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Strong nonlocality, proposed by Halder et al. [Phys. Rev. Lett. 122, 040403 (2019)], is a stronger manifestation
than quantum nonlocality. Subsequently, Shi et al. presented the concept of the strongest nonlocality [Quantum
6, 619 (2022)]. Recently, Li and Wang [Quantum 7, 1101 (2023)] posed the conjecture about a lower bound
to the cardinality of the strongest nonlocal set S in ⊗n

i=1C
di , i.e., |S| � maxi{

∏n
j=1 dj/di + 1}. In this work,

we construct the strongest nonlocal set of size d2 + 1 in Cd ⊗ Cd ⊗ Cd . Furthermore, we obtain the strongest
nonlocal set of size d2d3 + 1 in Cd1 ⊗ Cd2 ⊗ Cd3 . Our construction reaches the lower bound, which provides
an affirmative solution to Li and Wang’s conjecture. ln particular, the strongest nonlocal sets we present here
contain the least number of orthogonal states among the available results.

DOI: 10.1103/PhysRevA.109.052422

I. INTRODUCTION

In 1964, Bell derived the famous Bell’s inequality [1].
Since then, many experiments have been performed to demon-
strate violation of Bell’s inequality, indicating that the pure
entangled states have Bell nonlocality. Unlike Bell nonlocal-
ity, in 1999, Bennett et al. [2] found that the set of orthogonal
product states, which is not perfectly distinguishable under
local operations and classical communication (LOCC), also
reflects quantum nonlocality. In Ref. [3], Mal and Sen at-
tempted to unify the concepts of Bell nonlocality and Bennett
nonlocality in quantum information theory.

A known set of orthogonal quantum states is said to have
the property of quantum nonlocality if it is not possible to dis-
tinguish them via LOCC. Quantum nonlocality, i.e., Bennett
nonlocality, which is widely used in quantum secret sharing
and quantum data hiding [4–9], has given rise to research and
fruitful results in the past two decades [10–33].

A stronger manifestation of quantum nonlocality in multi-
partite quantum systems, known as strong quantum nonlocal-
ity, was discovered by Halder et al. [34]. A set of orthogonal
states is said to be strongly nonlocal if it is locally irreducible
in every bipartition. Indeed, a locally irreducible set is lo-
cally indistinguishable, but the converse is not true in general.
They also constructed orthogonal product bases with strong
nonlocality in C3 ⊗ C3 ⊗ C3 and C4 ⊗ C4 ⊗ C4. Soon after,
numerous results have emerged concerning the existence of
orthogonal product sets (OPSs) and orthogonal entangled sets
(OESs) with strong nonlocality [34–47,49] (see Table I for a
summary).

For strongly nonlocal OPSs, Yuan et al. [36] presented
a strongly nonlocal OPS of 6(d − 1)2 (with respect to
6d2 − 8d + 4) elements in Cd ⊗ Cd ⊗ Cd (with respect
to Cd ⊗ Cd ⊗ Cd+1). Meanwhile, they gave some exam-
ples of strongly nonlocal OPSs in C3 ⊗ C3 ⊗ C3 ⊗ C3 and
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C4 ⊗ C4 ⊗ C4 ⊗ C4. After that, Zhou et al. proposed
strongly nonlocal OPSs of smaller size in arbitrary three and
four-partite systems [37]. By using a general decomposition of
the N-dimensional hypercubes for odd N � 3, He et al. [38]
showed a strongly nonlocal OPS of size

∏N
i=1 di − ∏N

i=1(di −
2) in ⊗N

i=1C
di . In general n-partite systems with even n, Zhou

et al. put forward a construction of strongly nonlocal OPSs
[39]. In particular, an unextendible product basis (UPB) can
also exhibit strong nonlocality. In Ref. [40], Shi et al. showed
the existence of UPBs that are locally irreducible in every bi-
partition in Cd ⊗ Cd ⊗ Cd . Moreover, the above construction
can be generalized to arbitrary three- and four-partite systems
[41]. In 2022, Che et al. [42] provided a strongly nonlocal
UPB with cardinality (d − 1)3 + 2d + 5 in Cd ⊗ Cd ⊗ Cd

and generalized this approach to arbitrary tripartite systems.
For strongly nonlocal OESs, Shi et al. [43] obtained the

first result of strongly nonlocal sets with entanglement. In
Ref. [44], Wang et al. related orthogonal genuinely entangled
sets (OGESs) with strong nonlocality to the connectivities of
graphs. They also proposed strongly nonlocal OGESs of size
d3 − (d − 2)2 (d is odd) and d3 − (d − 2)2 + 2 (d is even)
in Cd ⊗ Cd ⊗ Cd . Further, they extended this result to the
general case. Several strongly nonlocal OESs with cardinal-
ity dN − (d − 1)N + 1 have been presented by Shi et al. in
(Cd )⊗N , where N � 3 and d � 2 [45]. When N = 3 and 4,
the sets they constructed were strongly nonlocal OGESs. In N-
qutrit systems, Hu et al. [46] constructed a strongly nonlocal
OGES of size 2 × 3N−1.

Recently, Li and Wang [47] proposed the definition of a
locally stable set and gave two conjectures: (a) There exists
the smallest set of cardinality maxi{di + 1} of orthogonal
states that is locally stable in ⊗n

i=1C
di . (b) The smallest set ex-

hibiting the strongest nonlocality in ⊗n
i=1C

di has a cardinality
of maxi{

∏n
j=1 d j/di + 1}. In Ref. [48], Cao et al. provided a

locally stable set of size maxi{di + 1}, which showed that the
first conjecture holds. Li et al. [49] constructed the strongest
nonlocal sets of size d2d3 + d1 − 1 (with respect to d3 +
d − 1) in Cd1 ⊗ Cd2 ⊗ Cd3 (with respect to Cd ⊗ Cd ⊗ Cd ⊗
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TABLE I. Results about the strongest nonlocal sets in Cd ⊗ Cd ⊗ Cd or Cd1 ⊗ Cd2 ⊗ Cd3 .

