitude encoding (AAE) method, which uses a variational means to
approximately load a given real-valued data vector into the amplitude of a quantum state, was recently proposed
as a general approach to this problem mainly for near-term devices. However, AAE cannot load a complex-
valued data vector, which narrows its application range. In this work, we extend AAE so that it can handle a
complex-valued data vector. The key idea is to employ the fidelity distance as a cost function for optimizing a
parametrized quantum circuit, where the classical shadow technique is used to efficiently estimate the fidelity and
its gradient. We apply this algorithm to realize the complex-valued-kernel binary classifier called the compact
Hadamard classifier, and then we present a numerical experiment showing that it enables classification of the Iris
dataset and credit card fraud detection.
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I. INTRODUCTION

Quantum computing is expected to execute information
processing tasks that classical computers cannot perform effi-
ciently. One of the most promising domains in which quantum
computing has a potential to boost its performance is ma-
chine learning [1–6]. The advantage of quantum computing
in machine learning may come from the capability to rep-
resent and manipulate an exponential amount of classical
data using quantum interference [7–9]. Furthermore, quantum
computing can exponentially speed up basic linear algebra
subroutines [10], which are at the core of quantum machine
learning, such as the support vector machine [11] and the prin-
cipal component analysis [12]. However, these applications
require fault-tolerant quantum computers.

In recent years, some attempts to implement machine
learning algorithms on shallow quantum circuits have been
made, such as the SWAP-test classifier [13], the Hadamard test
classifier (HTC) [14], and the compact Hadamard classifier
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(CHC) [15]. The central idea underlying these classifiers is
that inner products in an exponentially large Hilbert space
can be directly accessed by measurement without expensive
subroutines [13,14,16]. It should be noted, however, that these
classifiers assume that the classical data (i.e., the training data
and the test data) have been loaded into the amplitudes of a
quantum state, i.e., amplitude encoding.

In general, the number of gates exponentially grows with
the number of qubits for realizing the amplitude encoding
[17–23], which might be a major bottleneck in practical ap-
plications of quantum computation. In order to address this
issue, Ref. [24] proposed an algorithm called the approximate
amplitude encoding (AAE) that generates approximated n-
qubit quantum states using O(poly(n)) gates. However, AAE
is only applicable to the problem of loading a real-valued data
vector; that is, it cannot load a complex-valued data vector.
This limitation narrows the scope of AAE application. For
example, AAE cannot be applied for preparing an initial state
of the CHC [15], because the CHC encodes the data into
both the real and imaginary parts of the amplitude of the
underlying quantum state. Aside from the CHC, an efficient
complex-valued data encoding method is also required for
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state preparation of wave-packet dynamical simulations in
quantum chemistry [25,26].

In this paper, we extend the AAE method so that it can ap-
proximately load a complex-valued data vector onto a shallow
quantum circuit. We refer to this algorithm as approximate
complex amplitude encoding (ACAE). The key idea is to
change the cost function from the maximum mean discrep-
ancy (MMD) [27,28], used in AAE, to the fidelity, which
can capture the difference in complex amplitude between
two quantum states unlike the MMD-based cost function. A
notable point is that the classical shadow [29] is used to
efficiently estimate the fidelity or its gradient. As a result,
ACAE enables embedding the real and imaginary parts of any
complex-valued data vector into the amplitudes of a quan-
tum state. In addition, we provide an algorithm composed
of ACAE and the CHC; this algorithm realizes a quantum
circuit for binary data classification, using fewer gates than
the original CHC which requires exponentially many gates to
prepare the exact initial quantum state. We then give a proof-
of-principle demonstration of this classification algorithm for
the benchmark Iris data classification problem. Moreover, we
apply the algorithm to the credit card fraud detection problem,
which is a key challenge in financial institutions.

II. APPROXIMATE COMPLEX AMPLITUDE
ENCODING ALGORITHM

A. Goal of the approximate complex amplitude
encoding algorithm

Quantum state preparation is an important subroutine
in quantum algorithms that process classical data. Ideally,
this subroutine is represented by a state preparation ora-
cle, U , that encodes an N-dimensional complex vector, c =
{c0, . . . , cN−1}, ck ∈ C, to the amplitudes of an n-qubit state,
|Data〉:

|Data〉 = U |0〉⊗n =
N−1∑
k=0

ck|k〉, (1)

where the input vector is normalized as ‖c‖ = 1. Note that
n = �log2(N )�. Hereafter, the state (1) is referred to as the
target state. Recall that, in general, a quantum circuit for gen-
erating the target state requires O(2n) controlled-NOT (CNOT)
gates [17–23], which might destroy any possible quantum
advantage.

The objective of ACAE is to generate a quantum state that
approximates the target state (1), using a parametrized quan-
tum circuit (PQC) that is represented by the unitary matrix
U (θ), with θ being the vector of parameters. Hereafter, we
refer to the state generated from the PQC as a model state,
i.e., |ψ (θ)〉 = U (θ)|0〉⊗n. We train a PQC to approximate the
target state except for the global phase; hence, ideally, the
model state is trained to satisfy

|ψ (θ)〉 = U (θ)|0〉⊗n = eiα|Data〉, (2)

where eiα is the global phase.
Note that, if the elements of c = {c0, . . . , cN−1} are all

real-numbers, we can use AAE [24], which also trains a PQC
to generate an approximating state. The training is accom-
plished by minimizing the cost function given by the MMD

[27,28] between two probability distributions corresponding
to the target and the model states. However, this method is
not applicable for the general complex-valued data loading,
because each element of the probability distribution is given
by the squared absolute value of the complex amplitude of the
corresponding state vector and thus AAE cannot distinguish
real and complex numbers of the state.