Type Cardinality References

OPS 6(d − 1)2 [36]

OPS
2[(d1d2 + d2d3 + d1d3)
−3(d1 + d2 + d3) + 12]

[37]

UPB d1d2d3 − 8(n + 1), 0 � n � � d1−3
2 � [41]

UPB (d − 1)3 + 2d + 5 [42]

OES
d3 − d (d is odd)

d3 − d − 6 (d is even)
[43]

OGES
d3 − (d − 2)2 (d is odd)

d3 − (d − 2)2 + 2 (d is even)
[44]

OGES d3 − (d − 1)3 + 1 [45]
OGES and |000〉 ∏3

i=1 di − ∏3
i=1(di − 1) [47]

OGES and |000〉 d2d3 + d1 − 1 [49]
OGES and |S2〉 d2 + 1 (the lower bound) Theorem 1
OES and |S〉 d2d3 + 1 (the lower bound) Theorem 2

Cd ). The above constructions reach the lower bound only
in C2 ⊗ Cd2 ⊗ Cd3 and C2 ⊗ C2 ⊗ C2 ⊗ C2. Up to now,
whether the conjecture holds in general tripartite systems re-
mains an open question worth considering.

In this work, we construct the strongest nonlocal sets
with minimum cardinality in general tripartite systems, con-
firming the conjecture raised in Ref. [47]. First, we present
the strongest nonlocal set of size d2 + 1 in Cd ⊗ Cd ⊗ Cd

for d � 3, which consists of the stopper state and spe-
cial genuinely entangled states [Greenberger-Horne-Zeilinger
(GHZ)-like and W -like states], the corresponding Rubik’s
cube exhibits the perfect geometric symmetry. Moreover,
we prove that the smallest orthogonal set of size 21 is the
strongest nonlocal set in C3 ⊗ C4 ⊗ C5 and provides the
structure to general tripartite systems Cd1 ⊗ Cd2 ⊗ Cd3 .

II. PRELIMINARIES

Throughout this paper, we only consider pure quantum
states. For the sake of convenience, the states discussed in
this paper are un-normalized quantum states. We define Zd =
{0, 1, . . . , d − 1} and choose the computational basis {|i〉 |
i ∈ Zdk } for each dk-dimensional subsystem. For each integer

d � 2, ωd = e
2π

√−1
d , i.e., a primitive dth root of unit.

Consider a positive operator-valued measure (POVM) that
performed on subsystems, each POVM element can be rep-
resented by a d × d matrix, denote E = (mi, j )i, j∈Zd , under
the computational basis of subsystems. A measurement is
trivial if all its POVM elements are proportional to the identity
operator. Otherwise, the measurement is called nontrivial. A
measurement is an orthogonality-preserving local measure-
ment (OPLM) if the postmeasurement states are mutually
orthogonal.

Definition 1 (The strongest nonlocality) [40]. A set S of
orthogonal multipartite quantum states is said to be of the
strongest nonlocality if only trivial OPLM can be performed
for each bipartition of the subsystems.

In a general tripartite quantum system HA ⊗ HB ⊗ HC =
Cd1 ⊗ Cd2 ⊗ Cd3 (d1 � d2 � d3), there are three different
bipartitions: A|BC, B|CA, and C|AB. Given a set S of

orthogonal states in HA ⊗ HB ⊗ HC , to demonstrate the set
S is the strongest nonlocal set, it is sufficient to show that
each joint party BC, CA, and AB can only start with a triv-
ial OPLM. For example, if EBC = M†

BCMBC is one of BC’s
measurement elements, we use the orthogonality relations
{IA ⊗ MBC |�〉}|�〉∈S , that is,

〈�|IA ⊗ EBC |�〉 = 〈�|IA ⊗ M†
BCMBC |�〉 = 0, (1)

∀ |�〉 
= |�〉 ∈ S, to show that EBC ∝ IBC (ECA and EAB

are similar). Throughout this paper, we assume EBC =
(mi j,kl )i j,kl∈Zd2 ×Zd3

, ECA = (mi j,kl )i j,kl∈Zd3 ×Zd1
, and EAB =

(mi j,kl )i j,kl∈Zd1 ×Zd2
.

A state |φ〉ABC is called a genuinely entangled state if it is
entangled in every bipartition. It is well known that the three-
qubit GHZ state (|000〉 + |111〉)/

√
2 and the W state (|100〉 +

|010〉 + |001〉)/
√

3 are genuinely entangled states. The states
considered throughout this paper (see Fig. 1 for an example)
can be separated into the following three classes:

(i) the GHZ-like states: |i1〉A| j1〉B|k1〉C − |i2〉A| j2〉B |k2〉C ,
where i1 
= i2, j1 
= j2 and k1 
= k2;

(ii) the W-like states: |i〉A| j〉B|k〉C + ω1
3| j〉A|k〉B|i〉C +

ω2
3|k〉A|i〉B| j〉C , where i, j, and k are not all the same, i.e.,

(i, j, k) is not of the form (a, a, a); and
(iii) the stopper state:

|S〉 = (
∑

i∈Zd1

|i〉A)(
∑

j∈Zd2

| j〉B)(
∑

k∈Zd3

|k〉C ).

For a GHZ-like state, |�〉 = |i1〉A| j1〉B|k1〉C − |i2〉A| j2〉B

|k2〉C , we refer to (i1, j1k1) and (i2, j2k2) as two cells of
|�〉 with respect to the bipartition A|BC, where i1 are i2
are the row indexes, respectively. For a W -like state, |�〉 =
|i〉A | j〉B|k〉C + ω1

3| j〉A|k〉B|i〉C + ω2
3|k〉A|i〉B| j〉C , we refer to

(i, jk), ( j, ki), and (k, i j) as three cells of |�〉 with respect
to the bipartition A|BC, where i, j, and k are the row indexes,
respectively. Building on the orthogonality of the postmea-
surement states, we present the following observations that
may be significant in demonstrating that the joint party BC
can only start with trivial measurements (CA and AB can be
dealt with similarly).

Observation 1. Let |�〉 and |�〉 be orthogonal GHZ-like
states or W -like states. If only one pair of cells of |�〉 and |�〉
with respect to the bipartition A|BC have the same row index,
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FIG. 1. The Rubik’s cube corresponding to the strongest nonlo-
cal set with minimum cardinality given by Eq. (4) in C3 ⊗ C3 ⊗ C3.
Every cube has an index (i, j, k), where i, j, and k are the indexes in
each subsystem A, B, and C. For example, the GHZ-like state |φ22〉 =
|2〉A|2〉B|2〉C − |1〉A|1〉B|1〉C corresponds to two yellow cubes (1,1,1)
and (2,2,2) with label “22.” The W -like state |φ00〉 = |2〉A|0〉B|0〉C +
ω1

3|0〉A |0〉B|2〉C + ω2
3|0〉A|2〉B|0〉C corresponds to three blue cubes

(2,0,0), (0,0,2), and (0,2,0) with label “00.”

denoted as (i, jk) and (i, j′k′), then applying |�〉 and |�〉 to
Eq. (1) results in

mjk, j′k′ = 0.

For example, consider two orthogonal GHZ-like states
|φ20〉 = |2〉A|2〉B|0〉C − |1〉A|0〉B|2〉C and |φ02〉 = |2〉A|0〉B

|2〉C − |0〉A|2〉B|1〉C . In Fig. 2, we find that only two cells
(2,20) and (2,02) have the unique same row index “2” in the
bipartition A|BC. Applying Obervation 1 to |φ20〉 and |φ02〉,
we have the equation, that is, (A〈2|BC〈20| −A 〈1|BC〈02|)IA ⊗
M†

BCMBC (|2〉A|02〉BC − |0〉A|21〉BC ) = 0. Hence, we get that
m20,02 = 0. Since E = E†, we have m02,20 = m20,02 = 0.

Observation 2. Let |�〉 and |�〉 be orthogonal GHZ-like
states or W -like states. If more than one pair of cells of |�〉
and |�〉 with respect to the bipartition A|BC have the same
row index, denoted as (i, jk) and (i, j′k′) and as (ix, jxkx ) and
(ix, j′xk′

x ) with x ∈ X for some index set X , then applying |�〉
and |�〉 to Eq. (1) results in

amjk, j′k′ +
∑
x∈X

axmjxkx, j′xk′
x
= 0,

where |a| = |ax| = 1. If we have known mjxkx, j′xk′
x
= 0 for x ∈

X , then we have

mjk, j′k′ = 0.

The cardinality of the index set X is either 1 or 2 in
this paper. For example, given |φ20〉 and |φ12〉 = |2〉A|1〉B

|2〉C − |1〉A|2〉B|0〉C , we cannot use Obervation 1 directly.
However, we can obtain the equation by Observation 2,
i.e., (A〈2|BC〈20| −A 〈1|BC〈02|)IA ⊗ M†

BCMBC (|2〉A|12〉BC −
|1〉A|20〉BC ) = 0. It implies that m20,12 + m02,20 = 0. As
m02,20 = 0 can be yielded from Observation 1; therefore
m20,12 = 0.

Observation 3. Suppose that all off-diagonal entries in the
matrix EBC are zeros. Applying the stopper state |S〉 and a

FIG. 2. The 3 × 9 plane structures of the strongest nonlocal set
∪i, j∈Z3{|φi j〉}

⋃{|S1〉} correspond to each bipartition A|BC, B|CA,
and C|AB. Every cell has an index (i, jk), where i is the row index
in the single subsystem and jk is the column index in the joint
subsystem. For example, the GHZ-like state |φ20〉 = |2〉A|20〉BC −
|1〉A|02〉BC corresponds to two cells (2,20) and (1,02) with label “20”
in the bipartition A|BC.

GHZ-like state |�〉 = |a〉A|i〉B| j〉C − |b〉A|k〉B|l〉C to Eq. (1)
yields

mi j,i j = mkl,kl .

Observation 4. Suppose that all off-diagonal entries in
the matrix EBC are zeros. Applying the stopper state |S〉
and the W -like state |�〉 = |i〉A| j〉B|k〉C + ω1

3| j〉A|k〉B|i〉C +
ω2

3|k〉A|i〉B| j〉C to Eq. (1) yields

mi j,i j = mjk, jk = mki,ki.

In fact, under the condition that all off-diagonal entries in
the matrix EBC are zeros, Eq. (1) is just

mjk, jk + ω1
3mki,ki + ω2

3mi j,i j = 0, (2)

where mjk, jk , mki,ki, and mi j,i j are all real numbers. Taking
complex conjugation to both sides of Eq. (2), we have

mjk, jk + ω2
3mki,ki + ω1

3mi j,i j = 0. (3)

Solving the two linear equations, Eqs. (2) and (3), one has
(mjk, jk, mki,ki, mi j,i j ) = (r, r, r) for some real number r.

III. THE STRONGEST NONLOCAL SETS WITH MINIMUM
CARDINALITY IN Cd ⊗ Cd ⊗ Cd

In this section, we present an orthogonal set of size 10 with
the strongest nonlocality in C3 ⊗ C3 ⊗ C3, the corresponding
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TABLE II. The off-diagonal entries in the matrix EBC = (mi j,kl )i j 
=kl∈Z3×Z3 by Observations 1 and 2.