B. The proposed algorithm

1. Cost function

In order to execute a complex-valued data loading, it is
necessary to introduce a measure that reflects the difference
between two quantum states with complex-valued amplitudes,
which cannot be captured by the MMD-based cost function.
Here we employ the fidelity between the model state |ψ (θ)〉
and the target state |Data〉:

f (θ) = Tr[ρmodel(θ)ρtarget] = |〈Data|ψ (θ)〉|2, (3)

where ρmodel(θ) = |ψ (θ)〉〈ψ (θ)| and ρtarget = |Data〉〈Data|.
Although, in general, the fidelity can be estimated using the
quantum state tomography [30], it is highly resource-intensive
because this procedure requires accurate expectation values
for a set of observables whose size grows exponentially with
respect to the number of qubits. For this reason, we employ
the classical shadow technique to estimate the fidelity.

2. Fidelity estimation by classical shadow

Classical shadow [29] is a method for constructing a clas-
sical representation that approximates a quantum state using
much fewer measurements than the case of state tomography.
The general goal is to predict the expectation values oj for a
set of L observables, Oj :

o j (ρ) = Tr(Ojρ), 1 � j � L, (4)

where ρ is the underlying density matrix. The procedure for
constructing the predictor is described below.

First, ρ is transformed by the unitary operator U taken
from the set of random unitaries U as ρ → UρU †, and then
each qubit is measured in the computational basis. For a
measurement outcome, |b̂〉, the reverse operation U †|b̂〉〈b̂|U
is calculated and stored in a classical memory. The averaging
operation on U †|b̂〉〈b̂|U with respect to U ∈ U is regarded as
a quantum channel on ρ;

E[U †|b̂〉〈b̂|U ] = M(ρ), (5)

which implies

ρ = E[M−1(U †|b̂〉〈b̂|U )]. (6)

The quantum channel M depends on the ensemble of uni-
tary transformations U . Equation (6) gives us a procedure for
constructing an approximator for ρ. That is, if the above mea-
surement plus reverse operation is performed Nshot times for
different U ∈ U , then we obtain an array of Nshot-independent
classical snapshots of ρ:

S(ρ; Nshot ) = {
ρ̂1 = M−1

(
U †

1 |b̂1〉〈b̂1|U1
)
, . . . ,

ρ̂Nshot = M−1(U †
Nshot

∣∣b̂Nshot

〉〈
b̂Nshot

∣∣UNshot

)}
. (7)

052423-2



APPROXIMATE COMPLEX AMPLITUDE ENCODING … PHYSICAL REVIEW A 109, 052423 (2024)

This array is called the classical shadow of ρ. Once a classical
shadow (7) is obtained, an estimator of ô j can be calculated as

ô j (ρ) = 1

Nshot

Nshot∑
i=1

Tr(Oj ρ̂i ), (8)

where each ρ̂i is the classical snapshot in S(ρ; Nshot ). Al-
though Ref. [29] proposed to use the median-of-means
estimator, we employ the empirical mean for simplicity of the
implementation. Reference [29] proved that this protocol has
the following sampling complexity.

Theorem [29]. Classical shadows of size Nshot

suffice to predict L arbitrary linear target functions
Tr(O1ρ), . . . , Tr(OLρ) up to additive error ε given that.

Nshot � O

(
log(L)

ε2
max

j
‖Oj‖2

shadow

)
. (9)

The definition of the shadow norm ‖Oj‖shadow depends on
the ensemble U . Two different ensembles can be considered
for selecting the random unitaries U :

(i) random Clifford measurements, U belongs to the n-
qubit Clifford group; and
(ii) random Pauli measurements, each U is a tensor
product of single-qubit operations.
For the random Clifford measurements, ‖O‖2

shadow is
closely related to the Hilbert-Schmidt norm Tr(O2). As a
result, a large collection of (global) observables with bounded
Hilbert-Schmidt norm can be predicted efficiently. For the
random Pauli measurements, on the other hand, the shadow
norm scales exponentially in the locality of the observable;
note that, for certain cases of the random Pauli measurements,
we can use the decision-diagram-based classical shadow to
have an efficient measurement scheme [31].

The above classical shadow technique can be directly ap-
plied to the problem of estimating the fidelity f (θ) given in
Eq. (3). Actually this corresponds to L = 1, O = O1 = ρtarget,
and ρ = ρmodel(θ) in Eq. (4); then, from Eq. (8), we have the
estimate of f (θ) as

f̂ (θ) = 1

Nshot

Nshot∑
i=1

Tr[Oρ̂i(θ)], (10)

where ρ̂i(θ) is the classical snapshot of ρmodel(θ). In this
case, the random Clifford measurements should be selected,
because the shadow norm is given by Tr(ρ2

target ) = 1; also,
Nshot becomes independent of system size, because the
max j ‖Oj‖2

shadow term now becomes constant. For the ran-
dom Clifford measurements, Ref. [29] shows that the inverted
quantum channel M−1 is given by

M−1(ρ) = (2n + 1)ρ − I. (11)

Lastly note that O(n2/ log2(n)) entangling gates are needed to
do sampling from the n-qubit Clifford unitaries [32,33], which
is a practical drawback.

3. Optimization of U (θ)

Here we describe the training method of the PQC for
ACAE. The PQC U (θ) consists of n qubits and l layers;
thus U (θ) contains O(ln) gates. The number of layers l is

of the order from O(1) to O(poly(n)). In this paper we take
the PQC composed of single-qubit parametrized rotational
gates Rx(θr ) = exp (−iθrσx/2), Ry(θr ) = exp (−iθrσy/2), and
Rz(θr ) = exp (−iθrσz/2) together with CNOT gates; here θr is
the rth element of θ and σx, σy, and σz are the Pauli X , Y ,
and Z operators, respectively. We take the so-called hardware
efficient ansatz [34]; an example of the structure is shown in
Fig. 1. This PQC is followed by a random Clifford unitary, Ui,
as shown in Fig. 2. The output of the circuit is measured Nshot

times in the computational basis, with changing the random
Clifford unitary Ui and obtaining the outcome b̂i in each trial.
The above procedure provides us with the classical snapshots
of ρmodel. Note that each |b̂i〉 and Ui can be stored efficiently
in a classical memory using the stabilizer formalism [32].

Our goal is to find the best θ that maximizes the fidelity
f (θ). Now we use the classical shadow to have the estimate
f̂ (θ) given in Eq. (10), which can be further calculated as

f̂ (θ) = 1

Nshot

Nshot∑
i=1

Tr[Oρ̂i(θ)]

= 1

Nshot

Nshot∑
i=1

Tr[OM−1(U †
i |b̂i〉〈b̂i|Ui )]

= 1

Nshot

Nshot∑
i=1

Tr[O{(2n + 1)U †
i |b̂i〉〈b̂i|Ui − I}]

= 1

Nshot

Nshot∑
i=1

(2n + 1)〈b̂i|UiOU †
i |b̂i〉 − 1.

Let us consider the run time for evaluating the above f̂ (θ) with
a classical computer. First, each 〈b̂i|UiOU †

i |b̂i〉 is calculated as
follows:

〈b̂i|UiOU †
i |b̂i〉 = 〈b̂i|Ui|Data〉〈Data|U †

i |b̂i〉
= |〈b̂i|Ui|Data〉|2

=
∣∣∣∣∣
N−1∑
k=0

ck〈b̂i|Ui|k〉
∣∣∣∣∣
2

. (12)

The Gottesman-Knill theorem [35] allows for evaluation of
〈b̂i|Ui|k〉 in O(n2) time, because (|b̂i〉, |k〉) and Ui are sta-
bilizer states and a Clifford operator, respectively. Note that
the summation in Eq. (12) requires O(N ) = O(2n) computa-
tions, which means that the required run time in the training
process of the PQC scales exponentially with the number of
qubits. However, this is classical computation, which should
become exponential as long as we would like to process a
general exponential-size classical data. Rather, the advantage
of ACAE is in the depth of the PQC, which operates only
O(n poly(n)) gates instead of O(2n), to achieve O(2n) data
encoding.

To maximize the fidelity estimate f̂ (θ) [i.e., to minimize
the − f̂ (θ)], we take the standard gradient descent algorithm.
The gradients of f̂ (θ) with respect to θr can be computed by
using the parameter shift rule [36] as

∂ f̂ (θ)

∂θr
= f̂ +

θr
− f̂ −

θr
, (13)
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FIG. 1. Example of the structure of the hardware efficient ansatz U (θ). Each layer is composed of the set of parametrized single-qubit
rotational gates Rx (θr ) = exp (−iθrσx/2), Ry(θr ) = exp (−iθrσy/2), or Rz(θr ) = exp (−iθrσz/2). We randomly initialize all axes of each
rotating gate (i.e., X , Y , or Z) and θr at the beginning of each training.

where

f̂ ±
θr

= f̂ (θ1, . . . , θr−1, θr ± π/2, θr+1, . . . , θR). (14)

R denotes the number of the parameters, which can be written
as R = ln (recall that l is the number of layers of PQC). That
is, the gradient can also be effectively estimated using the
classical shadow. This maximization procedure will ideally
bring us the optimal parameter set θ∗ and unitary U (θ∗) that
generates a state approximating the target state (2).

III. APPLICATION TO COMPACT
HADAMARD CLASSIFIER

This section first reviews the method of compact amplitude
encoding and the compact Hadamard classifier (CHC). Then
we describe how to apply ACAE to implement the CHC.

A. Compact amplitude encoding

This method encodes two real-valued data vectors
into real and imaginary parts of the amplitude of a
single quantum state. More specifically, given two N-
dimensional real-valued vectors x+

j = (x+
0 j, . . . , x+

(N−1) j )
T and

x−
j = (x−

0 j, . . . , x−
(N−1) j )

T , the compact amplitude encoder pre-
pares the following quantum state:

|x j〉 :=
N−1∑
l=0

(x+
l j + ix−

l j )|l〉, (15)

where

‖x+
j ‖2 + ‖x−

j ‖2 = 1 (16)

is assumed to satisfy the normalization condition. For simplic-
ity, here we assume ‖x±

j ‖ = 1/
√

2 without loss of generality.

FIG. 2. Configuration of the n-qubit quantum circuit for training
PQC U (θ). The PQC is followed by a unitary, Ui, which is selected
from the random Clifford unitaries with the size 2n. Measurement is
carried out to obtain the outcome b̂i, i.e., a bit string of length n.