Observations Pair of states Key entries Pair of states Remaining entries Pair of states Remaining entries

Observation 1

|φ02〉, |φ11〉
|φ02〉, |φ12〉
|φ02〉, |φ20〉
|φ02〉, |φ22〉
|φ11〉, |φ21〉
|φ12〉, |φ21〉
|φ20〉, |φ21〉
|φ21〉, |φ22〉

m02,11 = m11,02 = 0
m02,12 = m12,02 = 0
m02,20 = m20,02 = 0
m02,22 = m22,02 = 0
m11,21 = m21,11 = 0
m12,21 = m21,12 = 0
m20,21 = m21,20 = 0
m21,22 = m22,21 = 0

|φ00〉, |φ11〉
|φ00〉, |φ01〉
|φ00〉, |φ12〉
|φ00〉, |φ20〉
|φ00〉, |φ22〉
|φ11〉, |φ10〉

m00,11 = m11,00 = 0
m00,01 = m01,00 = 0
m00,12 = m12,00 = 0
m00,20 = m20,00 = 0
m00,22 = m22,00 = 0
m11,10 = m10,11 = 0

|φ01〉, |φ02〉
|φ01〉, |φ10〉
|φ01〉, |φ21〉
|φ10〉, |φ12〉
|φ10〉, |φ20〉
|φ10〉, |φ22〉

m01,02 = m02,01 = 0
m01,10 = m10,01 = 0
m01,21 = m21,01 = 0
m10,12 = m12,10 = 0
m10,20 = m20,10 = 0
m10,22 = m22,10 = 0

Observation 2

|φ02〉, |φ21〉
|φ12〉, |φ20〉
|φ20〉, |φ22〉
|φ11〉, |φ12〉
|φ11〉, |φ20〉
|φ11〉, |φ22〉
|φ12〉, |φ22〉

m02,21 = m21,02 = 0
m12,20 = m20,12 = 0
m20,22 = m22,20 = 0
m11,12 = m12,11 = 0
m11,20 = m20,11 = 0
m11,22 = m22,11 = 0
m12,22 = m22,12 = 0

|φ01〉, |φ12〉
|φ01〉, |φ20〉
|φ01〉, |φ22〉
|φ10〉, |φ02〉
|φ10〉, |φ21〉

m01,12 = m12,01 = 0
m01,20 = m20,01 = 0
m01,22 = m22,01 = 0
m10,02 = m02,10 = 0
m10,21 = m21,10 = 0

|φ00〉, |φ02〉
|φ00〉, |φ10〉
|φ00〉, |φ21〉
|φ11〉, |φ01〉

m00,02 = m02,00 = 0
m00,10 = m10,00 = 0
m00,21 = m21,00 = 0
m11,01 = m01,11 = 0

Rubik’s cube of which is given by Fig. 1. Subsequently, we
propose the strongest nonlocal set with minimum cardinality
in Cd ⊗ Cd ⊗ Cd , where d � 3.

Lemma 1. The set ∪i, j∈Z3{|φi j〉}
⋃{|S1〉} of size 10 given

by Eq. (4) is strongest nonlocal in C3 ⊗ C3 ⊗ C3:

|φ22〉 = |2〉A|2〉B|2〉C − |1〉A|1〉B|1〉C,

|φ20〉 = |2〉A|2〉B|0〉C − |1〉A|0〉B|2〉C,

|φ21〉 = |2〉A|2〉B|1〉C − |0〉A|1〉B|2〉C,

|φ02〉 = |2〉A|0〉B|2〉C − |0〉A|2〉B|1〉C,

|φ12〉 = |2〉A|1〉B|2〉C − |1〉A|2〉B|0〉C,

|φ10〉 = |2〉A|1〉B|0〉C − |0〉A|2〉B|2〉C,

|φ01〉 = |2〉A|0〉B|1〉C − |1〉A|2〉B|2〉C,

|φ00〉 = |2〉A|0〉B|0〉C + ω1
3|0〉A|0〉B|2〉C + ω2

3|0〉A|2〉B|0〉C,

|φ11〉 = |2〉A|1〉B|1〉C + ω1
3|1〉A|1〉B|2〉C + ω2

3|1〉A|2〉B|1〉C,

|S1〉 = |0 + 1 + 2〉A|0 + 1 + 2〉B|0 + 1 + 2〉C . (4)

Proof. Denote that S1 = ∪i, j∈Z3{|φi j〉}. In Fig. 2, the set
S1

⋃{|S1〉} has a similar plane structure in every bipartition
A|BC, B|CA, and C|AB under the cyclic permutation. Thus,
we only need to prove that the measurement applied to the
joint subsystem BC is trivial.

Step 1. According to Observations 1 and 2, we obtain that
all key off-diagonal entries are zeros, i.e., mi j,kl = 0 for i j 
=
kl ∈ {02, 11, 12, 20, 21, 22}.

Step 2. Consider |φpq〉 and |φst 〉 for pq 
= st , pq ∈ {00,

01, 10}, and st ∈ Z3 × Z3, we get that the remaining off-
diagonal entries are zeros, that is, mpq,st = 0. Thus, all
off-diagonal entries in the matrix EBC are zeros, that is,
mi j,kl = mkl,i j = 0 for i j 
= kl ∈ Z3 × Z3 from Table II.

Step 3. Applying Observation 3 to the stopper state |S1〉 and
|φi j〉 for i j ∈ Z3 × Z3\{00, 11}, we get m02,02 = m12,12 =
m20,20 = m21,21 and m01,01 = m10,10 = m11,11 = m22,22. Con-
sider the stopper state |S1〉 and the W -like states |φ00〉 and
|φ11〉 by Observation 4, we have m00,00 = m02,02 = m20,20 and

m11,11 = m12,12 = m21,21. In short, all diagonal entries are
equal. �

The proof that EBC is proportional to an identity matrix is
shown in Fig. 3. Therefore, the POVM element EBC is trivial.
This completes the proof.

The latest result in C3 ⊗ C3 ⊗ C3 is the strongest nonlocal
set of size 11 given by Li et al. [49]. Here, we provide the
strongest nonlocal set of the smallest size 10, which posi-
tively answers an open problem raised by Yuan et al. [36]

FIG. 3. Applying observations to prove that the set
∪i, j∈Z3{|φi j〉}

⋃{|S1〉} is the strongest nonlocal set. The yellow
(green) entries correspond to the key (remaining) off-diagonal
entries, the gray entries represent that all diagonal entries are
unknown. Step 1, we obtain that all key off-diagonal entries are
zeros, which correspond to the white entries. Step 2, all remaining
off-diagonal entries are zeros. Step 3, all diagonal entries are equal
by Observations 3 and 4, which are shown by the blue entries.
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FIG. 4. The Rubik’s cube corresponding to the strongest nonlo-
cal set with minimum cardinality given by Eq. (5) in Cd⊗ Cd ⊗ Cd

for d � 3.

and reaches the lower bound on the strongest nonlocal set in
C3 ⊗ C3 ⊗ C3 [47].