In addition, we define |x±
j 〉 as

|x±
j 〉 := 1

‖x±
j ‖

N−1∑
l=0

x±
l j |l〉 =

√
2

N−1∑
l=0

x±
l j |l〉. (17)

B. Compact Hadamard classifier

Here we give a quick review about the CHC [15]. Suppose
the following training data set D is given as

D = {(x0, y0), . . . , (xM−1, yM−1)}.
All inputs {x j} are N-dimensional real-valued vectors, and
each y j takes either +1 or −1. The goal of the CHC is to
predict the label ỹ for a test datum x̃, which is also an N-
dimensional real-valued vector. For simplicity, we assume that
the number of training data with label +1, denoted by M+, is
equal to the number of training data with label −1, denoted
by M−; i.e., M+ = M− = M/2, where M is an even number.
In particular, we sort the training data set so that

x j =
{

x+
j (0 � j � M/2 − 1),

x−
j−M/2 (M/2 � j � M − 1),

and

y j =
{+1 (0 � j � M/2 − 1),
−1 (M/2 � j � M − 1).

Note that the CHC can also be applied to imbalanced training
data sets as we see later.

Assuming the existence of the compact amplitude encoder
UCAE(x j ) that encodes the two training data vectors x±

j into a
single quantum state (15) and the encoder UAE(x̃) that encodes
a test data vector x̃ into the quantum state |x̃〉, the following
quantum state can be generated:

|ψinit〉 = UAE(x̃)UCAE(x j )R
(A)
z H (A)U (J)

w (b)|0〉A|0〉D|0〉J,

= UAE(x̃)UCAE(x j )

M
2 −1∑
j=0

√
b j

|0〉A + e−iφ |1〉A√
2

|0〉D| j〉J,

= 1√
2

M
2 −1∑
j=0

√
b j (|0〉A|x j〉D + e−iφ |1〉A|x̃〉D)| j〉J, (18)

where φ is the relative phase. Also, bj is the set of weights
satisfying

∑M/2−1
j=0 b j = 1; in this work, we follow Ref. [15]

to choose the uniform weighting b j = 2/M. The labels A,
J, and D mean the ancilla qubit, the qubits for data num-
bering, and the qubits for data encoding, respectively (the
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FIG. 3. Configuration of the circuit for the compact Hadamard
classifier. The labels A, J, and D on the left side mean the ancilla
qubit, the qubits for data numbering, and the qubits for data encod-
ing, respectively. Slash symbols on the J and D lines indicate that the
line is composed of multiple qubits. The number of qubits of the J
and D lines are m = �log2(M/2)� and n = �log2(N )�, where M and
N represent the number of training data and the dimension of the
data vector, respectively. Uw(b) is an operator that weights each | j〉
by bj . UCAE(x j ) and UAE(x̃) are the unitary operators that encode the
training data x±

j and the test data x̃ into |x j〉D and |x̃〉D in Eq. (18),
respectively. The white and black dots connected to UCAE(x j ) and
UAE(x̃) indicate that the control action turns on when the variable
takes 1 and 0, respectively. The black circle marked J indicates that
the unitary operation UCAE(x j ) is the uniformly controlled via the J
qubits in addition to the A qubit.

subscript is omitted unless misunderstood). The number of
qubits required to prepare this state is n + m + 1, where
n = �log2(N )� and m = �log2(M/2)�. Then, we operate the
single-qubit Hadamard gate on the ancilla qubit and get

|ψ f 〉 := H (A)|ψinit〉 =1

2

M
2 −1∑
j=0

√
b j[|0〉A(|x j〉D + e−iφ|x̃〉D)

+ |1〉A(|x j〉D − e−iφ |x̃〉D)]| j〉J. (19)

Finally, we measure the ancilla qubit in the computational
basis. The entire quantum circuit is illustrated in Fig. 3. Now,
the probabilities that the measurement outcome of the ancilla
qubit is |0〉 and |1〉 are given by

Pr(0) = 1

2

M
2 −1∑
j=0

b j[1 + cos(φ)Re(κ j ) − sin(φ)Im(κ j )]

and Pr(1) = 1 − Pr(0), where κ j = 〈x̃|x j〉. Therefore, the ex-
pectation value of the Pauli Z operator measured on the ancilla
qubit, denoted as σ (A)

z , is

〈σ (A)
z 〉 =

M/2−1∑
j=0

b j
[
cos(φ)Re(κ j ) − sin(φ)Im(κ j )

]
.

If we set φ = π/4, this becomes

〈σ (A)
z 〉 = 1

2

M
2 −1∑
j=0

b j (〈x̃|x+
j 〉 − 〈x̃|x−

j 〉). (20)

Note that, when the number of training data vectors in the
two classes are not equal (i.e., M+ �= M−), this difference can
be compensated by tuning φ to satisfy tan(φ) = M−/M+. We
now end up with the final form of Eq. (20) as

〈σ (A)
z 〉 = 1

2

M−1∑
j=0

b′
jy j〈x̃|x j〉, (21)

where b′
j is defined as

b′
j = b′

j+M/2 = b j,

M−1∑
j=0

b′
j = 2.

Clearly Eq. (21) has the form of a standard kernel-based
classifier where 〈x̃|x j〉 represents the similarity between the
test data x̃ and the training data x j . Because the right-hand
side of Eq. (21) represents the sum of the kernel weighted by
b′

jy j , the sign of 〈σ (A)
z 〉 tells us the class for the test data x̃; that

is, the CHC predicts the label ỹ of x̃ via the following policy:

ỹ = sgn
[〈
σ (A)

z

〉] = sgn

⎡
⎣1

2

M−1∑
j=0

b′
jy j〈x̃|x j〉

⎤
⎦. (22)

Note that the weights {b′
j} can be optimized, like the standard

kernel-based classifier such as the support vector machine
which indeed optimizes those weights depending on the
training dataset; this clearly improves the classification per-
formance of ACAE, which will be examined in a future work.

The advantage of quantum kernel-based classifiers over
classical classifiers is the accessibility to kernel functions. Ac-
tually, the kernel (or similarity) between test data and training
data is calculated as the inner product in the feature Hilbert
space, which is computationally expensive to evaluate via
classical means when the feature space is large. On the other
hand, quantum kernel-based classifiers efficiently evaluate
kernel functions. In particular, the CHC can evaluate the sum
of all the inner products in the N-dimensional feature space
appearing in the right-hand side of Eq. (21), just by measuring
the expected value of σ (A)

z . We also emphasize that the CHC
can be realized with compact quantum circuits compared with
other quantum kernel-based classifiers. Actually, thanks to the
compact amplitude encoding, two qubits can be removed in
the CHC formulation compared to the others; moreover, the
number of operations for encoding the training data set x j

is reduced by a factor of 4 compared with the HTC [14].
Hence, the CHC can be implemented in a compact quantum
circuit in both depth and width compared to the other quantum
classifiers, meaning that a smaller and thus easier-trainable
variational circuit may function for the CHC.

C. Implementation of the CHC using ACAE

Although the CHC efficiently realizes a compact quantum
classifier, it relies on the critical assumption; that is, the quan-
tum state (15) is necessarily prepared. Recall that, in general,
the quantum circuit for generating the state (15) requires an
exponential number of gates. Moreover, to generate the quan-
tum state |ψinit〉 in Eq. (18), the uniformly controlled gate
[37,38] shown in Fig. 3 also requires an exponential number
of gates. These requirements may destroy the quantum advan-
tage of the CHC.

The ACAE implements the CHC without using expo-
nentially many gates; that is, as shown below, we can
approximately generate the quantum state |ψ f 〉 with a
constant-depth quantum circuit illustrated in Fig. 4. First, by
applying H , Rz(φ), and Uw(b) on the initial states, we produce
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FIG. 4. Configuration of the circuit for the compact Hadamard
classifier using ACAE. We use PQCs instead of the uniformly con-
trolled UCAE(x j ) and UAE(x̃) in Fig. 3; that is, U (θ) represents a PQC
for encoding the training data {x j} and thereby approximately gen-
erates |x j〉D in Eq. (19). Also, U ′(θ′ ) represents a PQC for encoding
the test data x̃ and thereby approximately generates |x̃〉D. Note that, in
practice, we construct U (θ) off-line using all the training data; then
we learn U ′(θ′ ) for a given test datum x̃ for the on-line prediction
purpose.

the following state:

|ψ0〉 := 1√
2

M
2 −1∑
j=0

√
b j (|0〉A|0〉D + e−iφ |1〉A|0〉D)| j〉J. (23)

Next, we train U (θ) by the algorithm described in Sec. II, so
that it approximately encodes the training data {x j} to have

|ψ1〉 := U (θ)|ψ0〉

≈ eiα 1√
2

M
2 −1∑
j=0

√
b j (|0〉A|x j〉D + e−iφ |1〉A|0〉D)| j〉J,

(24)

where eiα is the global phase. We then set the controlled U ′(θ′)
to encode the test data x̃ to obtain

(|0〉A〈0|A ⊗ I + |1〉A〈1|A ⊗ U ′(θ′))|ψ1〉

≈ eiα 1√
2

M
2 −1∑
j=0

√
b j

(|0〉A|x j〉D + e−iφ |1〉A|x̃〉D

)| j〉J

= eiα|ψinit〉. (25)

Finally, we operate H on the ancilla qubit to obtain |ψ f 〉:
H (A)eiα|ψinit〉 = eiα|ψ f 〉. (26)

Although the global phase eiα is added to |ψ f 〉, this does
not affect the probability Pr(0) and the expectation value
〈σ (A)

z 〉. Recall that, U (θ) and U ′(θ′) consist of (n + m + 1)
qubits with O(1) ∼ O(poly(n + m + 1)) layers and n qubits
with O(1) ∼ O(poly(n)) layers, respectively. Therefore, we
can implement the approximated CHC without using expo-
nentially many gates.

Before moving forward, we give some remarks, regarding
the design of U ′(θ′). First, we assume that U ′(θ′) con-
sists of only Ry gates and CNOT gates, because x̃ is a
real-valued data vector. As a result, the unitary process is re-
stricted to U ′(θ′)|0〉D ≈ ±|x̃〉D, which is further converted to
U ′(θ′)|0〉D ≈ |x̃〉D by compensating the phase via the choice
of φ in Eq. (25). Next, to implement the controlled U ′(θ′),
every elementary gate contained in U ′(θ′) has to be modified
to a controlled gate via the A qubit. Finally, in practice, we

construct U (θ) off-line using all the training data; once a test
datum x̃ to be classified is given to us, we learn U ′(θ′) to
approximately encode x̃ and then construct the CHC to predict
the corresponding label ỹ.

IV. DEMONSTRATION

This section gives two numerical demonstrations to show
the performance of our algorithm composed of ACAE and
the CHC. First we present an example application to a clas-
sification problem for the Iris dataset [39]. Next we show
application to the fraud detection problem using the credit
card fraud dataset [40] provided in Kaggle.