Now, we put forward the strongest nonlocal set with min-
imum cardinality in three-qudit systems, the corresponding
Rubik’s cube of which is shown in Fig. 4.

Theorem 1. The set ∪5
i=0Ai

⋃{|S2〉} of size d2 + 1 given
by Eq. (5) is strongest nonlocal in Cd ⊗ Cd ⊗ Cd for d � 3:

A0 = {|φd̂ d̂〉 = |d̂〉A|d̂〉B|d̂〉C − |d∗〉A|d∗〉B|d∗〉C},
A1 = {|φd̂ i〉 = |d̂〉A|d̂〉B|i〉C − |d∗ − i〉A|i〉B|d̂〉C

∣∣i ∈ Zd̂},
A2 = {|φid̂〉 = |d̂〉A|i〉B|d̂〉C − |i〉A|d̂〉B|d∗ − i〉C

∣∣i ∈ Zd̂},
A3 = {|φ(d∗−i)i〉 = |d̂〉A|d∗ − i〉B|i〉C

− |i〉A|d̂〉B|d̂〉C | i ∈ Zd̂},
A4 = {|φkl〉 = |d̂〉A|k〉B|l〉C + ω1

3|k〉A|l〉B|d̂〉C

+ ω2
3|l〉A|d̂〉B|k〉C | k, l ∈ Zd̂ , k + l � d − 1},

A5 = {|φst 〉 = |d̂〉A|s〉B|t〉C + ω1
3|s〉A|t〉B|d̂〉C

+ ω2
3|t〉A|d̂〉B|s〉C | s, t ∈ Zd̂ , 0 � s + t � d − 3},

|S2〉 =
⎛
⎝∑

i∈Zd

|i〉A

⎞
⎠

⎛
⎝∑

j∈Zd

| j〉B

⎞
⎠

⎛
⎝∑

k∈Zd

|k〉C

⎞
⎠, (5)

where d̂ = d − 1 and d∗ = d − 2.

Proof. The set ∪5
i=0Ai

⋃{|S2〉} has a similar plane structure
in every bipartition under the cyclic permutation. Therefore, it
is sufficient to show that the matrix EBC ∝ IBC .

Since EBC = E†
BC , if mi j,kl = 0, then mkl,i j = 0 for i j 
=

kl ∈ Zd × Zd . For convenience, we divide all off-diagonal
entries into two parts, called the key and the remaining off-
diagonal entries. The key off-diagonal entries are mi j,kl for
i j 
= kl ∈ S , where S = {sd̂, d̂s, d∗d∗, d̂ d̂ | s ∈ Zd̂}. Natu-
rally, the remaining off-diagonal entries are mpq,st for pq 
= st ,
pq ∈ Zd × Zd\S , and st ∈ Zd × Zd .

Consider A0, A1, A2, and |φd∗d∗ 〉 of A5, we get all
key off-diagonal entries are zeros from Table III. However,
only two off-diagonal entries m d∗

2 d̂,d̂ d∗
2

and md̂ d∗
2 , d∗

2 d̂ are not
available from Table III when d is even. In order to show
that m d∗

2 d̂,d̂ d∗
2

= md̂ d∗
2 , d∗

2 d̂ = 0, we first prove that m d∗
2 d̂,i j =

mi j, d∗
2 d̂ = 0 for i j ∈ Zd × Zd\{S, d∗

2 d̂, d̂ d∗
2 }. We separate the

argument into three cases.
(i) Neither i nor j is d∗

2 . Consider |φ d∗
2 d̂〉 and |φi j〉 by

Observation 1, then one obtains m d∗
2 d̂,i j = 0.

(ii) Only one of i or j is d∗
2 , then |φi j〉 belongs to A4 or A5.

As md̂ d∗
2 ,st = 0 for st ∈ S\{ d∗

2 d̂}, consider |φ d∗
2 d̂〉 and |φi j〉 by

Observation 2, then one obtains m d∗
2 d̂,i j = 0.

(iii) Both of i and j are d∗
2 , then |φ d∗

2
d∗
2
〉 belongs to A3.

As md̂ d∗
2 ,d̂ d̂ = 0, consider |φ d∗

2 d̂〉 and |φ d∗
2

d∗
2
〉 by Observation

2, then one obtains m d∗
2 d̂, d∗

2
d∗
2

= 0.
Next, we show that m d∗

2 d̂,d̂ d∗
2

= md̂ d∗
2 , d∗

2 d̂ = 0. Applying
|φd̂ d∗

2
〉 of A1 and |φ d∗

2 d̂〉 of A2 to Eq. (1) results in

0 = 〈φd̂ d∗
2
|IA ⊗ EBC |φ d∗

2 d̂〉 = m d∗
2 d̂,d̂ d∗

2
+ md̂ d∗

2 , d∗
2 d̂ . (6)

As m d∗
2 d̂,d̂ d∗

2
is the complex conjugation of md̂ d∗

2 , d∗
2 d̂ , m d∗

2 d̂,d̂ d∗
2

must be of the form r
√−1 for some real number r. Then,

applying |φ d∗
2 d̂〉 of A2 and the stopper state |S2〉 to Eq. (1)

gives the following equation:

0 = 〈φ d∗
2 d̂ |IA ⊗ EBC |S2〉,

that is,

0 = m d∗
2 d̂, d∗

2 d̂ − md̂ d∗
2 ,d̂ d∗

2
+ m d∗

2 d̂,d̂ d∗
2

− md̂ d∗
2 , d∗

2 d̂ . (7)

As m d∗
2 d̂, d∗

2 d̂ and md̂ d∗
2 ,d̂ d∗

2
are real numbers and md̂ d∗

2 , d∗
2 d̂ =

−r
√−1, Eq. (7) implies that both the real and imaginary part

are zeros. Therefore, r = 0. Hence, m d∗
2 d̂,d̂ d∗

2
= md̂ d∗

2 , d∗
2 d̂ = 0.