A. Iris dataset classification

The Iris dataset consists of three iris species (Iris setosa,
Iris virginica, and Iris versicolor) with 50 samples each as
well as four features (sepal length, sepal width, petal length,
and petal width) for each flower. Each sample data includes
the identification (ID) number, four features, and the species.
IDs for 1 to 50, 51 to 100, and 101 to 150 represent data for I.
setosa, I. versicolor, and I. virginica, respectively.

In this paper, we consider the I. setosa and I. versicolor
classification problem. The goal is to create a binary classifier
that predicts the correct label ỹ (0: I. setosa, 1: I. versicolor)
for the given test data x̃ = (sepal length, sepal width, petal
length, petal width). In this demonstration, we employ the first
four data of each species as training data. That is, we use data
with IDs 1 to 4 and 51 to 54 as training data for I. setosa and I.
versicolor, respectively. On the other hand, we use data with
IDs 5 to 8 and 55 to 58 as test data.

First, we need to prepare the quantum state |ψinit〉 given in
Eq. (18) using ACAE. Since the dimension of the feature vec-
tor and the number of training data are N = 4 and M = 8, the
number of required qubits are n = �log2(N )� = 2 and m =
�log2(M/2)� = 2, respectively. The number of total qubits
required for composing the quantum circuit is n + m + 1 = 5,
which means that |ψinit〉 has 25 = 32 amplitudes. Table I
shows the data contents embedded in the quantum amplitude
of each basis.

We encode the training data of the I. setosa and I. versicolor
into the complex amplitude of the ancilla qubit state |0〉 by
using the PQC U (θ). Also, we encode the test data into the
amplitude of the ancilla qubit state |1〉 by using U ′(θ′). We
use the 5-qubit and 12-layer ansatz U (θ) illustrated in Fig. 1.
We randomly initialize all the directions of each rotating gate
(i.e., X , Y , or Z) and θr at the beginning of each training. As
the optimizer, Adam [41] is used. The number of iterations
(i.e., the number of the updates of the parameters) is set to 400
for training U (θ). For each iteration, 1000 classical snapshots
are used to estimate the fidelity; that is, we set Nshot = 1000 in
Eq. (8). The learning rate is 0.1 for the first 100 iterations, 0.01
for the next 100 iterations, 0.005 for the next 100 iterations,
and 0.001 for the last 100 iterations. In Fig. 5, we show the
change of fidelity in the training process of U (θ). At the end
of the training, the fidelity reaches 0.994.

As for the encoding process of test data, we use the 2-qubit
and 2-layer ansatz U ′(θ′) that consists of only Ry gates and
CNOT gates. The number of iterations and Nshot are 100 and
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TABLE I. The data contents embedded in the quantum amplitude of |ψinit〉 in the Iris setosa and Iris versicolor classification problem. The
A, J, and D in the left three columns represent the ancilla qubit, the qubits for data numbering, and the qubits for data encoding, respectively,
as in Fig. 3. The “i” in the right end column represents an imaginary unit. The amplitudes are normalized to satisfy Eq. (16).

A J D
Ancilla qubit Qubits for Qubits for
0: training data data numbering data enconding
1: test data (from 0 to M/2) (from 0 to M) Basis Data contents embedded in the amplitude of each basis

0 00 00 |00000〉 (1st feature of I. setosa) + (1st feature of I. versicolor)×i
01 |00001〉 (2nd feature of I. setosa) + (2nd feature of I. versicolor)×i
10 |00010〉 (3rd feature of I. setosa) + (3rd feature of I. versicolor)×i
11 |00011〉 (4th feature of I. setosa) + (4th feature of I. versicolor)×i

...
...

...
...

11 00 |01100〉 (1st feature of I. setosa) + (1st feature of I. versicolor)×i
01 |01101〉 (2nd feature of I. setosa) + (2nd feature of I. versicolor)×i
10 |01110〉 (3rd feature of I. setosa) + (3rd feature of I. versicolor)×i
11 |01111〉 (4th feature of Iris setosa) + (4th feature of I. versicolor)×i

1 00 00 |10000〉 (1st feature of the test data)× exp(−iφ)
01 |10001〉 (2nd feature of the test data)× exp(−iφ)
10 |10010〉 (3rd feature of the test data)× exp(−iφ)
11 |10011〉 (4th feature of the test data)× exp(−iφ)

...
...

...
...

11 00 |11100〉 (1st feature of the test data)× exp(−iφ)
01 |11101〉 (2nd feature of the test data)× exp(−iφ)
10 |11110〉 (3rd feature of the test data)× exp(−iφ)
11 |11111〉 (4th feature of the test data)× exp(−iφ)

1000, respectively. The learning rate is 0.1 for the first 50
iterations and 0.01 for the next 50. We found that, for each
test datum, the fidelity reaches the value bigger than 0.999. It
is notable that the number of layers of U ′(θ′) and the number
of iterations for training it are much smaller compared to
the encoding process for training data. This means, once the
training data are encoded, it is easy to change the test data. As
an example of the data encoding results, a set of complex am-
plitudes generated by ACAE is shown in Fig. 6. In the figure,
the value of each complex amplitude is plotted on the complex
plane. The black dots and red triangles represent the exact

FIG. 5. The change of the fidelity between the target state and
the model state in the training process of U (θ). Here, the target
state is Eq. (24), and the model state means the state that is actually
generated by the PQC U (θ).

data and the approximate complex amplitudes embedded by
ACAE, respectively. Note that the complex amplitude embed-
ded by ACAE contains the global phase eiα as in Eq. (25).
In order to compare the exact data with the ACAE result
visually, the result in which the global phase is hypothetically
eliminated is also shown. Recall that the global phase does not
affect the measurement in the remaining procedure.

After the state preparation, we operate the Hadamard gate
on the ancilla qubit and obtain |ψ f 〉 in Eq. (19). By measuring
the ancilla qubit of this quantum state and obtaining the sign
of 〈σ (A)

z 〉, we can use Eq. (22) to predict the label ỹ of the test
data x̃, i.e., ỹ = sgn[〈σ (A)

z 〉]. Classification results are shown
in Table II (a) for eight cases in which the test data are IDs 5
to 8 and IDs 55 to 58. In addition to the I. setosa and I. ver-
sicolor classification problem, we carry out the I. versicolor
and I. virginica classification problems in the same way and
show the results in Table II (b). All classification results are
correct in Table II (a). On the other hand, three out of eight
classification results are incorrect in Table II (b).

Let us discuss the results. Pairwise relationships in the Iris
dataset shows that I. setosa can be clearly separated from
the other two varieties, whereas the features of I. versicolor
and I. virginica slightly overlap with each other. Therefore,
classification of I. versicolor and I. virginica [Table II (b)] is
considered more difficult than that of I. setosa and I. versicolor
[Table II (a)]. This could be the cause of the low accuracy rate
of Table II (b). Note that the error between the exact data and
the ACAE data also affects the classification accuracy. If we
adjust the number of layers in the PQC and the number of iter-
ations in the training process to improve the fidelity between
the target state and the model state, we will be able to increase
the accuracy rate. In fact, we have confirmed that the incorrect
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TABLE II. The results of the Iris dataset classification problem.

(a) Iris setosa versus Iris versicolor

Test data ID Class 〈σ (A)
z 〉 ỹ Result

#5 0.0422 + Correct
#6 I. setosa 0.0364 + Correct
#7 (+) 0.0395 + Correct
#8 0.0374 + Correct
#55 −0.0317 − Correct
#56 I. versicolor −0.0315 − Correct
#57 (−) −0.0285 − Correct
#58 −0.0239 − Correct

(b) Iris versicolor versus Iris virginica

Test data ID Class 〈σ (A)
z 〉 ỹ Result

#55 −0.0001 − Incorrect
#56 I. versicolor −0.0015 − Incorrect
#57 (+) −0.0020 − Incorrect
#58 0.0010 + Correct

#105 −0.0083 − Correct
#106 I. virginica −0.0066 − Correct
#107 (−) −0.0089 − Correct
#108 −0.0054 − Correct

(c) Iris versicolor versus Iris virginica (Exact data are used.)

Test data ID Class 〈σ (A)
z 〉 ỹ Result

#55 0.0322 + Correct
#56 I. versicolor 0.0013 + Correct
#57 (+) 0.0230 + Correct
#58 0.0534 + Correct

#105 −0.0392 − Correct
#106 I. virginica −0.0269 − Correct
#107 (−) −0.0430 − Correct
#108 −0.0194 − Correct

results (#55, #56, #57) turned correct when the classifications
were performed using the exact data. Table II (c) shows the
results where both the training and the test data are ideally
encoded without errors.

B. Credit card fraud detection

Nowadays, credit card fraud is a social problem in terms of
customer protection, financial crime prevention, and avoiding
negative impacts on corporate finances. The losses that arise
from credit card fraud are a serious problem for financial
institutions; according to the Nilson Report [42], credit card
fraud losses are expected to reach $49.3 billion by 2030.
Banks and credit card companies that pay for fraud will be
hit hard by these rising costs. With digital crime and online
fraud on the rise, it is more important than ever for financial
institutions to prevent credit card fraud through advanced
technology and strong security measures. To detect fraudulent
use, financial institutions use human judgment to determine
fraud based on information such as cardholder attributes,

past transactions, and product delivery address information;
however, this method requires human resources and costs.
Although attempts to detect fraud by machine learning based
on features extracted from credit card transaction data also
have been attracting attention in recent years, there are disad-
vantages such as more time and epochs to converge for a stable
prediction, excessive training, and so on. Quantum machine
learning has the potential to solve these challenges, and its
application to credit card fraud detection deserves exploring.

In this subsection, we demonstrate credit card fraud detec-
tion as another practical application of the CHC with ACAE.
The goal is to encode credit card transaction data into a
quantum state as training data and classify whether a given
transaction datum x̃ is a normal (ỹ = +1) or fraudulent trans-
action (ỹ = −1).

In this demonstration we use the credit card fraud detec-
tion dataset [40] provided by Kaggle. The dataset contains
credit card transactions made by European cardholders in
September 2013. The dataset has 284 807 transactions which
include 492 fraudulent transactions. Note that, since it is dif-
ficult to encode all transaction data into a quantum state, for
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FIG. 6. An example of data encoding results. Note that each data
value is divided by a constant number to satisfy the normalization
condition (16). (a) The complex amplitudes of |ψinit〉 generated by
ACAE (red triangles) and exact data (black dots). Note that red dots
contain the influence of the global phase eiα . (b) The result in which
the global phase is hypothetically eliminated is shown. The fidelity
between the model state (red triangles) and the target state (black
dots) is 0.993.

proof-of-concept testing, we take 4 normal transaction data1

and 4 fraudulent transaction data2 from this dataset as training
data and perform classification tests to determine whether
the given test data are normal or fraudulent. Each set of
data consists of Times, Amount, and 28 different features
(V 1,V 2, . . . ,V 28) transformed by principal component anal-
ysis. We use 4 features (V 1,V 2,V 3,V 4) out of the 28 features
for classification, which means that the dimension of the fea-
ture vector and the number of training data are N = 4 and
M = 8, respectively, and the number of total qubits required
for composing the quantum circuit is n + m + 1 = 5. As in
the previous subsection, we embed the training data of nor-
mal transactions and fraudulent transactions into the real and
imaginary parts of the complex amplitude of the ancilla qubit

1We take the top 4 normal data IDs in ascending order, specifically,
#1, #2, #3, and #4.