Thus, all key off-diagonal entries mi j,kl are zeros, where i j 
=
kl ∈ S .

Let us show that all remaining off-diagonal entries mpq,st

are zeros for pq 
= st , pq ∈ Zd × Zd\S , and st ∈ Zd × Zd .
Consider |φpq〉 and |φst 〉 by Eq. (1), then we obtain the fol-
lowing equation:

0 = 〈φpq|IA ⊗ EBC |φst 〉 = mpq,st + ampaqa,sata + bmpbqb,sbtb .

Obviously, most of them are only composed of two terms.
For mpxqx,sxtx (x ∈ {a, b}), the terms come from the key off-
diagonal entries that are zeros. Therefore, it is not difficult
to show that we can apply Observation 1 or Observation 2 to
|φpq〉 and |φst 〉, which yields mpq,st = 0.

Eventually, applying Observation 3 to the stopper state |S2〉
and Ai (i ∈ Z4), some diagonal entries are equal, i.e., md̂i,d̂ i =
md̂ (d∗−i),d̂ (d∗−i) = mid̂,id̂ = m(d∗−i)d̂,(d∗−i)d̂ for i ∈ Z� d−1

2 �. Con-
sider the stopper state |S2〉 and A4 and A5 by Observation 4;
we deduce that mkl,kl = mld̂,l d̂ = md̂k,d̂k for k, l ∈ Zd̂ , k + l 
=
d∗. Therefore, the matrix EBC ∝ IBC . �
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TABLE III. The key off-diagonal entries with respect to coordinates of S = {d̂ i, jd̂, d∗d∗, d̂ d̂ | i, j ∈ Zd̂} in the matrix EBC =
(mi j,kl )i j 
=kl∈Zd ×Zd by Observations 1 and 2.

Observations Sets Pair of states Key entries Value range Precondition

Observation 1

A1

A2

A1,A2

A1,A5

A2,A5

A0,A1

A0,A2

|φd̂ i〉, |φd̂ j〉
|φid̂〉, |φ jd̂〉
|φd̂ i〉, |φ jd̂〉

|φd̂ i〉, |φd∗d∗ 〉
|φid̂〉, |φd∗d∗ 〉
|φd̂ d̂ 〉, |φd̂ i〉
|φd̂ d̂ 〉, |φid̂〉

md̂i,d̂ j = md̂ j,d̂ i = 0
mid̂, jd̂ = mjd̂,id̂ = 0
md̂i, jd̂ = mjd̂,d̂ i = 0

md̂i,d∗d∗ = md∗d∗,d̂ i = 0
mid̂,d∗d∗ = md∗d∗,id̂ = 0

md̂i,d̂ d̂ = md̂d̂,d̂ i = 0
mid̂,d̂ d̂ = md̂d̂,id̂ = 0

i 
= j
i 
= j

i + j 
= d∗

i 
= 0
i 
= d∗

i 
= 0
i 
= d∗

Null
Null
Null
Null
Null
Null
Null

Observation 2

A1,A2

A1,A5

A2,A5

A0,A1

A0,A2

A0,A5

|φid̂〉, |φd̂ (d∗−i)〉
|φd̂0〉, |φd∗d∗ 〉
|φd∗ d̂ 〉, |φd∗d∗ 〉
|φd̂ d̂〉, |φd̂0〉
|φd̂ d̂ 〉, |φd∗ d̂ 〉
|φd̂ d̂〉, |φd∗d∗ 〉

md̂ (d∗−i),id̂ = mid̂,d̂ (d∗−i) = 0
md̂0,d∗d∗ = md∗d∗,d̂0 = 0

md∗ d̂,d∗d∗ = md∗d∗,d∗ d̂ = 0
md̂0,d̂ d̂ = md̂d̂,d̂0 = 0

md∗ d̂,d̂ d̂ = md̂d̂,d∗ d̂ = 0
md∗d∗,d̂ d̂ = md̂d̂,d∗d∗ = 0

i 
= d∗
2

md̂i,id̂ = 0
m0d̂,d∗ d̂ = m0d̂,d̂d∗ = 0
md̂0,d∗ d̂ = md̂0,d̂d∗ = 0

md∗d∗,0d̂ = 0
md̂0,d∗d∗ = 0

md̂d∗,d∗d∗ = md∗ d̂,d∗d∗ = 0

IV. THE STRONGEST NONLOCAL SETS WITH MINIMUM
CARDINALITY IN Cd1 ⊗ Cd2 ⊗ Cd3

First of all, we construct the strongest nonlocal set of the
smallest size in C3 ⊗ C4 ⊗ C5 based on the set given by
Lemma 1.

Lemma 2. The set ∪i j∈Z4×Z5{|φi j〉}
⋃{|S3〉} of size 21

given by Eqs. (4) and (8) is strongest nonlocal in C3 ⊗ C4 ⊗
C5:

|φ03〉 = |2〉A|0〉B|3〉C − |0〉A|2〉B|3〉C,

|φ13〉 = |2〉A|1〉B|3〉C − |1〉A|2〉B|3〉C,

|φ04〉 = |2〉A|0〉B|4〉C − |0〉A|2〉B|4〉C,

|φ14〉 = |2〉A|1〉B|4〉C − |1〉A|2〉B|4〉C,

|φ23〉 = |2〉A|2〉B|3〉C − |0〉A|0〉B|1〉C,

|φ24〉 = |2〉A|2〉B|4〉C − |0〉A|0〉B|3〉C,

|φ30〉 = |2〉A|3〉B|0〉C − |0〉A|3〉B|2〉C,

|φ31〉 = |2〉A|3〉B|1〉C − |1〉A|3〉B|2〉C,

|φ32〉 = |2〉A|3〉B|2〉C − |0〉A|1〉B|0〉C,

|φ33〉 = |2〉A|3〉B|3〉C − |0〉A|1〉B|3〉C,

|φ34〉 = |2〉A|3〉B|4〉C − |0〉A|1〉B|4〉C,

|S3〉 = |0 + 1 + 2〉A|0 + 1 + 2 + 3〉B|0 + 1 + 2 + 3 + 4〉C,

(8)

where ∪i, j∈Z3{|φi j〉} are the same as the states given by
Eq. (4).

Proof. Denote S1 = ∪i, j∈Z3{|φi j〉}, S2 = ∪i∈Z3, j∈{3,4}
{|φi j〉}, and S3 = ∪i∈Z5{|φ3i〉}. In Figs. 5 and 6, we show the
plane structures of ∪3

i=1Si
⋃{|S3〉} in every bipartition.

In Lemma 1, S1
⋃{|S1〉} is the strongest nonlocal

set in C3 ⊗ C3 ⊗ C3, this means that the matrix E =
(mi j,kl )i j,kl∈Z3×Z3 is proportional to an identity matrix. Since
E = E†, if mi j,kl = 0, there must be mkl,i j = 0, where
i j 
= kl ∈ Z3 × Z3.

For the matrix EBC = (mi j,kl )i j,kl∈Z4×Z5 . Consider S2 and
S1 by Observations 1 and 2, like |φ23〉 and S1, we get
m23,i j = 0 for i j ∈ Z3 × Z3; from |φ03〉, |φ13〉, and S1, we
have m03,i j = 0 and m13,i j = 0, where i j ∈ Z3 × Z3; for |φ24〉
and S1, we get m24,i j = 0 for i j ∈ Z3 × Z3; and from |φ04〉,
|φ14〉, and S1, we obtain m04,i j = 0 and m14,i j = 0, where i j ∈
Z3 × Z3. Consider S2, we get mi3, j3 = mi4, j4 = mk3,l4 = 0
for i 
= j ∈ Z3, k, l ∈ Z3. Consider S3 and S1, like |φ32〉 and
S1, we get m32,i j = 0 for i j ∈ Z3 × Z3; given |φ3s〉 and S1, we
have m3s,i j = 0, where s ∈ {0, 1, 3, 4}, i j ∈ Z3 × Z3. From
S3 and S2, we get m3i,kl = 0 for i ∈ Z5, kl ∈ { j3, j4| j ∈ Z3}.
Consider S3, we provide m3i,3 j = 0 for i 
= j ∈ Z5. Hereto
we prove that all off-diagonal entries are zeros by Observa-
tions 1 and 2, i.e., mi j,kl = 0 for i j 
= kl , i j ∈ {s3, s4, 3t |s ∈
Z3, t ∈ Z5}, kl ∈ Z4 × Z5. Applying Observation 3 to S2,
S3, and |S〉, we obtain that all diagonal entries are equal,
i.e., mi j,i j = mkl,kl for i j 
= kl ∈ Z4 × Z5. Thus, the matrix
EBC ∝ IBC .

Consider the matrix ECA = (mi j,kl )i j,kl∈Z5×Z3 . Applying
Observations 1 and 2 to S2 and S1, like |φ23〉 and S1, we
get m32,i j = 0 for i j ∈ Z3 × Z3; from |φ03〉, |φ13〉, and S1, we
have m30,i j = 0 and m31,i j = 0 for i j ∈ Z3 × Z3; given |φ24〉

FIG. 5. The 3 × 20 plane structure of the strongest nonlocal set ∪i j∈Z4×Z5 {|φi j〉}
⋃{|S3〉} corresponds to the bipartition A|BC. The yellow,

green, and blue entries correspond to S1, S2, and S3, respectively.
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FIG. 6. The 4 × 15 and 5 × 12 plane structures of the strongest
nonlocal set ∪i j∈Z4×Z5 {|φi j〉}

⋃{|S3〉} correspond to the bipartitions
B|CA and C|AB.

and S1, we get m42,i j = 0 for i j ∈ Z3 × Z3; and from |φ04〉,
|φ14〉, and S1, we obtain m40,i j = 0 and m41,i j = 0 for i j ∈
Z3 × Z3. Consider S2, we have m3i,3 j = m4i,4 j = m3k,4l = 0
for i 
= j ∈ Z3, k, l ∈ Z3. Applying Observation 3 to S2 and
|S3〉, we present that m3i,3i = m4i,4i = m10,10 for i ∈ Z3. So,
the matrix ECA is proportional to an identity matrix.

For the matrix EAB = (mi j,kl )i j,kl∈Z3×Z4 . Consider states
|φ30〉, |φ31〉, |φ32〉, and S1, we get mi3,kl = 0 for i ∈ Z3, kl ∈
Z3 × Z3. Applying Observations 1 and 2 to |φ30〉, |φ31〉, and
|φ32〉, we yield mi3, j3 = 0 for i 
= j ∈ Z3. From |φ30〉, |φ31〉,
|φ32〉, and |S3〉 by Observation 3, we have m03,03 = m13,13 =
m23,23 = m01,01. Thus the POVM element EAB is trivial, which
completes the proof.

In Ref. [49], Li et al. proposed the strongest nonlocal set
of size 22 in C3 ⊗ C4 ⊗ C5. Here, we construct the strongest
nonlocal set of the smallest size 21, which reaches the low
bound on the strongest nonlocal sets in C3 ⊗ C4 ⊗ C5.