2We take the top 4 fraudulent data IDs in ascending order, specifi-
cally, #524, #624, #4921, and #6109.

TABLE III. The results of fraud detection.

Test data IDa Class 〈σ (A)
z 〉 ỹ Result

#5 0.0699 + Correct
#6 Normal 0.1978 + Correct
#7 (+) 0.0183 + Correct
#8 0.1579 + Correct

#6330 −0.3747 − Correct
#6332 Fraud −0.4245 − Correct
#6335 (−) −0.4289 − Correct
#6337 −0.4163 − Correct

aAs test data, we take the top four normal data IDs and fraudulent
data IDs, in ascending order, excluding the training data.

state |0〉 and embed the test data into the complex amplitude
of the ancilla qubit state |1〉.

After the state preparation, we operate the Hadamard gate
on the ancilla qubit and make measurements to obtain 〈σ (A)

z 〉,
the sign of which provides the classification result, i.e., ỹ =
+1 for normal data and ỹ = −1 for fraudulent data. As test
data, we take the top four normal data IDs and fraudulent data
IDs, in ascending order, excluding the training data. Classifi-
cation results are shown in Table III.

Note that the instances can be arbitrarily chosen, rather
than the top 4 normal and fraudulent data IDs. Hence, we have
conducted an additional simulation with randomly selected
48 instances chosen from the same Kaggle dataset described
above. As a result, we have confirmed that 42 out of the 48
test data are correctly classified. Although the remaining 6 test
data are incorrectly classified, this misclassification may be
caused by the intrinsic characteristics of the dataset and/or an
insufficient amount of training data rather than the encoding
errors.

V. CONCLUSION AND DISCUSSION

In this paper, we proposed the approximate complex am-
plitude encoding algorithm (ACAE) which allows for the
efficient encoding of given complex-valued classical data into
quantum states using shallow parametrized quantum circuits.
The key idea of this algorithm is to use the fidelity as a
cost function, which can reflect the difference in complex
amplitude between the model state and the target state, unlike
the MMD-based cost function in the original AAE. Also note
that the classical shadow with random Clifford unitary is used
for efficient fidelity estimation. In addition, we applied ACAE
to realize the CHC with fewer gates than the original CHC
which requires an exponential number of gates to prepare the
exact quantum state. Using this algorithm we demonstrated
the Iris data classification and the credit card fraud detection
that is considered as a key challenge in financial institutions.

The main concern in the use of ACAE is its scalability. To
discuss this problem, we conducted a numerical simulation for
the same credit card fraud detection problem as before [40],
to see the relationship between the number of data (accord-
ingly the number of qubits) and the circuit depth required to
achieve a particular value of fidelity. Here we examine the
case where the number of data varies from 64 (5 qubits) to

052423-9



NAOKI MITSUDA et al. PHYSICAL REVIEW A 109, 052423 (2024)

FIG. 7. The required circuit depth to prepare states that reach the
fidelity bigger than 0.90, 0.95, or 0.99. For the case of 1024 classical
data, we were able to calculate the depth only for the case of fidelity
bigger than 0.90, due to the limited computation resources.

1024 (9 qubits). Figure 7 shows that the required depth of
the variational quantum circuit increases superlinearly with
respect to the number of qubits, implying that ACAE may
be not applicable to large-size problems. However, we found
that, for the case of 5 qubits, even when the fidelity is de-
creased from 0.99+ to approximately 0.7 by reducing the
number of training steps, the classification accuracy is still
above 80%. That is, ACAE may work for some practical
problems such that 80% classification accuracy is enough.
For practical applications of ACAE, we need to deal with
enormously large datasets. For example, in the demonstration
for credit card fraud detection, approximately 280 000 training
data are provided and each data has 28 different features. This
means n + m + 1 = �log2(28)� + �log2(280, 000/2)� + 1 =
23 qubits are required to deal with all the data. As the number

of qubits is increased, the degree of freedom of the quantum
state exponentially grows; in such a case, there appear sev-
eral practical problems to be resolved. For example, ACAE
employs the fidelity as a cost function, which is, however,
known as a global cost that leads to the so-called gradient
vanishing problem or the barren plateau problem [43]; i.e.,
the gradient vector of the cost decays exponentially fast with
respect to the number of qubits, and thus the learning process
becomes completely stuck for large-size systems. To mitigate
this problem, recently the localized fidelity measurement has
been proposed in Refs. [44–46]. Moreover, applications of
several existing methods such as circuit initialization [47,48],
special structured ansatz [49,50], and parameter embedding
[51] are worth investigating to address the gradient vanishing
problem. Another problem from a different perspective is that
the random Clifford measurement for producing the classical
shadow can be challenging to implement in practice, because
O(n2/ log2(n)) entangling gates are needed to sample from
n-qubit Clifford unitaries. References [52,53] have presented
that the Clifford circuit depth over unrestricted architectures is
upper bounded by 2n + O( log2

2(n)) for all practical purposes,
which may improve the implementation of the fidelity estima-
tion process. Overall, algorithm improvements to deal with
these problems are all important and remain as future works.
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