Theorem 2. The set ∪13
i=0Ai

⋃{|S〉} of size d2d3 + 1 given
by Eqs. (5) and (9) is strongest nonlocal in Cd1⊗ Cd2 ⊗ Cd3

for 3 � d1 � d2 � d3:

A6 = {|φi(d1+ j)〉 = |d̂1〉A|i〉B|d1 + j〉C − |i〉A|d̂1〉B|d1 + j〉C | i ∈ Zd̂1
, j ∈ Zd3−d1},

A7 = {|φd̂1d1
〉 = |d̂1〉A|d̂1〉B|d1〉C − |0〉A|0〉B|1〉C},

A8 = {|φd̂1(d1+1+i)〉 = |d̂1〉A|d̂1〉B|d1 + 1 + i〉C − |0〉A|0〉B|d1 + i〉C | i ∈ Zd3−d1−1},
A9 = {|φ(d1+ j)i〉 = |d̂1〉A|d1 + j〉B|i〉C − |i〉A|d1 + j〉B|d̂1〉C | i ∈ Zd̂1

, j ∈ Zd2−d1},
A10 = {|φd1d̂1

〉 = |d̂1〉A|d1〉B|d̂1〉C − |0〉A|1〉B|0〉C},
A11 = {|φ(d1+1+i)d̂1

〉 = |d̂1〉A|d1 + 1 + i〉B|d̂1〉C − |0〉A|d1 + i〉B|0〉C | i ∈ Zd2−d1−1},
A12 = {|φd1(d1+i)〉 = |d̂1〉A|d1〉B|d1 + i〉C − |0〉A|1〉B|d1 + i〉C | i ∈ Zd3−d1},
A13 = {|φ(d1+1+i)(d1+ j)〉 = |d̂1〉A|d1 + 1 + i〉B|d1 + j〉C − |0〉A|d1 + i〉B|d1 + j〉C | i ∈ Zd2−d1−1, j ∈ Zd3−d1},

|S〉 =
⎛
⎝ ∑

i∈Zd1

|i〉A

⎞
⎠

⎛
⎝ ∑

j∈Zd2

| j〉B

⎞
⎠

⎛
⎝ ∑

k∈Zd3

|k〉C

⎞
⎠,

(9)

where d̂1 = d1 − 1, and Ai (i ∈ Z6) are similar to the sets
given by Eq. (5), except that d is replaced by d1.

Proof. Denote that B1 = ∪5
i=0Ai, B2 = ∪8

i=6Ai, and B3 =
∪13

i=9Ai. In Theorem 1, B1
⋃{|S〉} is the strongest nonlocal

set in Cd1 ⊗ Cd1 ⊗ Cd1 , it implies that mi j,kl = 0 and mi j,i j =
mkl,kl for i j 
= kl ∈ Zd1 × Zd1 . In order to show that the ma-
trices EBC , ECA, and EAB are trivial, we divide all off-diagonal
entries into two parts in every bipartition, i.e., the key and the
remaining off-diagonal entries.

In the bipartition A|BC, the key off-diagonal entries are
mi j,kl for i j 
= kl ∈ K1, where K1 = {d∗

1 d∗
1 , id̂1, d̂1 j | d∗

1 =
d1 − 2, i ∈ Zd2 , j ∈ Zd3}; the remaining off-diagonal entries
in the matrix EBC are mpq,st for pq 
= st , pq ∈ Zd2 × Zd3\K1,
and st ∈ Zd2 × Zd3 . Applying Observations 1 and 2 to the
sets B1, A7, A8, A10, and A11, we get that all key off-
diagonal entries are zeros. Since mi j,kl = mkl,i j = 0 for i j 
=
kl ∈ K1, applying Observations 1 and 2 to B1, B2, and B3,
we obtain that all off-diagonal entries are zeros. Consider
B1, B2, B3, and |S〉 by Observations 3 and 4, and we have

mi j,i j = mkl,kl for i j 
= kl ∈ Zd2 × Zd3 . Thus, the matrix EBC

is trivial.
Consider the bipartition B|CA, the key off-diagonal entries

are mi j,kl for i j 
= kl ∈ K2, where K2 = {d∗
1 d∗

1 , jd̂1 | d∗
1 =

d1 − 2, j ∈ Zd3}; the remaining off-diagonal entries in the
matrix ECA are mpq,st for pq 
= st , pq ∈ Zd3 × Zd1\K2, and
st ∈ Zd3 × Zd1 . Applying Observations 1 and 2 to B1, A7,
and A8, we obtain that mi j,kl = mkl,i j = 0 for i j 
= kl ∈ K2.
Based on the fact that all key off-diagonal entries are zeros,
applying Observations 1 and 2 to B1 and B2, we have mi j,kl =
mkl,i j = 0 for i j 
= kl ∈ Zd3 × Zd1 . From B1, B2, and |S〉 by
applying Observations 3 and 4, it implies that mi j,i j = mkl,kl

for i j 
= kl ∈ Zd3 × Zd1 . Therefore, the matrix ECA ∝ ICA.
For the bipartition C|AB, the key off-diagonal entries are

mi j,kl for i j 
= kl ∈ K3, where K3 = {d∗
1 d∗

1 , d̂1i | d∗
1 = d1 −

2, i ∈ Zd2}; the remaining off-diagonal entries in the matrix
EAB are mpq,st for pq 
= st , pq ∈ Zd1 × Zd2\K3, and st ∈
Zd1 × Zd2 . According to B1, A10, and A11 by applying Ob-
servations 1 and 2, we obtain that all key off-diagonal entries
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are zeros. Since mi j,kl = mkl,i j = 0 for i j 
= kl ∈ K3, applying
Observations 1 and 2 to B1 and B3, we get that all off-diagonal
entries are zeros. Considering B1, B3 and |S〉 by Observations
3 and 4, we deduce mi j,i j = mkl,kl for i j 
= kl ∈ Zd1 × Zd2 .
Hence, the matrix EAB ∝ IAB. To sum up, we successfully
show that the set ∪3

i=1Bi
⋃{|S〉} is the strongest nonlocal set

in general tripartite systems. �

V. CONCLUSION

In this paper, we constructed the strongest nonlocal sets
with minimum cardinality in general tripartite systems. Our
result positively answers an open conjecture proposed in
Ref. [47]. From Table I, the size of the strongest nonlocal
sets we constructed is the smallest of all previous results
in Cd1 ⊗ Cd2 ⊗ Cd3 . In particular, the strongest nonlocal
set given by Theorem 1 consists of d2 orthogonal genuine

entangled states except the stopper state, and the strongest
nonlocal set given by Theorem 2 contains d2d3 orthogonal
entangled states except the stopper state.

There are still some open questions left to be solved.
In general N-partite systems ⊗N

i=1C
di , can we construct the

strongest nonlocal set of the smallest size maxi{
∏n

j=1 d j/di +
1}? Can we further improve the lower bound on the strongest
nonlocal sets?
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